Union-wide
Community-led
Inter- and Transdisciplinary Sessions
Disciplinary sessions

EMRP – Earth Magnetism & Rock Physics

Programme group chairs: Sergio Vinciguerra, Fabio Florindo

MAL22
Petrus Peregrinus Medal Lecture by Lisa Tauxe & EMRP Division Outstanding ECS Award Lecture by Alexandra R. L. Kushnir
Conveners: Sergio Vinciguerra, Fabio Florindo
Orals
| Tue, 25 Apr, 19:00–20:00 (CEST)
 
Room D1
Tue, 19:00
DM22
Division meeting for Earth Magnetism & Rock Physics (EMRP)
Co-organized by EMRP
Convener: Fabio Florindo | Co-convener: Sergio Vinciguerra
Tue, 25 Apr, 12:45–13:45 (CEST)
 
Room F2
Tue, 12:45

EMRP1 – Rock Physics & Mineral Physics

Programme group scientific officer: Sergio Vinciguerra

NH4.1

From the real-time integration of multi-parametric observations is expected the major contribution to the development of operational t-DASH systems suitable for supporting decision makers with continuously updated seismic hazard scenarios. A very preliminary step in this direction is the identification of those parameters (seismological, chemical, physical, biological, etc.) whose space-time dynamics and/or anomalous variability can be, to some extent, associated with the complex process of preparation of major earthquakes.
This session wants then to encourage studies devoted to demonstrate the added value of the introduction of specific, observations and/or data analysis methods within the t-DASH and StEF perspectives. Therefore, studies based on long-term data analyses, including different conditions of seismic activity, are particularly encouraged. Similarly welcome will be the presentation of infrastructures devoted to maintain and further develop our present observational capabilities of earthquake related phenomena also contributing in this way to build a global multi-parametric Earthquakes Observing System (EQuOS) to complement the existing GEOSS initiative.
To this aim this session is not addressed just to seismology and natural hazards scientists but also to geologist, atmospheric sciences and electromagnetism researchers, whose collaboration is particular important for fully understand mechanisms of earthquake preparation and their possible relation with other measurable quantities. For this reason, all contributions devoted to the description of genetic models of earthquake’s precursory phenomena are equally welcome.

Co-organized by EMRP1/GI6/SM3, co-sponsored by JpGU and EMSEV
Convener: Valerio Tramutoli | Co-conveners: Pier Francesco Biagi, Carolina Filizzola, Nicola Genzano, Iren Moldovan
Orals
| Fri, 28 Apr, 08:30–10:15 (CEST)
 
Room 1.15/16
Posters on site
| Attendance Fri, 28 Apr, 14:00–15:45 (CEST)
 
Hall X4
Posters virtual
| Fri, 28 Apr, 14:00–15:45 (CEST)
 
vHall NH
Orals |
Fri, 08:30
Fri, 14:00
Fri, 14:00
EMRP1.2

Earthquake mechanics is controlled by a spectrum of processes covering a wide range of length scales, from tens of kilometres down to few nanometres. The geometry of the fault/fracture network and its physical properties control the global stress distribution and the propagation/arrest of the seismic rupture. At the same time, earthquake rupture nucleation, rupture and arrest are governed by fracture propagation and frictional processes occurring within extremely localized sub-planar slipping zones. The co-seismic rheology of the slipping zones themselves depends on deformation mechanisms and dissipative processes active at the scale of the grain or asperity. The study of such complex multiscale systems requires an interdisciplinary approach spanning from structural geology to seismology, geophysics, petrology, rupture modelling and experimental rock deformation. In this session we aim to convene contributions dealing with different aspects of earthquake mechanics at various depths and scales such as:

- the thermo-hydro-mechanical processes associated with co-seismic fault weakening based on rock deformation experiments, numerical simulations and microstructural studies of fault rocks;
- the study of natural and experimental fault rocks to investigate the nucleation mechanisms of intermediate and deep earthquakes in comparison to their shallow counterparts;
- the elastic, frictional and transport properties of fault rocks from the field (geophysical and hydrogeological data) to the laboratory scale (petrophysical and rock deformation studies);
- the internal architecture of seismogenic fault zones from field structural survey and geophysical investigations;
- the modeling of earthquake ruptures, off-fault dynamic stress fields and long-term mechanical evolution of realistic fault networks;
- the earthquake source energy budget and partitioning between fracture, friction and elastic wave radiation from seismological, theoretical and field observations.
- the interplay between fault geometry and earthquake rupture characteristics from seismological, geodetic, remote sensed or field observations;

We particularly welcome novel observations or innovative approaches to the study of earthquake faulting. Contributions from early career scientists are solicited.

Co-organized by SM4/TS2
Convener: Stefano AretusiniECSECS | Co-conveners: Matteo DemurtasECSECS, Michele Fondriest, Gina-Maria GeffersECSECS, Francois Passelegue, Berit Schwichtenberg
Orals
| Mon, 24 Apr, 08:30–12:25 (CEST)
 
Room K1
Posters on site
| Attendance Tue, 25 Apr, 10:45–12:30 (CEST)
 
