Union-wide
Community-led
Inter- and Transdisciplinary Sessions
Disciplinary sessions

SSP – Stratigraphy, Sedimentology & Palaeontology

Programme group chairs: Marc De Batist, Cinzia Bottini

MAL16
Jean Baptiste Lamarck Medal Lecture by David A. T. Harper & SSP Division Outstanding ECS Award Lecture by Stefanie Kaboth-Bahr
Convener: Marc De Batist | Co-conveners: Cinzia Bottini, Jorijntje Henderiks
Orals
| Thu, 27 Apr, 19:00–20:00 (CEST)
 
Room D3
Thu, 19:00
DM12
Division meeting for Stratigraphy, Sedimentology and Palaeontology (SSP)
Co-organized by SSP
Convener: Marc De Batist
Wed, 26 Apr, 12:45–13:45 (CEST)
 
Room 0.31/32
Wed, 12:45

SSP1 – General Sessions

Programme group scientific officers: Marc De Batist, Ian Jarvis, Stephen Lokier, Guilhem Amin Douillet, Cinzia Bottini

SSP1.1 EDI | PICO

This session offers stratigraphers, sedimentologists and palaeontologists an opportunity to present papers that do not fall within research areas covered by this year's special themes. The PICO format provides the maximum opportunity to present research on diverse themes to the widest possible audience.

Convener: Marc De Batist | Co-conveners: Wessel van der SandeECSECS, Francesco Salese, Cinzia Bottini, Alicia FantasiaECSECS, Madeleine VickersECSECS, Guilhem Amin DouilletECSECS
PICO
| Mon, 24 Apr, 14:00–18:00 (CEST)
 
PICO spot 2
Mon, 14:00
ITS2.2/SSP1.2 EDI

Scientific drilling through the International Ocean Discovery Program (IODP) and the International Continental Scientific Drilling Program (ICDP) continues to provide unique opportunities to investigate the workings of the interior of our planet, Earth’s cycles, natural hazards and the distribution of subsurface microbial life. The past and current scientific drilling programs have brought major advances in many interdisciplinary fields of socio-economic relevance, such as climate and ecosystem evolution, palaeoceanography, the deep biosphere, sustainable georesources, deep crustal and tectonic processes, geodynamics and geohazards. This session invites contributions that present and/or review recent scientific results from deep Earth sampling and monitoring through ocean and continental drilling projects. Furthermore, we encourage contributions that outline perspectives and visions for future drilling projects, in particular projects using a multi-platform approach.

JpGU
Convener: Thomas Wiersberg | Co-conveners: Angelo Camerlenghi, Cindy KunkelECSECS, Jorijntje Henderiks, Harue Masuda
Orals
| Thu, 27 Apr, 10:45–12:30 (CEST), 14:00–17:45 (CEST)
 
Room N1
Posters on site
| Attendance Thu, 27 Apr, 08:30–10:15 (CEST)
 
Hall X3
Orals |
Thu, 10:45
Thu, 08:30
SSP1.3 EDI

Mass extinctions and severe environmental changes in the Phanerozoic are temporarily associated with large volcanic eruptions and meteorite impacts, suggesting causal relationships. This session invites contributions presenting new data and results from the end-Ordovician, Late and end-Devonian, end-Permian, end-Triassic, end-Cretaceous, and other paleoenvironmental crises, such as the Paleocene-Eocene Thermal Maximum and Oceanic Anoxic Events in the Mesozoic. The goal of the session is to bring together researchers from geological, geophysical, and biological disciplines to improve our knowledge of the cause-effect scenario of these major environmental changes.

Co-organized by GMPV8
Convener: Alicia FantasiaECSECS | Co-conveners: Thierry Adatte, Sverre Planke, David Bond, Eric Font
Orals
| Fri, 28 Apr, 08:30–12:25 (CEST)
 
Room -2.31
Posters on site
| Attendance Thu, 27 Apr, 10:45–12:30 (CEST)
 
Hall X3
Posters virtual
| Thu, 27 Apr, 10:45–12:30 (CEST)
 
vHall SSP/GM
Orals |
Fri, 08:30
Thu, 10:45
Thu, 10:45
SSP1.4 EDI

Despite increasing public awareness about global plastic pollution and rising concerns about associated ecotoxicological risks, the annual amount of plastic waste released into natural environments continues to increase drastically. Proceeding pollution inevitably leads to spreading and accumulation of plastics through any sedimentary system, which is why plastics have been detected in almost every environment and natural habitat on Earth. To fully grasp the magnitude of the global plastic pollution problem and time scales associated with ecotoxicological consequences, we need to understand where plastic waste accumulates and how plastic items have been fragmented, depredated, and altered along their pathway. This includes a fundamental understanding of hydrodynamic transport processes including plastic-sediment interactions, as well as leaching processes of different types of plastics under various environmental conditions.

