Europlanet Science Congress 2020
Virtual meeting
21 September – 9 October 2020
Europlanet Science Congress 2020
Virtual meeting
21 September – 9 October 2020

Session programme


EXO – Exoplanets and Origins of Planetary Systems


The late stage formation of planetary systems has a crucial impact on the final system configuration. A deep understanding of the architecture of both RV-detected systems and transit-detected systems is particularly important to get a unified vision of planetary system formation.

In this session we address the question of the formation, dynamical evolution and stability of planetary systems in a broad sense, including the effects of planet-disc interactions, resonances, high eccentricity migration, binary stars,...

Conveners: Aurélien Crida, Anne-Sophie Libert, Jean Teyssandier

Planetary accretion, giant collisions, core formation, magma-ocean crystallization and other important processes during the early days of the solar system set the stage for the long-term evolution of terrestrial planets. These early processes can happen simultaneously or in recurring stages, and are ultimately followed by progressive crustal growth, long-term mantle mixing/differentiation, core-mantle interaction, as well as inner-core crystallization. Indeed, the coupled early and long-term evolution shapes the present-day structure and thermal state of planetary interiors. We seek to gain a better understanding of the formation and evolution of terrestrial bodies by bringing together studies from geophysics, geodynamics, mineral physics, geochemistry, and petrology.
This session welcomes contributions focused on data analysis, modeling and experimental work that address the formation and evolution of terrestrial planets and moons in the Solar System, and around other stars.

Co-organized by EXO
Convener: Lena Noack | Co-conveners: Gregor Golabek, Alison Hunt, Sebastiano Padovan

Since the discovery of the first exoplanet in 1995 more than 4000 exoplanets have been detected to date. This indicates that planet formation is a robust mechanism and nearly every star in our Galaxy should host a system of planets.
However, many crucial questions about the origin of planets are still unanswered: How and when planets formed in the Solar System and in extra-solar systems? Are protoplanetary disks massive enough to form the planets cores? And what chemical composition do planets and primitive Solar System bodies inherit from their natal environment? Is the chemical composition passed unaltered from the earliest stages of the formation of a star to its disk and then to the bodies which assemble in the disk? Or does it reflects chemical processes occurring in the disk and/or during the planet formation process?

A viable way to answer these questions is to study the planets formation site, i.e. protoplanetary disks. In the recent years, the advent of ALMA and near-infrared/optical imagers aided by extreme adaptive optics revolutionised our comprehension of planet formation by providing unprecedented insights on the protoplanetary disks structure, both in its gaseous and solid components.
The aim of this session is to review the latest results on protoplanetary disks; to foster a comparison with the recent outcomes of small bodies space missions (e.g. Rosetta, Dawn, Hayabusa 2, OSIRIS-REX) and ground-based observations; and to discuss how these will affect the current models of planet formation and can guide us to investigate the origin of planets and small bodies and of their chemical composition.

Co-organized by SB
Convener: Linda Podio | Co-conveners: Mauro Ciarniello, Cecile Favre, Carlo Felice Manara, Francesco Marzari

The field of extrasolar planets is one of the most rapidly changing areas of astrophysics and planetary science. Ground-based surveys and dedicated space missions have already discovered more than 4000 planets with many more detections expected in the near future. A key challenge is now the characterisation of their atmospheres in order to answer to the questions: what are these worlds actually like and what processes govern their formation and evolution?

To answer these questions, a broad range of skills and expertise are required, stretching from Solar System science to statistical astrophysics, from ground-based observations to spacecraft measurements, and atmospheric/interior/orbital modelling. The numerous studies conducted in the past twenty years have unveiled a large diversity of atmospheres. The next generation of space and ground based facilities (e.g. E-ELT, JWST, and ARIEL) will characterise this multifarious population in stunning detail and challenge our current understanding. Both theoretical works and experimental measurements are required to prepare for such a change of scale.

This session will focus on the atmospheric characterisation of exoplanets and the conveners welcome any abstract related to this subject.

Convener: Olivia Venot | Co-conveners: Monika Lendl, Giuseppe Morello, Vivien Parmentier, Ingo Waldmann

Atmospheric aerosols and cloud particles are found in every atmosphere of the solar system, as well as, in exoplanets. Depending on their size, shape, chemical composition, latent heat, and distribution, their effect on the radiation budget varies drastically and is difficult to predict. When organic, aerosols also carry a strong prebiotic interest reinforced by the presence of heavy atoms such as nitrogen, oxygen or sulfur.