Hall X3
Orals |
Mon, 08:30
Tue, 10:45
EMRP1.3 EDI

Rock mass deformation and failure at different stress levels (from the brittle regime to the brittle-ductile transition) are controlled by damage processes occurring on different spatial scales, from grain (µm) to geological formation (km) scale. These lead to a progressive increase of micro- and meso-crack intensity in the rock matrix and to the growth of inherited macro-fractures at rock mass scale. Coalescence of these fractures forms large-scale structures such as brittle fault zones, rockslide shear zones, and excavation damage zones (EDZ) in open pit mining and underground construction. Diffuse or localized rock damage have a primary influence on rock properties (strength, elastic moduli, hydraulic and electric properties) and on their evolution across multiple temporal scales spanning from geological time to highly dynamic phenomena as earthquakes, volcanic eruptions, slopes and man-made rock structures. In subcritical stress conditions, damage accumulation results in brittle creep processes key to the long-term evolution of geophysical, geomorphological and geo-engineering systems
Damage and progressive failure processes must be considered to understand the time-dependent hydro-mechanical behaviour of fault damage zones and principal slip zones, and their interplay (e.g. earthquakes vs aseismic creep), volcanic systems and slopes (e.g. slow rock slope deformation vs catastrophic rock slides), as well as the response of rock masses to stress perturbations induced by artificial excavations (tunnels, mines) and loading. At the same time, damage processes control the brittle behaviour of the upper crust and are strongly influenced by intrinsic rock properties (strength, fabric, porosity, anisotropy), geological structures and their inherited damage, as well as by the evolving pressure-temperature with increasing depth and by fluid pressure, transport properties and chemistry.
In this session we will bring together researchers from different communities interested in a better understanding of rock deformation and failure processes and consequence, as well as other related rock mechanics topics. We welcome innovative and novel contributions on experimental studies (both in the laboratory and in situ), continuum / micromechanical analytical and numerical modelling, and applications to fault zones, reservoirs, slope instability and landscape evolution, and engineering applications.

Co-organized by GM3/NH3
Convener: Federico Agliardi | Co-conveners: Carolina GiorgettiECSECS, Anne Voigtländer, Christian Zangerl, Patrick Baud, Sergio Vinciguerra
Orals
| Mon, 24 Apr, 14:00–18:00 (CEST)
 
Room -2.21
Posters on site
| Attendance Tue, 25 Apr, 10:45–12:30 (CEST)
 
Hall X3
Orals |
Mon, 14:00
Tue, 10:45
EMRP1.4 EDI

Theoretical and experimental approaches play an essential role in modern geophysics and geochemistry to improve our understanding of the structure and evolution of deep planetary interiors by determining phase diagrams and constraining the chemical and physical properties of planet-forming materials at relevant pressure and temperature conditions. Recent advances in theoretical computations and the constant increase of computational power made possible to overcome many of the limits of time and length scales faced by atomistic simulations and allowed us to explore the behaviour of more realistic geo-materials. State-of-the-art static and dynamic experimental methods have also extended the quantity and quality of possible measurements, pushing the research into previously unreachable conditions and providing new insights into relevant physical properties that are crucial for modelling geological processes at various time scales. The coupling of laboratory and theoretical data with geophysical observations and field investigations is fundamental, with implications ranging from the improved understanding of Earth to the accurate modelling of planets within the solar system or exoplanets. In this session, we welcome presentations of new experimental data, computational results, and technical developments addressing the properties of behaviour of realistic rocks-forming materials and iron alloys. We encourage interdisciplinary studies combining experiments, modelling, and analytical results with geophysical and geochemical observations.

Convener: Zhi LiECSECS | Co-conveners: Anne DavisECSECS, Daniele Antonangeli, Razvan Caracas, Sandro Scandolo
Posters on site
| Attendance Wed, 26 Apr, 10:45–12:30 (CEST)
 
Hall X2
Posters virtual
| Wed, 26 Apr, 10:45–12:30 (CEST)
 
vHall TS/EMRP
Wed, 10:45
Wed, 10:45
EMRP1.5 EDI

This session comprises fracture focused research that spans disciplines and scales but is all intimately linked to coupled Thermal-Hydraulic-Mechanical-Chemical (THMC) processes and factors. We divide the session into two parts related to shallow and deep processes, respectively.

The first part is focused on progressive rock failure (PRF) and its applications to surface processes, rock physics and engineering research. Because fractures influence the hydromechanical properties of rocks such as porosity, permeability, erodibility and strength, the rock mechanics and rock physics of PRF is intimately linked to virtually all surface and critical zone processes and also extends beyond the natural world to our own built environment. Yet, the potentially central role that PRF may play in these fracture-related systems has been largely unrecognized or misconceived across surface-process, engineering, and rock physics applications.

The second part of the session is related to THMC processes in geothermal reservoirs with focus on the role of fractures and faults on the reservoir performance, its sustainable use and related risks. We invite contributions including: (i) fluid flow, permeability, fluid conductivity; (ii) heat flow, thermal conductivity and diffusivity; (iii) deformation either compression, shear, or tension; seismic or aseismic; (iv) fracture and fault (re)activation and related seismic risks; (v) coupled THM-processes in fractured and intact reservoir rocks.

Public information:

This session comprises fracture focused research that spans disciplines and scales but is all intimately linked to coupled Thermal-Hydraulic-Mechanical-Chemical (THMC) processes and factors. We divide the session into two parts related to shallow and deep processes, respectively.
 
The first part is focused on progressive rock failure (PRF) and its applications to surface processes, rock physics and engineering research. Because fractures influence the hydromechanical properties of rocks such as porosity, permeability, erodibility and strength, the rock mechanics and rock physics of PRF is intimately linked to virtually all surface and critical zone processes and also extends beyond the natural world to our own built environment. Yet, the potentially central role that PRF may play in these fracture-related systems has been largely unrecognized or misconceived across surface-process, engineering, and rock physics applications. 
 
The second part of the session is related to THMC processes in geothermal reservoirs with focus on the role of fractures and faults on the reservoir performance, its sustainable use and related risks. We invite contributions including: (i)    fluid flow, permeability, fluid conductivity; (ii)    heat flow, thermal conductivity and diffusivity; (iii)    deformation either compression, shear, or tension; seismic or aseismic; (iv)   fracture and fault (re)activation and related seismic risks; (v)    coupled THM-processes in fractured and intact reservoir rocks.

