ERE4.2 | Sourcing Critical Raw Materials: Methods, Challenges, and Opportunities
EDI
Sourcing Critical Raw Materials: Methods, Challenges, and Opportunities
Co-organized by GMPV6
Convener: Adriana Guatame-GarciaECSECS | Co-conveners: Feven DestaECSECS, Sara KasmaeeECSECS, Hernan FloresECSECS

Critical raw materials are crucial for local and global economies in their pursuit of climate goals and societal and industrial needs. The high demand for these materials is set to boost mineral production by nearly 500% by 2050. Meeting these targets necessitates accessing more diffuse and lower-grade deposits, and sourcing materials from a wide variety of sources. To guarantee enough critical raw materials, there is a need for robust strategies for clean and smart exploration and extraction of primary and secondary resources (such as byproducts of other ores, and mine waste). Sourcing critical raw materials from primary ores, byproducts, and mining residues is an environmental subject but also an economic opportunity. Many techniques are developed to reduce the environmental footprint of metal sourcing and add value to mining wastes.
In this session, topics include:
• Exploration and extraction of critical raw materials as primary resources
• Sourcing of critical raw materials as byproducts (secondary resources) from common ores
• Revalorization of mine waste deposits (e.g., stockpiles & tailings) as secondary sources of critical raw materials
• Environmental aspects of extracting critical raw materials from primary resources
• Environmental and geotechnical innovations to address challenges related to mine waste facilities (revalorization and monitoring)
• Technological developments for sampling, characterization routines for ores and mine waste for enhanced resource and environmental assessment
• Innovative approaches for zero-waste mining and re-mining technologies, including geometallurgy and resource recovery
• The role of current regulations in shaping innovative solutions and promoting responsible extraction of critical materials from primary and secondary resources
• Multi-scale exploration of critical raw materials: innovative sensing techniques, automatization, and modeling of primary and secondary sources.
• Societal and economic challenges of opening new mines, and reactivating abandoned mines and waste facilities
• The role of AI and machine learning techniques across the mining life cycle