AS1.11 | Mesoscale and severe convection over land: processes, modelling advances, predictability, and impacts
EDI
Mesoscale and severe convection over land: processes, modelling advances, predictability, and impacts
Convener: Julia CurioECSECS | Co-conveners: Cornelia Klein, Irene Livia Kruse, Kalli Furtado, Jian Li

Mesoscale and severe convection are known to be important precipitation producing processes over land. They are often associated with hazardous weather (e.g. damaging winds, hail, lightning, tornadoes, extreme precipitation and flooding), which we already see is becoming more frequent in many regions with climate change. At the same time, these storms remain difficult to predict throughout all lifecycle stages from initiation to upscale growth and dissipation.
The aim of this session is to gain an improved understanding of mesoscale and severe convective processes over land from a non-idealised perspective for current and future periods.
We invite contributions focussing on the underlying storm dynamics and microphysics, upscale effects, advances in modelling and predictability of these storm systems, and their impacts. We also invite contributions on the driving processes of the formation and evolution of severe convection, and how these factors explain spatio-temporal patterns of storm intensity, precipitation and on-the-ground hazards. This includes contributions on land-convection interactions in connection with mesoscale and severe storms, e.g. effects of complex topography, soil moisture feedbacks, or land use / land use change including e.g. urbanisation, deforestation or irrigation.
Contributions focussing on individual extreme events or giving climatological perspectives including future climates are welcome, as are studies relying on remote sensing data, in-situ observations, or high-resolution models, especially those that explicitly resolve convection.

Mesoscale and severe convection are known to be important precipitation producing processes over land. They are often associated with hazardous weather (e.g. damaging winds, hail, lightning, tornadoes, extreme precipitation and flooding), which we already see is becoming more frequent in many regions with climate change. At the same time, these storms remain difficult to predict throughout all lifecycle stages from initiation to upscale growth and dissipation.
The aim of this session is to gain an improved understanding of mesoscale and severe convective processes over land from a non-idealised perspective for current and future periods.
We invite contributions focussing on the underlying storm dynamics and microphysics, upscale effects, advances in modelling and predictability of these storm systems, and their impacts. We also invite contributions on the driving processes of the formation and evolution of severe convection, and how these factors explain spatio-temporal patterns of storm intensity, precipitation and on-the-ground hazards. This includes contributions on land-convection interactions in connection with mesoscale and severe storms, e.g. effects of complex topography, soil moisture feedbacks, or land use / land use change including e.g. urbanisation, deforestation or irrigation.
Contributions focussing on individual extreme events or giving climatological perspectives including future climates are welcome, as are studies relying on remote sensing data, in-situ observations, or high-resolution models, especially those that explicitly resolve convection.