Co-organized by GM3
Convener: Martha-Cary Eppes | Co-conveners: Guido Blöcher, Philip Meredith, Jean Schmittbuhl, Mauro Cacace, Lucille CarbilletECSECS, Sophie KenmareECSECS
Orals
| Tue, 25 Apr, 14:00–15:45 (CEST)
 
Room -2.21
Posters on site
| Attendance Wed, 26 Apr, 10:45–12:30 (CEST)
 
Hall X2
Posters virtual
| Wed, 26 Apr, 10:45–12:30 (CEST)
 
vHall TS/EMRP
Orals |
Tue, 14:00
Wed, 10:45
Wed, 10:45
EMRP1.6 EDI

Geophysical methods have great potential for the characterization of subsurface properties and processes to inform geological, reservoir, hydrological, and biogeochemical studies. In these contexts, the classically used geophysical tools only provide indirect information about the characteristics and heterogeneities of subsurface rocks and their associated processes (e.g., flow, transport, biogeochemical reactions). Petrophysical relationships hence have to be developed to provide links between physical properties (e.g. electrical conductivity, seismic velocity, or attenuation) and the intrinsic parameters of interest (e.g. fluid content, hydraulic properties, pressure conditions). In addition, geophysical methods are increasingly deployed in increasingly complex environments for time-lapse, continuous, and distributed monitoring. Here again, there is a great need for accurate and efficient physical relationships such that geophysical data can be correctly interpreted (e.g., included in fully coupled inversions). Establishing such petrophysical models requires multidisciplinary approaches and diverse theoretical frameworks. While each physical property has its own intrinsic dependence on pore-scale interfacial, geometrical, and biogeochemical properties or on external conditions such as pressure or temperature, each associated geophysical method also has its own specific investigation depth and spatial resolution. Such complexity poses great challenges in combining theoretical developments with laboratory validations and scaling laboratory observations to field practices. This session consequently invites contributions from various communities to share their models, their experiments, or their field tests and data in order to discuss multidisciplinary ways to advance petrophysical relationship development and to improve our knowledge of complex processes in the subsurface.

Co-organized by ESSI1
Convener: Chi Zhang | Co-conveners: Lucas Pimienta, Ludovic Bodet
Orals
| Tue, 25 Apr, 16:15–17:55 (CEST)
 
Room -2.21
Posters on site
| Attendance Wed, 26 Apr, 10:45–12:30 (CEST)
 
Hall X2
Posters virtual
| Wed, 26 Apr, 10:45–12:30 (CEST)
 
vHall TS/EMRP
Orals |
Tue, 16:15
Wed, 10:45
Wed, 10:45
ERE5.2

A predictive knowledge of fault and fracture zones and their transmissibility can have an enormous impact on the viability of geothermal, carbon capture, energy and waste storage projects. Understanding the role and the effects played by fault and fracture zones, physical properties of the system (e.g. frictional strength, cohesion and permeability) on the in-situ fluid behaviour can generate considerable advantages during exploration and management of these reservoirs and repositories. Generating realistic models of the subsurface requires detailed information on the deformation processes, structure and properties of fault and fracture zones. To create accurate and realistic models, we need to characterise the geometry and the distribution of faults and fractures, as well as the mechanical and petrophysical properties of the fractured rocks. The properties and the evolution of faulted/fractured rocks can be evaluated using a combination of laboratory data, well data and outcrop analogues which then constitute the backbone of discrete fracture network (DFN) modelling and robust numerical flow models.

We encourage researchers on applied or interdisciplinary energy studies associated with low carbon technologies (geothermal, repositories, hydrogeology, CCS) and modelling of fractured media (e.g. DFN) to come forward for this session. We look forward to interdisciplinary studies which use a combination of methods to analyse rock deformation processes and the role of faults and fractures in subsurface energy systems, including but not restricted to outcrop studies, laboratory measurements, analytical methods and numerical modelling. We are also interested in studies working across several different scales and that try to address the knowledge gap between laboratory scale measurements and reservoir scale processes.

Co-organized by CL3.2/EMRP1/TS2
Convener: Roberto Emanuele RizzoECSECS | Co-conveners: Sarah WeihmannECSECS, Nathaniel Forbes Inskip, Catalina Sanchez-RoaECSECS
Orals
| Tue, 25 Apr, 08:30–12:30 (CEST)
 
Room 0.96/97
Posters on site
| Attendance Tue, 25 Apr, 14:00–15:45 (CEST)
 
Hall X4
Posters virtual
| Tue, 25 Apr, 14:00–15:45 (CEST)
 
vHall ERE
Orals |
Tue, 08:30
Tue, 14:00
Tue, 14:00
GD8.1 EDI | PICO

Understanding the structures and dynamics of the core of a planet is essential to constructing a global geochemical and geodynamical model, and has implication on the planet's thermal, compositional and orbital evolution.

Remote sensing of planetary interiors from space and ground based observations is entering a new era with perspectives in constraining their core structures and dynamics. Meanwhile, increasingly accurate seismic data provide unprecedented images of the Earth's deep interior. Unraveling planetary cores' structures and dynamics requires a synergy between many fields of expertise, such as mineral physics, geochemistry, seismology, fluid mechanics or geomagnetism.

This session welcomes contributions from all the aforementioned disciplines following theoretical, numerical, observational or experimental approaches.