- Occurrence and spatial distribution of plastic waste in the environment
- Transport, deposition, and burial of plastics
- Fragmentation and degradation of plastics
- Leaching of chemical additives from plastics
- Toxicological studies on plastics or on chemical additives release from plastics
- Studies on the interaction between plastic and natural materials such as sediments
- Advanced analytical workflows suitable for the time-efficient and accurate analysis of small microplastics in sediments

Co-organized by ERE1/OS4, co-sponsored by IAS
Convener: Florian PohlECSECS | Co-conveners: Lars HildebrandtECSECS, Francesca De FalcoECSECS, Catherine RussellECSECS, Elda Miramontes
Orals
| Fri, 28 Apr, 14:00–15:20 (CEST)
 
Room -2.31
Posters on site
| Attendance Fri, 28 Apr, 10:45–12:30 (CEST)
 
Hall X3
Posters virtual
| Fri, 28 Apr, 10:45–12:30 (CEST)
 
vHall SSP/GM
Orals |
Fri, 14:00
Fri, 10:45
Fri, 10:45
SSP1.5 EDI

What role did climate dynamics play in human evolution, the dispersal of different Homo species within and beyond the African continent, and key cultural innovations? Were dry spells, stable humid conditions, or rapid climate fluctuations the main driver of human evolution and migration? In order to evaluate the impact that different timescales and magnitudes of climatic shifts might have had on the living conditions of prehistoric humans, we need reliable and continuous reconstructions of paleoenvironmental conditions and fluctuations from the vicinity of paleoanthropological and archaeological sites. The search for the environmental context of human evolution and mobility crucially depends on the interpretation of paleoclimate archives from outcrop geology, lacustrine and marine sediments. Linking archeological data to paleoenvironmental reconstructions and models becomes increasingly important.

As a contribution towards a better understanding of these human-climate interactions the conveners encourage submission of abstracts on their project’s research on (geo)archaeology, paleoecology, paleoclimate, stratigraphy, and paleoenvironmental reconstructions. We especially welcome contributions offering new methods for dealing with difficult archive conditions and dating challenges. We hope this session will appeal to a broad audience by highlighting the latest research on paleoenvironmental reconstructions in the vicinity of key sites of human evolution, showcasing a wide variety of analytical methods, and encouraging collaboration between different research groups. Conceptual models, modelling results and model-data comparisons are warmly welcomed, as collaborative and interdisciplinary research.

Co-organized by CL1
Convener: Verena E. Foerster | Co-conveners: Annett Junginger, Christian Zeeden, Janina J. NettECSECS, Simon Kübler, Rachel Lupien, Inka Meyer
Orals
| Mon, 24 Apr, 08:30–10:15 (CEST)
 
Room -2.21
Posters on site
| Attendance Mon, 24 Apr, 16:15–18:00 (CEST)
 
Hall X3
Posters virtual
| Mon, 24 Apr, 16:15–18:00 (CEST)
 
vHall SSP/GM
Orals |
Mon, 08:30
Mon, 16:15
Mon, 16:15
SSP1.7 EDI

In the last decades, the paleogeography, tectonic and kinematic evolution of Western Mediterranean region have been largely debated. One of the main difficulties in proposing consensual reconstructions is the complex patchwork of polysized blocks involved in the Variscan orogeny. The main blocks that experienced differential evolution during the Alpine cycle are Iberia, Adria and the Corsica-Sardinia/AlKaPeCa domains. The Cenozoic geodynamics of the Western Mediterranean and the diffuse Eurasia-Africa boundary hamper easy reconstructions. Evidence of the complex evolution, related to two superposed orogeneses, is recorded by several basins distributed along the Mediterranean area. The Variscan tectono-metamorphic phenomena are recorded in the Paleozoic successions exposed in the Betic-Rifian Arc, Algeria, Calabria-Peloritani Arc, Apennines, Corsica-Sardinia block, and the Alps. The Alpine tectono-metamorphic evolution, superposed on part of these ancient basements, is widespread in the Mesozoic to Cenozoic stratigraphic record preserved in the Mediterranean Alpine Chain with spectacular syn- to late-orogenic compressional and extensional deformation.
Several Permian to Mesozoic rift systems, conditioned by crustal-scale shear zones, developed in late/post-Variscan times. The polyphase evolution of these basins is related to the early breakup of Pangea and the opening of both the southern North Atlantic and the Bay of Biscay. These basins were subsequently inverted or involved in the Alpine orogens to accommodate the Africa-Eurasia convergence during Late Cretaceous to Tertiary times. The interplay between tectonics and sedimentation ruled the synorogenic sedimentation in the Foreland Basin System. Sedimentary facies analysis and paleoenvironment evolution of depositional systems, together with sediment provenance and paleogeographic/paleoecologic/paleoclimatic reconstructions, provide further constraints to trace the evolution of sedimentary basins. We welcome contributions dealing with prominent geological structures, mountain belts, and sedimentary basins which recorded the past configuration of the Iberia-Eurasia-Adria-Africa plate boundary(s). We encourage submission of studies presenting new insights including geology (tectonics, paleontology, stratigraphy, sedimentology, petrology, geochronology, thermochronology, and geochemistry), geophysics (paleomagnetism, seismicity, seismic imaging/anisotropy, gravity), modelling (numerical and analogue).

