GMPV7.2 | Magmatic crystals: Texture, chemical zoning, timescales and processes
EDI
Magmatic crystals: Texture, chemical zoning, timescales and processes
Convener: Carlo PelulloECSECS | Co-conveners: Helena Albert, Chiara Maria Petrone

Crystals offer crucial records of magmatic processes, allowing investigation of physico-chemical conditions during magma evolution and the magma pathways through Earth's mantle and crust. By analyzing crystal compositions and textures, it is possible to reconstruct the history of magma storage and transport, investigating specific processes, including fractionation, recharge, mixing, assimilation, and degassing.
Advances in geochemistry and experimental petrology have improved our ability to investigate intra-crystal details and to correlate crystal textures and compositions with specific processes. Trace element variations during crystal growth carry significant information about magma compositions and conditions. Also, increasingly precise geothermobarometric models constrain crystallization conditions. Stable and radioactive isotopic systematics are employed, in both single-crystal and intracrystalline studies, in the investigation of magma genesis and evolution, alongside traditional dating techniques. Chemical zoning of major and trace elements in crystals can be related to changes in specific magmatic environments and the diverse compositional populations detected in minerals can record different magma dynamics and processes. Innovative methodologies allow investigation of kinetics on crystallization in the context of laboratory experiments on cooling and decompression of basaltic and felsic magmas, under a wide set of magmatic conditions. Finally, crystals can be used as chronometers, yielding insights into the timescales of magma ascent to eruption. Techniques such as diffusion chronometry provide valuable information on the duration of different magmatic processes, making them crucial tools for volcanic monitoring and eruption forecasting.
This session proposes a comprehensive view of such “microscopic scale archives” from natural cases, numerical modelling and experimental works. We welcome contributions using cutting edge and/or more traditional approaches suitable for decoding all the information that can be extracted from crystals. Interdisciplinary works using one or more of the above mentioned aspects are particularly welcome.

Crystals offer crucial records of magmatic processes, allowing investigation of physico-chemical conditions during magma evolution and the magma pathways through Earth's mantle and crust. By analyzing crystal compositions and textures, it is possible to reconstruct the history of magma storage and transport, investigating specific processes, including fractionation, recharge, mixing, assimilation, and degassing.
Advances in geochemistry and experimental petrology have improved our ability to investigate intra-crystal details and to correlate crystal textures and compositions with specific processes. Trace element variations during crystal growth carry significant information about magma compositions and conditions. Also, increasingly precise geothermobarometric models constrain crystallization conditions. Stable and radioactive isotopic systematics are employed, in both single-crystal and intracrystalline studies, in the investigation of magma genesis and evolution, alongside traditional dating techniques. Chemical zoning of major and trace elements in crystals can be related to changes in specific magmatic environments and the diverse compositional populations detected in minerals can record different magma dynamics and processes. Innovative methodologies allow investigation of kinetics on crystallization in the context of laboratory experiments on cooling and decompression of basaltic and felsic magmas, under a wide set of magmatic conditions. Finally, crystals can be used as chronometers, yielding insights into the timescales of magma ascent to eruption. Techniques such as diffusion chronometry provide valuable information on the duration of different magmatic processes, making them crucial tools for volcanic monitoring and eruption forecasting.
This session proposes a comprehensive view of such “microscopic scale archives” from natural cases, numerical modelling and experimental works. We welcome contributions using cutting edge and/or more traditional approaches suitable for decoding all the information that can be extracted from crystals. Interdisciplinary works using one or more of the above mentioned aspects are particularly welcome.