Co-organized by EMRP1/SM5
Convener: Jerome Noir | Co-conveners: Santiago Triana, Sébastien Merkel, Arwen Deuss, Daria Holdenried-Chernoff
PICO
| Thu, 27 Apr, 10:45–12:30 (CEST)
 
PICO spot 2
Thu, 10:45
GD7.1 EDI

Many regions of the Earth, from crust to core, exhibit anisotropic fabrics which can reveal much about geodynamic processes in the subsurface. These fabrics can exist at a variety of scales, from crystallographic orientations to regional structure alignments. In the past few decades, a tremendous body of multidisciplinary research has been dedicated to characterizing anisotropy in the solid Earth and understanding its geodynamical implications. This has included work in fields such as: (1) geophysics, to make in situ observations and construct models of anisotropic properties at a range of depths; (2) mineral physics, to explain the cause of some of these observations; and (3) numerical modelling, to relate the inferred fabrics to regional stress and flow regimes and, thus, geodynamic processes in the Earth. The study of anisotropy in the Solid Earth encompasses topics so diverse that it often appears fragmented according to regions of interest, e.g., the upper or lower crust, oceanic lithosphere, continental lithosphere, cratons, subduction zones, D'', or the inner core. The aim of this session is to bring together scientists working on different aspects of anisotropy to provide a comprehensive overview of the field. We encourage contributions from all disciplines of the earth sciences (including mineral physics, seismology, magnetotellurics, geodynamic modelling) focused on anisotropy at all scales and depths within the Earth.

Co-organized by EMRP1/SM5
Convener: Manuele Faccenda | Co-conveners: Tuna Eken, Judith Confal
Orals
| Tue, 25 Apr, 14:00–17:35 (CEST)
 
Room -2.47/48
Posters on site
| Attendance Tue, 25 Apr, 08:30–10:15 (CEST)
 
Hall X2
Orals |
Tue, 14:00
Tue, 08:30
TS3.9

Tectonic faults accommodate plate motion through various styles of seismic and aseismic slip spanning a wide range of spatiotemporal scales. Understanding the mechanics and interplay between seismic rupture and aseismic slip is central to seismotectonics as it determines the seismic potential of faults. In particular, unraveling the underlying physics controlling these styles of deformation bears a great deal in earthquakes hazards mitigation especially in highly urbanized regions. We invite contributions from observational, experimental, geological and theoretical studies that explore the diversity and interplay among seismic and aseismic slip phenomena in various tectonic settings, including the following questions: (1) How does the nature of creeping faults change with the style of faulting, fluids, loading rate, and other factors? (2) Are different slip behaviors well separated in space, or can the same fault areas experience different failure modes? (3) Is there a systematic spatial or temporal relation between different types of slip?

Co-organized by EMRP1/SM4
Convener: Audrey Bonnelye | Co-conveners: Jorge Jara, Luca Dal Zilio, Sylvain Michel
Orals
| Wed, 26 Apr, 14:00–17:55 (CEST)
 
Room -2.91
Posters on site
| Attendance Thu, 27 Apr, 10:45–12:30 (CEST)
 
Hall X2
Posters virtual
| Thu, 27 Apr, 10:45–12:30 (CEST)
 
vHall TS/EMRP
Orals |
Wed, 14:00
Thu, 10:45
Thu, 10:45
ERE5.5 EDI

Geological media are a strategic resource for the forthcoming energy transition and constitute an important ally in the fight to mitigate the adverse effects of climate change. Several energy and environmental processes in the subsurface involve multi-physical interactions between the porous and fractured rock, and the fluids filling the voids: changes in pore pressure and temperature, rock deformation and chemical reactions occur simultaneously and impact each other. This characteristic has profound implications on the energy production and the waste storage. Forecasts are bounded to the adequate understanding of field data associated with thermo-hydro-mechanical-chemical (THMC) processes and predictive capabilities heavily rely on the quality of the integration between the input data (laboratory and field evidence) and the mathematical models describing the evolution of the multi-physical systems. This session is dedicated to studies investigating all or part of these THMC interactions by means of experimental, analytical, numerical, multi-scale, data-driven and artificial intelligence methods, as well as studies focused on laboratory characterization and on gathering and interpreting in-situ geological and geophysical evidence of the multi-physical behavior of rocks. Welcomed contributions include approaches covering applications of carbon capture and storage (CCS), geothermal systems, gas storage, energy storage, mining, reservoir management, reservoir stimulation, fluid injection-induced seismicity and radioactive waste storage.

Co-organized by EMRP1
Convener: Silvia De Simone | Co-conveners: Tuanny CajuhiECSECS, Monia Procesi, Iman Rahimzadeh Kivi, Keita Yoshioka, Franco Tassi, Victor Vilarrasa
Orals
| Mon, 24 Apr, 08:30–12:30 (CEST)
 
Room -2.16
Posters on site
| Attendance Mon, 24 Apr, 14:00–15:45 (CEST)
 
Hall X4
Posters virtual
| Mon, 24 Apr, 14:00–15:45 (CEST)
 
vHall ERE
Orals |
Mon, 08:30
Mon, 14:00
Mon, 14:00
ERE1.9 EDI

Geoscience underpins many aspects of the energy mix that fuels our planet and offers a range of solutions for reducing global greenhouse gas emissions as the world progresses towards net zero. The aim of this session is to explore and develop the contribution of geology, geophysics and petrophysics to the development of sustainable energy resources in the transition to low-carbon energy. The meeting will be a key forum for sharing geoscientific aspects of energy supply as earth scientists grapple with the subsurface challenges of remaking the world’s energy system, balancing competing demands in achieving a low carbon future.