Co-organized by TS6
Convener: Rosanna Maniscalco | Co-conveners: Gaia SiravoECSECS, Riccardo Asti, Sabatino Ciarcia, Nicolas Saspiturry, Roberta Somma, Sebastiano Ettore SpotoECSECS
Orals
| Wed, 26 Apr, 08:30–10:15 (CEST)
 
Room -2.21
Posters on site
| Attendance Tue, 25 Apr, 16:15–18:00 (CEST)
 
Hall X3
Posters virtual
| Tue, 25 Apr, 16:15–18:00 (CEST)
 
vHall SSP/GM
Orals |
Wed, 08:30
Tue, 16:15
Tue, 16:15
CL1.1.3 EDI

Today, the Indian, Pacific and Southern Oceans and associated ocean gateways capture the complex intermediate and deep-water return pathways of the global thermohaline circulation. The Indo-Pacific Warm Pool (IPWP) acts as a low latitude heat source for the polar regions and is a crucial part in globally significant climatic systems like the Australasian Monsoon, Intertropical Convergence Zone (ITCZ), El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). This highlights the Indo-Pacific’s importance in deciphering past and future coupled ocean-atmosphere dynamics.
The Cenozoic also sees large reorganisation of the hydrographic and atmospheric fronts across the Southern Hemisphere (SH). These changes have significant consequences for icesheet build-up in Antarctica and ocean-atmosphere carbon cycling, with further implications for surface ocean dynamics and productivity. Characterisation of these fronts using sedimentary records, located in mid-to-high latitudes in the SH allow us to understand the sensitivity and interconnection between Antarctic icesheets and carbon cycle to frontal shifts.
This session explores the role of the Indian, Pacific and Southern Oceans and their gateways in global climate change and as a biogeographic diversity hot spot from the geological past to the present. To understand the Cenozoic evolution of these Oceans and associated low- and high-latitude (especially SH) gateways, we invite submissions on wide-ranging topics including paleoclimatology, palaeoceanography, sedimentology, palaeontology, and data-model comparisons. This session will examine how feedbacks between the IPWP, Australasian hydroclimate and tectonic and/or weathering processes affect the evolution of the global monsoons and the ITCZ. We also encourage marine and/or terrestrial multi-proxy studies, investigating Cenozoic teleconnections of both equatorial Indo-Pacific (e.g., ENSO/IOD) and high latitude SH processes (e.g., variability of hydrographic fronts).

Co-organized by BG5/OS1/SSP1
Convener: Anna Joy DruryECSECS | Co-conveners: Deborah TangunanECSECS, Gerald AuerECSECS, Mariem Saavedra-Pellitero, Elisa Malinverno, Iván Hernández-Almeida, Beth Christensen
Orals
| Fri, 28 Apr, 08:30–10:15 (CEST)
 
Room 0.31/32
Posters on site
| Attendance Fri, 28 Apr, 10:45–12:30 (CEST)
 
Hall X5
Orals |
Fri, 08:30
Fri, 10:45
SSP1.10 EDI

Straits linking the open ocean to marginal basins play an important role in driving global thermohaline circulation through the exchange of heat and salt. When these marine gateways allow only very limited exchange, typically during early stage opening and the final stages of closure, the marginal seas can experience extreme fluctuations in salinity, from brackish to hypersaline conditions, with knock-on consequences for the density contrast across the gateway. Restricted gateway exchange can result in the formation of “salt giants”, marginal basins characterized by the precipitation of large volumes of evaporites. In addition to their profound local impact, these salt giants can be sufficiently large to change the chemistry of the ocean, impact the carbon cycle and marine ecosystems, and modify climate on a global scale.
This session has been triggered by the upcoming IODP Expedition 401 which is part of the first land-2-sea project, IMMAGE. This project will recover Late Miocene gateway successions on either side of the Gibraltar Strait (IODP) and onshore records (ICDP) from the two fossil gateways that are preserved on land in Morocco and Spain. The contouritic sediments preserved in and oceanward of these gateways will provide a unique record of the Atlantic-Mediterranean exchange before, during and after the formation of the world’s most recent salt giant, which was deposited during the Messinian Salinity Crisis. IMMAGE will also directly test whether the representations of overflows in general circulation models (GCMs) are effective outside the range of validation provided by the modern ocean.
We welcome presentations from a wide range of researchers investigating the opening or closing of marine gateways, modern or ancient, and their climatic consequences. Our aim is to build a global community of scientists including physical oceanographers, climate modelers and geologists who wish to share and integrate established and novel approaches to studying marine connectivity and who will benefit from the samples and insights generated by upcoming IMMAGE drilling.

Convener: Dan Valentin PalcuECSECS | Co-conveners: Konstantina Agiadi, Rachel Flecker, Giovanni Aloisi, Claudia BertoniECSECS
Orals
| Wed, 26 Apr, 10:45–12:30 (CEST)
 
Room -2.21
Posters on site
| Attendance Tue, 25 Apr, 16:15–18:00 (CEST)
 
Hall X3
Posters virtual
| Tue, 25 Apr, 16:15–18:00 (CEST)
 
vHall SSP/GM
Orals |
Wed, 10:45
Tue, 16:15
Tue, 16:15
GD5.1

It is becoming increasingly apparent that continental rifting, breakup, and ocean spreading involve complexities not easily explained by standard models, especially in oblique and transform settings. The unexpected discovery of continental material far offshore, e.g. at the Rio Grande Rise, and realisation of the importance of obliquity and time-dependence in rifting, challenge conventional tectonic models. This session aims to bring together new observations, models, and ideas to help us understand the complex factors influencing continental rifting, breakup and ocean spreading, including oblique and transform settings. Works investigating time-dependant controls on rifting mechanisms, plate kinematics, strain localisation, obliquity, plate interior deformation, inherited lithospheric structures, interaction and feedbacks of rift processes, lithospheric and mantle derived driving forces, magmatism, syn-rift sedimentation, and other controls on rifting, are therefore welcomed to this session. Contributions from any geoscience discipline, including marine geophysics, seismology, ocean drilling, geochemistry, petrology, plate kinematics, tectonics, structural geology, numerical and analogue modelling, sedimentology and geochronology etc., are sought. We particularly encourage cross-disciplinarity, the spanning of spatio-temporal scales, and thought-provoking studies that challenge conventions from any and all researchers.

