The global ocean absorbs, stores, and redistributes vast amounts of heat, freshwater, carbon, oxygen, and nutrients and is a main driver for shaping the global climate. Anthropogenic forcing is superimposed on the ocean’s natural variability and complex interactions and feedback occur across scales and impacting multiple scientific disciplines. For detecting and subsequently understanding the signatures of climate variability in general, and the anthropogenic part in particular, probably the most established approach is using time series records.
In this session, we invite submissions on research that make use of Eulerian (fix-point) ocean time series of Essential Ocean Variables (EOV) from observational data and/or from modelling studies. Submissions are encouraged from all ocean science disciplines, across ocean compartments – from the air/sea interface, across the water column, to sea-floor processes –, and also from integration of different observing platforms (e.g., moorings, ships, satellites, Argo floats, gliders). Research on interaction of ocean processes, their forcing, and effects are most welcome and may address themes such air/sea heat and freshwater fluxes and carbon and oxygen uptake; ocean transport; biogeochemical and biological time series; as well as deep ocean and sea-floor processes.
Detection and validation of climate variability in the ocean using multidisciplinary, Eulerian time series observations.
Co-organized by OS1
Convener:
Raquel Somavilla
|
Co-conveners:
Johannes Karstensen,
Jinyong Jeong,
Dariia Atamanchuk,
Yao Fu