Papers should show the use of any technology or modelling that was initially developed for use in conventional oil and gas industries, and show it being applied to either sustainable energy developments or to CCS, subsurface waste disposal or water resources.
Relevant topics include but are not limited to:
1. Exploration & appraisal of the subsurface aspects of geothermal, hydro and wind resources.
2. Appraisal & exploration of developments needed to provide raw materials for solar energy, electric car batteries and other rare earth elements needed for the modern digital society.
3. The use of reservoir modelling, 3D quantification and dynamic simulation for the prediction of subsurface energy storage.
4. The use of reservoir integrity cap-rock studies, reservoir modelling, 3D quantification and dynamic simulation for the development of CCS locations.
5. Quantitative evaluation of porosity, permeability, reactive transport & fracture transport at subsurface radioactive waste disposal sites.
6. The use of petrophysics, geophysics and geology in wind-farm design.
7. The petrophysics and geomechanical aspects of geothermal reservoir characterisation and exploitation including hydraulic fracturing.

The session also includes modelling of geological subsurface utilisation in terms of chemical or thermal energy storage as well as hydrocarbon production and storage are required to ensure a safe and sustainable energy supply.

Co-organized by EMRP1/GI6/SSP1
Convener: Paul Glover | Co-conveners: Holger Class, Sebastian Bauer, Thomas Kempka, Qian WangECSECS, Kai LiECSECS
Orals
| Mon, 24 Apr, 14:00–18:00 (CEST)
 
Room -2.16
Posters on site
| Attendance Mon, 24 Apr, 10:45–12:30 (CEST)
 
Hall X4
Orals |
Mon, 14:00
Mon, 10:45

EMRP2 – Geomagnetism

Programme group scientific officer: Georgios Balasis

GI2.1

Non-destructive testing (NDT) methods are employed in a variety of engineering and geosciences applications and their stand-alone use has been greatly investigated to date. New theoretical developments, technological advances and the progress achieved in surveying, data processing and interpretation have in fact led to a tremendous growth of the equipment reliability, allowing outstanding data quality and accuracy.

Nevertheless, the requirements of comprehensive site and material investigations may be complex and time-consuming, involving multiple expertise and equipment. The challenge is to step forward and provide an effective integration between data outputs with different physical quantities, scale domains and resolutions. In this regard, enormous development opportunities relating to data fusion, integration and correlation between different NDT methods and theories are to be further investigated.

This Session primarily aims at disseminating contributions from state-of-the-art NDT methods and new numerical developments, promoting the integration of existing equipment and the development of new algorithms, surveying techniques, methods and prototypes for effective monitoring and diagnostics. NDT techniques of interest are related–but not limited to–the application of acoustic emission (AE) testing, electromagnetic testing (ET), ground penetrating radar (GPR), geoelectric methods (GM), laser testing methods (LM), magnetic flux leakage (MFL), microwave testing, magnetic particle testing (MT), neutron radiographic testing (NR), radiographic testing (RT), thermal/infrared testing (IRT), ultrasonic testing (UT), seismic methods (SM), vibration analysis (VA), visual and optical testing (VT/OT).

The Session will focus on the application of different NDT methods and theories and will be related –but not limited to– the following investigation areas:
- advanced data fusion;
- advanced interpretation methods;
- design and development of new surveying equipment and prototypes;
- real-time & remote assessment and monitoring methods for material and site inspection (real-life and virtual reality);
- comprehensive and inclusive information data systems for the investigation of survey sites and materials;
- numerical simulation and modelling of data outputs with different physical quantities, scale domains and resolutions;
- advances in NDT methods, numerical developments and applications (stand-alone use of existing and state-of-the-art NDTs).

Co-organized by EMRP2/ESSI1/SM8
Convener: Andrea Benedetto | Co-conveners: Morteza (Amir) Alani, Andreas Loizos, Francesco Soldovieri, Fabio Tosti
Orals
| Tue, 25 Apr, 14:00–18:00 (CEST)
 
Room 0.51
Posters on site
| Attendance Tue, 25 Apr, 10:45–12:30 (CEST)
 
Hall X4
Posters virtual
| Tue, 25 Apr, 10:45–12:30 (CEST)
 
vHall ESSI/GI/NP
Orals |
Tue, 14:00
Tue, 10:45
Tue, 10:45
GI6.2

Remote sensing (RS) plays a fundamental role in the impact analysis and mitigation of the impacts of climate change and human activities, supporting the achievement of Sustainable Developments Goals of United Nations (e.g. SDG2, SDG11, SDG13, SDG15). For three decades, RS from satellite has been established as a powerful monitoring tool able to cover extended areas at low cost and with regular revisit capability. However, to face the current and expected future increase in the frequency of natural hazards, new technologies have been developed with the aims to improve the flexibility in data collections and resolution. A branch of these new developed technologies are the uncrewed aerial systems (UASs) equipped with different sensors (optical, microwave, near-infrared, thermal infrared sensors). They allow bridging the gap among spaceborne and ground-based RS data providing ultra-high resolution spatial data, with a significant advantage on the flexibility of flight scheduling and the environmental data collection. These multi-source UAS-sensing data drive new developments in the field of RS applications: the mapping of the modification induced by climate change, as by the erosion and landslides, by tectonic, volcanic or human processes, as well as the improvement of crop monitoring to support a sustainable precision agriculture. On those bases a number of synergy was observed between the “sensing technologies” in the Geosciences community. The session will really focus on the several aspects of this cooperation in terms of technology and team-work and how they answer to the needing of the SDG of United Nations. In this context, we encourage who is involved concurrence development and applications to show their most recent findings focused for example on: (i) reviewing the trends of satellite RS in terrain surveys before and after the geological phenomena in integration with UAS measurement systems; (ii) UAS configuration and specifications for precision agriculture, vegetation management; (iii) the changes with the use of UAS, for those doing remote measurement with the ability to control every segment of the RS chain.