Co-organized by SM4/SSP1/TS5
Convener: Jordan J. J. Phethean | Co-conveners: Patricia Cadenas Martínez, Alexander L. Peace, Christian SchifferECSECS, Frank Zwaan
Orals
| Thu, 27 Apr, 08:30–10:15 (CEST)
 
Room -2.91
Posters on site
| Attendance Thu, 27 Apr, 14:00–15:45 (CEST)
 
Hall X2
Orals |
Thu, 08:30
Thu, 14:00
GM6.3 EDI

The ocean floor hosts a tremendous variety of landforms that reflect the action of a range of tectonic, sedimentary, oceanographic and biological processes at multiple spatio-temporal scales. Many such processes present hazards to coastal populations and offshore installations, and their understanding constitutes a key objective of national and international research programmes and IODP expeditions. Recent advances in geophysical imaging, scientific ocean drilling, and seafloor instrumentation have increased the understanding of offshore geohazards; however, significant knowledge gaps remain in understanding the timing and interplay of geological processes at the origin of geohazards. High quality bathymetry, especially when combined with sub-seafloor and/or seabed measurements, provides an exciting opportunity to integrate the approaches of geomorphology and geophysics, as well as to extend quantitative geomorphology offshore and to integrate it into hazard analysis. 3D seismic reflection data has also given birth to the discipline of seismic geomorphology, which has provided a 4D perspective to continental margin evolution.

This interdisciplinary session aims to examine the causes and consequences of geomorphic processes shaping underwater landscapes, including submarine erosion and depositional processes, submarine landslides and canyons, sediment transfer and deformation, volcanic activity, fluid migration and escape, faulting and folding, and other processes acting at the seafloor. The general goal of the session is to bring together researchers who characterise the shape of past and present seafloor features, seek to understand the sub-surface and surface processes at work and their impacts, or use bathymetry and/or 3D seismic data as a model input, as well as to promote cooperation between different parties (academic, industrial, and governmental) involved in geohazard research and management. Contributions to this session can include work from any depth or physiographic region, e.g. oceanic plateaus, abyssal hills, mid-ocean ridges, accretionary wedges, and continental margins (from continental shelves to abyssal plains), as well as from lakes. Datasets of any scale, from satellite-predicted depth to ultra-high-resolution swath bathymetry, sub-surface imaging and sampling, are anticipated.

This session is co-organised by the IAG Submarine Geomorphology Working Group.

Co-organized by OS4/SSP1, co-sponsored by IAG
Convener: Sebastian Krastel | Co-conveners: Lara F. Pérez, Derek Sawyer, Rachel BarrettECSECS, Marta Ribo GeneECSECS, Luca FallatiECSECS, Jacob Geersen
Orals
| Wed, 26 Apr, 14:00–18:00 (CEST)
 
Room D3
Posters on site
| Attendance Wed, 26 Apr, 10:45–12:30 (CEST)
 
Hall X3
Orals |
Wed, 14:00
Wed, 10:45
GM5.1

Fluvial and coastal systems form and evolve on timescales of days to millennia as a result of complex interactions between physical and ecological processes. Understanding geomorphic adjustments requires consideration of boundary conditions that influence upstream and downstream controls, including discharge, sediment, biota, and marine influences such as tidal and wave processes. Seen through a morphological and geological lens, rivers, floodplains, deltas, estuaries, and coastal lagoons span a continuum of accommodation space infilled by clastic and organic sediments. Natural and anthropogenically induced subsidence, hydraulic infrastructure, fluvial and coastal erosion as well as direct removal of sediment and wetlands disrupt natural riparian dynamics and coastal land building processes. A watershed-scale perspective to sustainable riparian management, including adaptation to changing climate and coastal land gain to keep up with rising sea level, requires a systemic understanding of key processes across a range of timescales. We welcome contributions that aim to understand theoretical and applied dimensions of river systems, as well as methodological advances in monitoring and characterizing associated processes and environments. Potential settings span the watershed, including lowland rivers linked to coastal environments. A primary goal of the session is to improve understanding of river and coastal systems using some combination of numerical models, machine learning, laboratory experiments (analogue models), remote sensing, fieldwork, historical data and geological reconstructions. We also welcome multidisciplinary studies that focus on adaptation to future conditions.

