The polar climate system is strongly affected by interactions between the atmosphere and the cryosphere. Processes that exchange heat, moisture and momentum between land ice, sea ice and the atmosphere, such as katabatic winds, blowing snow, ice melt, polynya formation and sea ice transport, play an important role in local-to-global processes. Atmosphere-ice interactions are also triggered by synoptic weather phenomena such as cold air outbreaks, polar lows, atmospheric rivers, Foehn winds and heatwaves. However, our understanding of these processes is still incomplete. Despite being a crucial milestone for reaching accurate projections of future climate change in Polar Regions, deciphering the interplay between the atmosphere, land ice and sea ice on different spatial and temporal scales, remains a major challenge.
This session aims at showcasing recent research progress and augmenting existing knowledge in polar meteorology and climate and the atmosphere-land ice-sea ice coupling in both the Northern and Southern Hemispheres. It will provide a setting to foster discussion and help identify gaps, tools, and studies that can be designed to address these open questions. It is also the opportunity to convey newly acquired knowledge to the community.
We invite contributions on all observational and numerical modelling aspects of Arctic and Antarctic meteorology and climatology, that address atmospheric interactions with the cryosphere. This may include but is not limited to studies on past, present and future of:
- Atmospheric processes that influence sea-ice (snow on sea ice, sea ice melt, polynya formation and sea ice production and transport) and associated feedbacks,
- The variability of the polar large-scale atmospheric circulation (such as polar jets, the circumpolar trough and storm tracks) and impact on the cryosphere (sea ice and land ice),
- Atmosphere-ice interactions triggered by synoptic and meso-scale weather phenomena such as cold air outbreaks, katabatic winds, extratropical cyclones, polar cyclones, atmospheric rivers, Foehn winds and heatwaves,
- Role of clouds in polar climate and impact on the land ice and sea ice through interactions with radiation,
Presentations including new observational (ground and satellite-based) and modelling methodologies specific to polar regions are encouraged. Contributions related to results from recent field campaigns in the Arctic and in the Southern Ocean/Antarctica are also welcomed.
Polar Meteorology and Climate and their Links to the Rapidly Changing Cryosphere
Co-organized by CL2/CR7