Co-organized by EMRP2/ESSI4
Convener: Vincenzo De Novellis | Co-conveners: Misha KrassovskiECSECS, Antonello BonfanteECSECS, Carlo Alberto Brunori, Francesco Zucca, Riccardo Civico
Orals
| Mon, 24 Apr, 16:15–18:00 (CEST)
 
Room -2.31
Posters on site
| Attendance Mon, 24 Apr, 10:45–12:30 (CEST)
 
Hall X4
Posters virtual
| Mon, 24 Apr, 10:45–12:30 (CEST)
 
vHall ESSI/GI/NP
Orals |
Mon, 16:15
Mon, 10:45
Mon, 10:45
GI5.4

Ground penetrating radar and geophysical applications have been and are evolving thanks to the increasing need of environmental control and monitoring. The instruments are continuously improving while their price is progressively decreasing too. In particular, geophysical instruments are useful to geologists, archaeologists, engineers, policemen, soldiers, hydro-geophysicists, architects and so on with regard to topic as safety, resilience, cultural heritage and so on. Such a topic deserves, we think, occasions for discussion and exchanging ideas, also at the EGU conference.
The hopefully progressively overcoming of the COVID-19 pandemic encourages to propose a session were new systems, new applications, new data processing can be proposed, together with case histories of meaningful interest for the scientific community.
Consequently, contributions are welcome with regard to all the aspects of the GPR technique, ranging from the hardware of the systems to the data processing and any theoretical aspect, including innovative applications or procedures as well as results of particular relevance, possibly achieved within an integrated measurement campaign founded on a plurality of geophysical techniques.
Hope to see you in Vienna.

Co-organized by EMRP2/SSP1
Convener: Raffaele Persico | Co-conveners: Salvatore Piro, Martina BevacquaECSECS, Valentina SchenoneECSECS, Ilaria Catapano, Vincenzo Lapenna, Jean Dumoulin
Orals
| Mon, 24 Apr, 08:30–10:15 (CEST)
 
Room 0.51
Posters on site
| Attendance Mon, 24 Apr, 14:00–15:45 (CEST)
 
Hall X4
Posters virtual
| Mon, 24 Apr, 14:00–15:45 (CEST)
 
vHall ESSI/GI/NP
Orals |
Mon, 08:30
Mon, 14:00
Mon, 14:00
GI2.3 EDI

Research in Earth and environmental sciences benefits from interdisciplinary approaches (e.g. to understand and model multi-scale processes). The study of complex environmental processes may involve diverse collections of samples and associated field or laboratory measurements, sensors, remote sensing data, across international dimensions. Research benefits from practices that use easily-portable and reproducible tools and techniques. Best practices of sharing our data and software are now well-established and the earth science community needs to move forward with generally accepted methodologies of software and data distribution that can expand easily to include complex system and multi-domain challenges.

This session seeks innovative presentations for interdisciplinary research and applications, including but not limited to, on Earth Science data and service activities. Presentations addressing the specific societal needs, best practices, learned lessons and new challenges in data provenance, information access, visualization, and analysis, are highly encouraged, as well as presentation on the ways to adopt FAIR data principles towards sustainable solutions in Earth Science and the path to open science are . Discussion of challenges for future data services or European infrastructure are also welcome.

Co-organized by EMRP2/ESSI3/SM2
Convener: Sebastien Payan | Co-conveners: Hela Mehrtens, Wolfgang zu Castell, Frederic Huynh
Orals
| Fri, 28 Apr, 08:30–10:15 (CEST)
 
Room -2.91
Posters on site
| Attendance Fri, 28 Apr, 14:00–15:45 (CEST)
 
Hall X4
Posters virtual
| Fri, 28 Apr, 14:00–15:45 (CEST)
 
vHall ESSI/GI/NP
Orals |
Fri, 08:30
Fri, 14:00
Fri, 14:00
EMRP2.8 | PICO

This session covers all methods and approaches used for registering, processing and understanding of magnetic anomalies for geological, environmental and resources purposes. It will concern potential field data from satellite missions to airborne and detailed ground-based arrays. Contributions presenting the theoretical, mathematical and computational progress of data modelling techniques as well as new case studies of geophysical and geological interest are welcome. This session will also encourage presentations on compilation methods of heterogenous data sets, multiscale and multidisciplinary approaches for natural resources exploration and geological gas storage purposes, and other environmental applications. Potential field applications in exploration and geological interpretation of magnetic anomalies, jointly with other geodata, are warmly welcome

Co-organized by ERE3
Convener: Maurizio Fedi | Co-conveners: Maurizio Milano, Peter Lelièvre, Shuang Liu
PICO
| Fri, 28 Apr, 14:00–15:45 (CEST)
 
PICO spot 3b
Fri, 14:00
EMRP2.9

Swarm is ESA's first constellation mission for Earth Observation and consists of three identical spacecraft launched on 22 November 2013. Each of the three Swarm satellites performs high-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, accompanied by precise navigation, accelerometer, plasma and electric field measurements. Each satellite is equipped with magnetic sensors, measuring a combination of various contributing sources: the Earth’s core field, magnetised rocks in the lithosphere, external contributions from electrical currents in the ionosphere and magnetosphere, currents induced by external fields in the Earth’s interior and a contribution produced by the oceans. This session invites contributions illustrating the achievements of Swarm for investigating all types of Earth and near-Earth processes, as well as contributions describing synergies with other missions and ongoing initiatives towards designing innovative new magnetic field measurements missions.