Co-organized by SSP1
Convener: Anne BaarECSECS | Co-conveners: Simone Bizzi, Manudeo SinghECSECS, Richard BoothroydECSECS, Paul Hudson, Lisanne BraatECSECS, Muriel BrücknerECSECS
Orals
| Fri, 28 Apr, 08:30–12:30 (CEST)
 
Room G1
Posters on site
| Attendance Fri, 28 Apr, 14:00–15:45 (CEST)
 
Hall X3
Posters virtual
| Fri, 28 Apr, 14:00–15:45 (CEST)
 
vHall SSP/GM
Orals |
Fri, 08:30
Fri, 14:00
Fri, 14:00
GMPV5.3

Fluid flow in the Earth’s crust is driven by pressure gradients and temperature changes induced by internal heat. The expression of crustal fluid flow is associated with a range of structural and geochemical processes taking place in the basement and in sedimentary basins. Groundwater, hydrothermal brines and gases circulating in the subsurface interact with local structures across different tectonic and geological settings. Under near-lithostatic conditions fluids and rocks are expelled vertically to the near-surface featuring a variety of surficial geological phenomena ranging from hydrothermal systems to sedimentary and hybrid volcanism and cold seeps both onshore and offshore. These vertical fluid flow expressions and piercement structures are characterized by complex sedimentary deformation and geochemical reactions where life can adapt to thrive in extremely harsh environments making them ideal windows to the deep biosphere. Several studies have shown that CO2- and CH4-dominated (or hybrid) vents played a key role in the evolution of our planet and the cycles of life during several geological eras. Similar structures on other planets are promising sites for exploration where habitable niches could have been present. Furthermore, the elevated pore pressures often encountered in reservoirs at depth make piercements ideal natural laboratories to capture precursors of seismic events and dynamically triggered geological processes. Yet, the geochemical and geophysical processes associated with the evolution of these vertical fluid flow features and piercements remain poorly understood.
This session welcomes contributions from the community working on magmatic and sedimentary environments and the domains where they interact on Earth and in the Universe using geophysical, geochemical, microbial, geological, remote sensing, numerical and laboratory studies to promote a better understanding of modern and paleo fluid-driven systems in the upper crust. In particular we call for contributions from: 1) investigations of tectonic discontinuities pre-existing geological structures; 2) the geochemical reactions occurring at depth and at the surface including microbiological studies; 3) geophysical imaging and monitoring of fluid flow systems associated with vertical fluid expulsion at the upper crust; 4) experimental and numerical studies about fluid flow evolution; 5) studies of piercement dynamics related to climatic and environmental implications.

Co-organized by BG7/SSP1
Convener: Adriano Mazzini | Co-conveners: Matteo Lupi, Andreia Plaza-FaverolaECSECS
Orals
| Tue, 25 Apr, 14:00–15:35 (CEST)
 
Room -2.33
Posters on site
| Attendance Tue, 25 Apr, 10:45–12:30 (CEST)
 
Hall X2
Posters virtual
| Tue, 25 Apr, 10:45–12:30 (CEST)
 
vHall GMPV/G/GD/SM
Orals |
Tue, 14:00
Tue, 10:45
Tue, 10:45
ERE1.9 EDI

Geoscience underpins many aspects of the energy mix that fuels our planet and offers a range of solutions for reducing global greenhouse gas emissions as the world progresses towards net zero. The aim of this session is to explore and develop the contribution of geology, geophysics and petrophysics to the development of sustainable energy resources in the transition to low-carbon energy. The meeting will be a key forum for sharing geoscientific aspects of energy supply as earth scientists grapple with the subsurface challenges of remaking the world’s energy system, balancing competing demands in achieving a low carbon future.

Papers should show the use of any technology or modelling that was initially developed for use in conventional oil and gas industries, and show it being applied to either sustainable energy developments or to CCS, subsurface waste disposal or water resources.
Relevant topics include but are not limited to:
1. Exploration & appraisal of the subsurface aspects of geothermal, hydro and wind resources.
2. Appraisal & exploration of developments needed to provide raw materials for solar energy, electric car batteries and other rare earth elements needed for the modern digital society.
3. The use of reservoir modelling, 3D quantification and dynamic simulation for the prediction of subsurface energy storage.
4. The use of reservoir integrity cap-rock studies, reservoir modelling, 3D quantification and dynamic simulation for the development of CCS locations.
5. Quantitative evaluation of porosity, permeability, reactive transport & fracture transport at subsurface radioactive waste disposal sites.
6. The use of petrophysics, geophysics and geology in wind-farm design.
7. The petrophysics and geomechanical aspects of geothermal reservoir characterisation and exploitation including hydraulic fracturing.

The session also includes modelling of geological subsurface utilisation in terms of chemical or thermal energy storage as well as hydrocarbon production and storage are required to ensure a safe and sustainable energy supply.

Co-organized by EMRP1/GI6/SSP1
Convener: Paul Glover | Co-conveners: Holger Class, Sebastian Bauer, Thomas Kempka, Qian WangECSECS, Kai LiECSECS
Orals
| Mon, 24 Apr, 14:00–18:00 (CEST)
 
Room -2.16
Posters on site
| Attendance Mon, 24 Apr, 10:45–12:30 (CEST)
 
Hall X4
Orals |
Mon, 14:00
Mon, 10:45
GI5.4

Ground penetrating radar and geophysical applications have been and are evolving thanks to the increasing need of environmental control and monitoring. The instruments are continuously improving while their price is progressively decreasing too. In particular, geophysical instruments are useful to geologists, archaeologists, engineers, policemen, soldiers, hydro-geophysicists, architects and so on with regard to topic as safety, resilience, cultural heritage and so on. Such a topic deserves, we think, occasions for discussion and exchanging ideas, also at the EGU conference.
The hopefully progressively overcoming of the COVID-19 pandemic encourages to propose a session were new systems, new applications, new data processing can be proposed, together with case histories of meaningful interest for the scientific community.
Consequently, contributions are welcome with regard to all the aspects of the GPR technique, ranging from the hardware of the systems to the data processing and any theoretical aspect, including innovative applications or procedures as well as results of particular relevance, possibly achieved within an integrated measurement campaign founded on a plurality of geophysical techniques.
Hope to see you in Vienna.

