ST4.3 | Nowcasting, forecasting, operational monitoring and post-event analysis of the space weather and space climate in the Sun-Earth system
EDI
Nowcasting, forecasting, operational monitoring and post-event analysis of the space weather and space climate in the Sun-Earth system
Convener: Claudia Borries | Co-conveners: Guram Kervalishvili, Yulia Bogdanova, Maike Bauer, Therese Moretto Jorgensen

Space weather and space climate refer to the interactions between the Sun and Earth over various timescales, from minutes to decades. These interactions involve processes occurring at the Sun, in the heliosphere, magnetosphere, ionosphere, thermosphere, and lower atmosphere. They also encompass coronal mass ejections, interplanetary shocks, and solar energetic particles. Predicting extreme space weather events and developing mitigation strategies is essential because space assets and critical infrastructures, including communication and navigation systems, power grids, and aviation, are highly sensitive to the space environment. Conducting post-event analyses is crucial for improving and maintaining numerical models that can predict extreme space weather events and prevent the failure of critical infrastructures.

This session focuses on the current state of space weather products and explores new ideas and developments that can improve our understanding of space weather and space climate and their impact on critical infrastructure. We welcome presentations on various space weather and space climate-related activities in the Sun-Earth system, including forecast and nowcast products and services, satellite observations, model development, validation, and verification, data assimilation and machine learning, and the development and production of solar, geomagnetic, and ionospheric indices. We encourage contributions that support a cross-disciplinary and collaborative approach to advance our understanding of space weather and space climate. Presentations on the effects of space weather on applications in the Earth’s environment, such as airlines, pipelines, power grids, space flights, and auroral tourism, are also welcomed.

Space weather and space climate refer to the interactions between the Sun and Earth over various timescales, from minutes to decades. These interactions involve processes occurring at the Sun, in the heliosphere, magnetosphere, ionosphere, thermosphere, and lower atmosphere. They also encompass coronal mass ejections, interplanetary shocks, and solar energetic particles. Predicting extreme space weather events and developing mitigation strategies is essential because space assets and critical infrastructures, including communication and navigation systems, power grids, and aviation, are highly sensitive to the space environment. Conducting post-event analyses is crucial for improving and maintaining numerical models that can predict extreme space weather events and prevent the failure of critical infrastructures.

This session focuses on the current state of space weather products and explores new ideas and developments that can improve our understanding of space weather and space climate and their impact on critical infrastructure. We welcome presentations on various space weather and space climate-related activities in the Sun-Earth system, including forecast and nowcast products and services, satellite observations, model development, validation, and verification, data assimilation and machine learning, and the development and production of solar, geomagnetic, and ionospheric indices. We encourage contributions that support a cross-disciplinary and collaborative approach to advance our understanding of space weather and space climate. Presentations on the effects of space weather on applications in the Earth’s environment, such as airlines, pipelines, power grids, space flights, and auroral tourism, are also welcomed.