Co-organized by G4/ST4
Convener: Georgios Balasis | Co-conveners: Anja Stromme, Nils Olsen, Gauthier Hulot
Orals
| Thu, 27 Apr, 08:30–12:30 (CEST), 14:00–15:45 (CEST)
 
Room -2.21
Posters on site
| Attendance Wed, 26 Apr, 14:00–15:45 (CEST)
 
Hall X2
Orals |
Thu, 08:30
Wed, 14:00
G4.3 EDI | PICO

Gravity and magnetic field data contribute to a wide range of geo-scientific research, from imaging the structure of the earth and geodynamic processes (e.g. mass transport phenomena or deformation processes) to near surface investigations. The session is dedicated to contributions related to spatial and temporal variations of the Earth gravity and magnetic field at all scales. Contributions to modern potential field research are welcome, including instrumental issues, data processing techniques, interpretation methods, machine learning, innovative applications of the results and data collected by modern satellite missions (e.g. GOCE, GRACE, Swarm), potential theory, as well as case histories.

Co-organized by EMRP2/GD10/TS11
Convener: Jörg Ebbing | Co-conveners: Alexandra Guy, Carla Braitenberg, Bart Root, Mikhail Kaban
PICO
| Thu, 27 Apr, 16:15–18:00 (CEST)
 
PICO spot 3a
Thu, 16:15
EMRP2.12 EDI

This session asks for contributions in the field of electromagnetic (EM) geophysical methods that are applied on various scales ranging from the near-surface to the deep mantle. This includes new instrumentation and data acquisition methods, as well as mathematical and numerical improvements to data processing, modelling, and inversion applied to ground-based and off-shore measurements, airborne and satellite missions. We are interested in studies of EM applied to global induction, imaging regional scale tectonic, magmatic, or volcanic systems, in the search for hydrocarbon, geothermal, or mineral resources, and the investigation of near surface structure relevant to environmental, urban, and hydrological systems. Results from EM methods are often part of multi-disciplinary studies integrating data from rock physics and other geophysical, geochemical, and geological methods to investigate complex subsurface structures and their temporal evolution. Neighbouring fields of research encompass the study of natural and controlled EM sources, geo-magnetically induced currents, space weather, or geomagnetic field studies based on observatory data.

Convener: Duygu KiyanECSECS | Co-conveners: Shunguo Wang, Paula Rulff, Pierre WAWRZYNIAK
Orals
| Thu, 27 Apr, 16:15–17:50 (CEST)
 
Room -2.21, Fri, 28 Apr, 08:30–09:50 (CEST)
 
Room -2.21
Posters on site
| Attendance Wed, 26 Apr, 16:15–18:00 (CEST)
 
Hall X2
Orals |
Thu, 16:15
Wed, 16:15
EMRP2.13 EDI

Geomagnetically Induced Currents (GICs) can damage grounded infrastructure such as high voltage transformers, oil and gas pipelines and rail networks. Understanding their impact is vital for protecting critical national infrastructure from harm and reducing any economic consequences. GICs are caused by geoelectric fields induced in the resistive subsurface of the Earth during periods of rapid change of the magnetic field, typically in geomagnetic storms; however, an increasing body of evidence shows they occur in nominally quiet times too. We seek contributions from studies that measure (directly or indirectly) or model GICs in grounded infrastructure to assess the potential hazard and vulnerability of the infrastructure and to produce reliable models with which to forecast the potential effects of severe space weather events.

Co-organized by ST4
Convener: Ciaran Beggan | Co-conveners: Adamantia Zoe Boutsi, Andrew Dimmock, Rachel L. BaileyECSECS, Stavros Dimitrakoudis
Posters on site
| Attendance Wed, 26 Apr, 14:00–15:45 (CEST)
 
Hall X2
Posters virtual
| Wed, 26 Apr, 14:00–15:45 (CEST)
 
vHall TS/EMRP
Wed, 14:00
Wed, 14:00
SM1.2 EDI

Assessing the uncertainty in observations and in scientific results is a fundamental part of the scientific process. In principle uncertainty estimates allow data of different types to be weighted appropriately in joint interpretations, allow existing results to be tested against new data, allow potential implications of the results to be tested for relative significance, allow differences between best-fit model estimates to be explained, and allow quantitative risk assessments to be performed. In practice, uncertainty estimation can be theoretically challenging, computationally expensive, model-dependent and subject to expert biases. This session will explore the value or otherwise of the significant effort that is required to assess uncertainty in practice.

We welcome contributions from the solid Earth sciences for and against the calculation and use of uncertainties. We welcome those that extend the use of subsurface model uncertainties for important purposes, and which demonstrate the value of uncertainties. We also welcome contributions which argue against the value of uncertainties, perhaps particularly given the cost of their assessment. Uses of uncertainties may include value of information (VOI) calculations, the use of models for forecasting new qualities that can be tested, the reconciliation of historically diverse models of the same structures or phenomena, or any other result that fits the overall brief of demonstrating value. Arguments against the value of uncertainty may include anything from pragmatic uses of uncertainty estimates that have demonstrably failed to be useful, to philosophical issues of how it is possible even to define uncertainty in model-based contexts. All pertinent contributions are welcome, as is a lively discussion!

Co-organized by EMRP2/GI6
Convener: Andrew Curtis | Co-conveners: Alison Malcolm, Klaus Mosegaard, Andreas Fichtner, Xin Zhang
Orals
| Mon, 24 Apr, 10:45–12:30 (CEST)
 
Room -2.47/48
Posters on site
| Attendance Mon, 24 Apr, 14:00–15:45 (CEST)
 
Hall X2
Orals |
Mon, 10:45
Mon, 14:00
SM5.2 EDI

Geophysical imaging techniques are widely used to characterize structures and processes in the shallow subsurface. Methods include imaging using P-wave seismic but also S-wave and multi-component techniques, (complex) electrical resistivity, electromagnetic, and ground-penetrating radar methods, as well as passive monitoring based on ambient noise or electrical self-potentials. Advances in experimental design, instrumentation, data acquisition, data processing, numerical modelling, and inversion constantly push the limits of spatial and temporal resolution. Despite these advances, the interpretation of geophysical images and properties often remains ambiguous. Persistent challenges addressed in this session include optimal data acquisition strategies, (automated) data processing and error quantification, appropriate spatial and temporal regularization of model parameters, integration of non-geophysical measurements and geological realism into the imaging process, joint inversion, as well as the quantitative interpretation of tomograms through suitable petro-physical relations.