Co-organized by EMRP2/SSP1
Convener: Raffaele Persico | Co-conveners: Salvatore Piro, Martina BevacquaECSECS, Valentina SchenoneECSECS, Ilaria Catapano, Vincenzo Lapenna, Jean Dumoulin
Orals
| Mon, 24 Apr, 08:30–10:15 (CEST)
 
Room 0.51
Posters on site
| Attendance Mon, 24 Apr, 14:00–15:45 (CEST)
 
Hall X4
Posters virtual
| Mon, 24 Apr, 14:00–15:45 (CEST)
 
vHall ESSI/GI/NP
Orals |
Mon, 08:30
Mon, 14:00
Mon, 14:00
TS11.1 EDI

The realization and use of digital outcrops has become a routine way to collect and share geological information, both quantitively and qualitatively. This session aims to promote optimal workflows and expertise sharing through contributions where the use of digital outcrop models and – more in general – virtualization has been essential for the fulfillment of application and project goals. This includes research, education, outreach, and dissemination. We welcome all contributions based on digital outcrops including (i) geological case studies, (ii) methodological studies related to 3D modelling and interpretation (e.g. photogrammetric survey design, model reconstruction, interpretation, data extraction and automation, statistical analysis), (iii) construction and delivery of virtual field trips, (iv) application in geoscience education, (v) public outreach involvement, and (vi) improving diversity, equity, and inclusion. Early-career scientists and students are particularly encouraged to submit a contribution.

Co-organized by EOS2/SSP1
Convener: Amerigo CorradettiECSECS | Co-conveners: Marco MercuriECSECS, Silvia Mittempergher, Adam CawoodECSECS, Simon Buckley
Orals
| Mon, 24 Apr, 08:30–10:15 (CEST)
 
Room D1
Posters on site
| Attendance Mon, 24 Apr, 16:15–18:00 (CEST)
 
Hall X2
Posters virtual
| Mon, 24 Apr, 16:15–18:00 (CEST)
 
vHall TS/EMRP
Orals |
Mon, 08:30
Mon, 16:15
Mon, 16:15
EMRP3.1 EDI

The recent methodological and instrumental advances in paleomagnetism, micromagnetic modelling, and magnetic fabric research further increased their already high potential in solving geological, geophysical, and tectonic problems. Integrated paleomagnetic and magnetic fabric studies, together with structural geology and petrology, are very efficient tools in increasing our knowledge about sedimentological, tectonic or volcanic processes, both on regional and global scales. This session is intended to give an opportunity to present innovative theoretical or methodological works and their direct applications in various geological settings. Especially welcome are contributions combining paleomagnetic and magnetic fabric data, integrating various magnetic fabric techniques, combining magnetic fabric with other means of fabric analysis, or showing novel approaches in data evaluation and modelling. We also highly solicit contributions showing all aspects of paleomagnetic reconstructions, acquisition of characteristic remanence and remagnetisations applied to solving geotectonic problems. We also solicit contributions that (i) take advantage of recent advances in imaging magnetic behaviour at the grain-scale; (ii) present paleomagnetic challenges that could be solved using newly available methods; and/or (iii) use micromagnetic modelling to characterize the behaviour of magnetic carriers.

Co-organized by SSP1/TS1
Convener: Martin Chadima | Co-conveners: Lennart de Groot, Sara Satolli, Marco Maffione
Orals
| Wed, 26 Apr, 14:00–15:45 (CEST)
 
Room -2.21
Posters on site
| Attendance Wed, 26 Apr, 08:30–10:15 (CEST)
 
Hall X2
Posters virtual
| Wed, 26 Apr, 08:30–10:15 (CEST)
 
vHall TS/EMRP
Orals |
Wed, 14:00
Wed, 08:30
Wed, 08:30

SSP2 – Stratigraphy, Earth Systems History and Climate Geology

Programme group scientific officers: Jorijntje Henderiks, Ian Jarvis

SSP2.1 EDI

Earth history is marked by significant disruptions in global climate, changes in geochemical cycling, and faunal turnover events. The investigation of these events across Earth history is based on accurate and integrated stratigraphy, utilizing a broad range of geological and geophysical techniques, unique stratigraphic morphologies, and established and novel paleoclimate and paleoenvironmental proxies. This session will bring together specialists in all branches of stratigraphy, paleoclimatology, paleontology, and paleoceanography, spanning from the Archean to the Holocene. The aim is to introduce new techniques and methods that help improve the stratigraphic and paleoenvironmental toolbox.

This session will emphasize sedimentary records that are particularly sensitive to climate variability and those that play a key role in global climate and environmental conditions through various feedback mechanisms. These records include sedimentary basins across latitudes, ice cores, mid- to high-latitude fjords that are global hot spots for the burial of organic carbon due to their unique morphology and processes that make them highly effective at trapping and preserving sediment, and sedimentary deposits that are actively affected by ocean circulation.

This session is organized by the International Subcommission on Stratigraphic Classification (ISSC) of the International Commission on Stratigraphy (ICS) and is open to the Earth science community at large.

Public information:

Professor Shu Gao

School of Geographic and Oceanographic Sciences

Nanjing University

shugao@nju.edu.cn

Convener: David De VleeschouwerECSECS | Co-conveners: Shu Gao, Kasia K. Sliwinska, Greer GilmerECSECS, Michele Rebesco, Jennifer M. Galloway, Andrew Gorman
Orals
| Thu, 27 Apr, 08:30–12:25 (CEST)
 
Room G1
Posters on site
| Attendance Thu, 27 Apr, 14:00–15:45 (CEST)
 
Hall X3
Posters virtual
| Thu, 27 Apr, 14:00–15:45 (CEST)
 
vHall SSP/GM
Orals |
Thu, 08:30
Thu, 14:00
Thu, 14:00
SSP2.2 EDI

This session aims to showcase an exciting diversity of state-of-the-art advances in all aspects of paleoceanography and paleoclimatology. We invite studies ranging across organic and inorganic geochemistry, sedimentology, and paleontology from marine and terrestrial environments, as well as multidisciplinary and modeling studies reaching into the future. We invite contributions that provide insight into the evolution of the Earth on short and long timescales, including how studies of paleoclimate and drivers can inform our current climatic changes and the implications for future Earth.

Co-organized by CL1/OS1
Convener: Gregory Price | Co-conveners: Madeleine VickersECSECS, Jack LongmanECSECS, Laura RasmussenECSECS
Orals
| Wed, 26 Apr, 14:00–17:35 (CEST)
 
Room G1
Posters on site
| Attendance Fri, 28 Apr, 10:45–12:30 (CEST)
 
Hall X3
Posters virtual
| Fri, 28 Apr, 10:45–12:30 (CEST)
 
vHall SSP/GM
Orals |
Wed, 14:00
Fri, 10:45
Fri, 10:45
CL1.1.1 EDI

The pacing of the global climate system by orbital variations is clearly demonstrated in the timing of e.g. glacial-interglacial cycles. The mechanisms that translate this forcing into geoarchives and climate changes continue to be debated. We invite submissions that explore the climate system response to orbital forcing, and that test the stability of these relationships under different climate regimes or across evolving climate states (e.g. mid Pleistocene transition, Pliocene-Pleistocene transition, Miocene vs Pliocene, and also older climate transitions). Submissions exploring proxy data and/or modelling work are welcomed, as this session aims to bring together proxy-based, theoretical and/or modelling studies focused on global and regional climate responses to astronomical forcing at different time scales in the Phanerozoic.
Hamdi Omar will give an invited presetation on case studies of Phanerozoic Cyclostratigraphy in North Africa.

Co-organized by SSP2
Convener: Christian Zeeden | Co-conveners: Stefanie Kaboth-Bahr, Matthias SinnesaelECSECS, Romain VaucherECSECS, Anya Crocker, Peter Hopcroft, Anne-Christine Da Silva
Orals
| Mon, 24 Apr, 08:30–12:25 (CEST)
 
Room 0.49/50
Posters on site
| Attendance Mon, 24 Apr, 16:15–18:00 (CEST)
 
Hall X5
Orals |
Mon, 08:30
Mon, 16:15
GMPV1.2 EDI

Time is a fundamental variable for the understanding of history and dynamics of Earth and planetary processes. Consequently, precise and accurate determination of crystallisation, deposition, exhumation or exposure ages of geological materials has had, and will continue to have, a key role in the geosciences. In recent years, substantial improvement in spatial and temporal resolution of well-established dating techniques and development of new methods have revealed previously unknown complexity of natural systems and in many cases revolutionised our understanding of rates of fundamental geologic processes.

With this session, we aim to provide a platform to discuss 1) advances in a broad spectrum of geochronological and thermochronological methods (sample preparation, analytical techniques, interpretational and modelling approaches) and 2) applications of such methods to a variety of problems across the Earth sciences, across the geological time and across scales of the process studied. We particularly encourage presentations of novel and unconventional applications or attempts to develop new geo/thermochronometers.

Co-organized by CL1.1/GM2/SSP2/TS9
Convener: Dawid SzymanowskiECSECS | Co-conveners: Cody CollepsECSECS, Lorenzo TavazzaniECSECS, Marie GengeECSECS, Catherine Mottram, Maxime BernardECSECS, Perach Nuriel
Orals
| Fri, 28 Apr, 14:00–15:45 (CEST), 16:15–18:00 (CEST)
 
Room D1
Posters on site
| Attendance Fri, 28 Apr, 10:45–12:30 (CEST)
 
Hall X2
Orals |
Fri, 14:00
Fri, 10:45
TS9.1 EDI

The rates and dates of tectonic processes can be quantified using evidence derived from actively deforming settings, at different scale of observation both at surface, including geomorphic markers (e.g., topography and rivers, fluvial deposits, marine terraces), sedimentary (e.g., syntectonic sedimentation, stratigraphic evidence), as well as in the subsurface by using both geological (boreholes), geophysical (e.g. seismic profiles), and seismological (e.g. earthquake relocation) data. Integration of different data-sets from surface and subsurface also provides key information to better understand all processes leading to seismicity, magmatism and volcanism, geothermal circulation, and location of base metal ore deposits.

We invite contributions focusing on understanding the dynamics and evolution of deforming plate interiors and active plate boundaries through interdisciplinary approaches and integration of different data-sets. We welcome all types of studies that aim to quantify the rates of active plate deformation and the dates of tectonic events, regardless of their spatio-temporal scale or methodology.