In light of these topics, we invite submissions concerning a broad spectrum of near-surface geophysical imaging methods and applications at different spatial and temporal scales. Novel developments in the combination of complementary measurement methods, machine learning, and process-monitoring applications are particularly welcome.

Co-organized by EMRP2/GM2
Convener: Florian WagnerECSECS | Co-conveners: Ellen Van De VijverECSECS, James Irving, Frédéric Nguyen, Sonja Halina WadasECSECS, Cesare Comina, Thomas Burschil
Orals
| Mon, 24 Apr, 14:00–18:00 (CEST)
 
Room G2
Posters on site
| Attendance Mon, 24 Apr, 08:30–10:15 (CEST)
 
Hall X2
Posters virtual
| Mon, 24 Apr, 08:30–10:15 (CEST)
 
vHall GMPV/G/GD/SM
Orals |
Mon, 14:00
Mon, 08:30
Mon, 08:30

EMRP3 – Paleomagnetism

Programme group scientific officer: Eric Font

EMRP3.1 EDI

The recent methodological and instrumental advances in paleomagnetism, micromagnetic modelling, and magnetic fabric research further increased their already high potential in solving geological, geophysical, and tectonic problems. Integrated paleomagnetic and magnetic fabric studies, together with structural geology and petrology, are very efficient tools in increasing our knowledge about sedimentological, tectonic or volcanic processes, both on regional and global scales. This session is intended to give an opportunity to present innovative theoretical or methodological works and their direct applications in various geological settings. Especially welcome are contributions combining paleomagnetic and magnetic fabric data, integrating various magnetic fabric techniques, combining magnetic fabric with other means of fabric analysis, or showing novel approaches in data evaluation and modelling. We also highly solicit contributions showing all aspects of paleomagnetic reconstructions, acquisition of characteristic remanence and remagnetisations applied to solving geotectonic problems. We also solicit contributions that (i) take advantage of recent advances in imaging magnetic behaviour at the grain-scale; (ii) present paleomagnetic challenges that could be solved using newly available methods; and/or (iii) use micromagnetic modelling to characterize the behaviour of magnetic carriers.

Co-organized by SSP1/TS1
Convener: Martin Chadima | Co-conveners: Lennart de Groot, Sara Satolli, Marco Maffione
Orals
| Wed, 26 Apr, 14:00–15:45 (CEST)
 
Room -2.21
Posters on site
| Attendance Wed, 26 Apr, 08:30–10:15 (CEST)
 
Hall X2
Posters virtual
| Wed, 26 Apr, 08:30–10:15 (CEST)
 
vHall TS/EMRP
Orals |
Wed, 14:00
Wed, 08:30
Wed, 08:30
EMRP3.5

Paleomagnetism involves the study of the past Earth’s magnetic field covering a wide range of spatial and temporal scales. In this context, paleomagnetism not only allows to know the past behaviour of the geomagnetic field throughout sediments records, archaeological artefacts, lava flows or speleothems; but also their applications can provide useful information in studies of rock and environmental magnetism, which have an impact on climatic, stratigraphic, tectonic or environmental applications.

This open session provides the opportunity for contributions that fall within the broad topic of Paleomagnetism, from new directional and archeo- and paleointensity data to novel techniques to develop regional and global paleomagnetic reconstructions. In addition, this session aims at gathering contributions rock and environmental magnetism and their applications, including new theoretical models or measurement techniques.

Convener: Anita Di Chiara | Co-conveners: Fabio Florindo, Ramon Egli, Sanja Panovska, Eric Font, Romy MeyerECSECS, F. Javier Pavón-Carrasco
Orals
| Wed, 26 Apr, 16:15–17:55 (CEST)
 
Room -2.21
Posters on site
| Attendance Wed, 26 Apr, 10:45–12:30 (CEST)
 
Hall X2
Orals |
Wed, 16:15
Wed, 10:45
SC5.9

This short course addresses the fundaments of archaeomagnetic dating and the most used tools to carry out. Archaeomagnetic dating is a very useful and popular technique to date archaeological artifacts heated to high temperatures (for example, ovens) and volcanic deposits such as lava flows. This technique is based on the use of magnetic field models or paleosecular variation curves that inform about the time evolution of the geomagnetic field in the past. Due to the variability of the geomagnetic field in time and space it is possible to determine the date when the artifacts were heated and cooled for the last time or when the lava flow cooled down, if we know the geomagnetic field behavior around that period of time. Our invited speaker, Dr. F. Javier Pavón-Carrasco is the main developer of the archaeo_dating tool, one of the most widely used tools for archaeomagnetic dating by the scientific community. In this short course, Dr. Pavón-Carrasco will explain the key points of the archaeomagnetic dating and the archaeo_dating software. Then a practical case using the archaeo_dating software will be developed to analyze in detail the correct interpretation of the results. Everyone is welcome to participate in this short course, especially we encourage Early Career Scientists with geomagnetic and paleomagnetic background or curiosity about different techniques used for dating.

Co-organized by EMRP3
Convener: Saioa A. Campuzano | Co-convener: Anita Di Chiara
Mon, 24 Apr, 14:00–15:45 (CEST)|Pre-recorded
Mon, 14:00