Co-organized by GM9/SSP2
Convener: Silvia Crosetto | Co-conveners: Andrea Brogi, David Fernández-Blanco, Gino de GelderECSECS, Francesco Mirabella, Jorien L.N. van der WalECSECS, Domenico Liotta
Posters on site
| Attendance Thu, 27 Apr, 16:15–18:00 (CEST)
 
Hall X2
Posters virtual
| Thu, 27 Apr, 16:15–18:00 (CEST)
 
vHall TS/EMRP
Thu, 16:15
Thu, 16:15
GM9.2 EDI | PICO

Topography is the result of the competition between processes acting at different spatial and temporal scales. Tectonics, climate, and surface processes all leave fingerprints on modern topography, making it difficult for researchers to univocally characterize their contribution to shaping landscapes. Morpho-structural and geomorphic features provide the possibility to quantify the nature and the magnitude of the interaction between tectonics, climate, surface processing, and evolving topography from shorter to longer term timescales.
For instance, hillslope features, bedrock streams, topographic gradients and fluvial dynamics develop into the evolving landscape from the coastal to the high-relief areas. The use of laboratory, numerical and mathematical modelling and the recent advances in geochronological and thermochronological techniques, allow quantitative constraints on the magnitude, rates, and timing of topographic changes.
Moreover, a correct quantification of the interaction between surface processes and endogenous dynamics plays a major role in the evaluation also of geological hazards and related risks. Since the last decades, several techniques have been developed to assess the landscape evolution processes, dealing with analogue numerical models, geodetic tools (GPS and satellite images analysis) and quantifying techniques (cosmogenic nuclides and thermochronometric data). Overall, this data could be crucial when interpreting data coming from field observations.
We invite contributions aiming to link analogue, numerical models, with quantitative techniques, in supporting field interpretations.

Co-organized by SSP2/TS4
Convener: Mauro BonaseraECSECS | Co-conveners: Romano Clementucci, Michele DelchiaroECSECS, Ciro CerroneECSECS, Riccardo Reitano, Laure Guerit, Sebastien Carretier
PICO
| Tue, 25 Apr, 10:45–12:30 (CEST)
 
PICO spot 3a
Tue, 10:45
GM4.3

A source-to-sink approach represents a quantitative and integrated characterization of the processes involved in the production, transport, and deposition of sediments along a sediment routing system (SRS). This approach conceptualizes the SRS as an interconnected system in which external forcings (such as tectonics and climate) generate and propagate signals that might be recorded in the sedimentary record. Such studies aim at re-creating the spatio-temporal framework of the nature and intensity of the perturbations induced along a sedimentary system due to an external forcing. This has important implications for understanding the sensitivity of the Earth’s surface to tectono-environmental changes, for the reconstruction of paleoclimates, and for modeling the future dynamics of sedimentary systems on the planet. In addition, a sediment routing system approach is a vital tool for the effective identification and management of mineral, hydrocarbon, and water resources.

In this session, we invite scientists who study the signal generation and propagation in source to sink systems from a wide range of backgrounds (e.g., sedimentology, geomorphology, geochemistry, remote sensing, and geomodelling), and we encourage studies focusing on provenance, sedimentary budgets, and response timescales. Further, we welcome contributions focusing on environmental changes and disentangling the role between climate and tectonics, including paleoclimatic response, feedback mechanisms, and applied studies, for instance, raw material production and risk analysis associated with sediment generation and transport.

Co-organized by SSP2
Convener: Rocio Jaimes-GutierrezECSECS | Co-conveners: Iwan SetiawanECSECS, Marine PrieurECSECS, Camilo Esteban GaitanECSECS, Philémon JuvanyECSECS
Orals
| Thu, 27 Apr, 14:00–17:53 (CEST)
 
Room -2.31
Posters on site
| Attendance Fri, 28 Apr, 08:30–10:15 (CEST)
 
Hall X3
Posters virtual
| Fri, 28 Apr, 08:30–10:15 (CEST)
 
vHall SSP/GM
Orals |
Thu, 14:00
Fri, 08:30
Fri, 08:30
TS4.1 EDI

The links between crustal tectonics, mantle dynamics and climate-controlled surface processes, such as erosion, sediment transport and deposition together with sea-level variations, have been long recognized as primary drivers of the evolution of mountain belts and sedimentary basins.

The quantification of surface uplift-subsidence, erosion-sedimentation, thermal evolution and magmatism in the mantle and crust is a prime challenge in Earth Sciences. Since these processes and their feedback mechanisms act on a wide range of spatial and temporal scales, understanding orogenic and basin dynamics requires field data, geophysical and well data, geodetic measurements, geo-thermochronological studies as well as numerical and analogue modelling studies.

With this session we aim to bring together scientists from different fields that use emerging observation and frontier modelling techniques to improve our understanding of the links between orogenic or sedimentary basin evolution and their connection to surface, crustal, mantle and climatic forcing.
The rationale of the session is also to challenge geoscientists to apply their knowledge of deep and surface processes towards the new economic frontiers in Earth Science, such as the exploitation of geothermal energy and climate change mitigation through CO2 and H storage.
We encourage studies applying multi-disciplinary and innovative methods from worldwide natural laboratories.

Co-organized by SSP2
Convener: Chiara AmadoriECSECS