The aim of the session is to gather presentations on these complex objects for both terrestrial and giant planet atmospheres, including the special cases of Titan’s and Pluto's hazy atmospheres. All research aspects from their production and evolution processes, their observation/detection, to their fate and atmospheric impact are welcomed, including laboratory investigations and modeling.

Co-organized by TP/EXO
Conveners: Nathalie Carrasco, Panayotis Lavvas, Anni Määttänen

The emphasis of the session is on all aspects of plasma physics and interactions of solar and stellar wind interactions with planets and exoplanets, including: (a) magnetospheric dynamics, aurorae, and radio emissions (b) potential impact of star-(exo-)planet coupling on habitability, (c) comparative studies between Solar System planets and exoplanets. We welcome contributions relying on space-based or ground-based observations as well as theoretical modelling and simulations.

Co-organized by TP/OPS
Convener: Nicolas André | Co-conveners: Caitriona Jackman, Corentin Louis

The characterisation of exoplanets is among the most active and rapidly advancing fields in modern astrophysics. An increasing number of observing techniques have enabled the characterisation of exoplanet system properties and provided access to the planetary atmospheres (chemical composition, thermal state and dynamics). Recently, combined analyses using different types of observations have outperformed the standard approaches, e.g. enabling precise constraints on the chemical abundances and elemental ratios in their atmospheres, or measurements of both the star and planet spin-orbit angles.

The goal of this session is to inspire the cooperation between specialised teams to overcome the limits of the fragmented data analyses and to break degeneracies in their interpretation. Contributions are invited to present new methods and/or analyses that combine different kind of observations for comprehensive exoplanet characterisation.

Convener: Giuseppe Morello | Co-conveners: Camilla Danielski, Pierre-Olivier Lagage, Lisa Nortmann, Enric Palle, Fei Yan

Exoplanets are being discovered in large numbers thanks to recent and ongoing surveys using state-of-the-art instrumentation from the ground and from space. In the next years, new astronomical instruments will further scout our Galaxy to overcome the current observational biases in the search of alien worlds, to gain a deeper understanding of the chemical and physical properties of both exoplanets and their environments, and to unveil the processes of formation and evolution of planets and their atmospheres.

The goal of this session is to bring together the instrumentation and observational communities that are underpinning the future of this field. Contributions are invited to review ongoing programmes of exoplanet and circumstellar discs discovery and characterisation, to update on the progress of planned instrumentation programmes, and to present innovative ideas for future instrumentation.

Convener: Camilla Danielski | Co-conveners: Elodie Choquet, Paul Eccleston, Enzo Pascale, Subhajit Sarkar

The space exploration of small Solar System bodies has provided major breakthroughs in our understanding of Solar System formation and evolution and their links with free-sample delivered meteorites.  While the two sample return missions to asteroids, Hayabusa 2 and OSIRIS-REx, are ongoing, a few missions have been selected by ESA (Comet Interceptor), NASA (Lucy, Psyche), JAXA (MMX), and CNSA (ZhengHe) space agencies for a launch in this decade. For the long-term, ESA is preparing its next planning cycle « Voyage 2050 », and the next NASA decadal survey for Planetary Science will be issued in 2022.
In this framework, we welcome contributions about future space missions to asteroids and comets, in terms of both science and technology. This includes both missions and instruments in development, and concepts of future missions, or instruments. We invite contributions regarding the preparation, studies, and expected results from future sample return missions, including concepts for sampling methods, cryogenic aspects, curation facilities, and analysis tools.

Co-organized by MITM/EXO
Conveners: Dominique Bockelee-Morvan, Josep Maria Trigo-Rodríguez | Co-conveners: Eleonora Bianchi, John Robert Brucato, Mathieu Choukroun, Marco Delbo, Xian Shi, Colin Snodgrass

This session aims to highlight the new challenges and the missing bricks needed to understand the composition of primitive bodies through laboratory works and models.

The session focuses on the origin of inorganic and organic matter in different astrophysical environments and welcomes contributions on laboratory investigations and models of parent bodies of various meteorite groups, asteroids, comets and dwarf planets such as: a) experimental work related to the dust-regolith composition; b) observation and characterization of laboratory analogues; c) models of comet formation, and interior structure of asteroids with implications for parent body processes and evolution of small bodies in our solar system.

The session will also focus on experimental, theoretical and observational topics specifically aimed to the study organic matter in planetary bodies, including a) detection and evolution of organic compounds in the interstellar medium; b) characterization and evolution of the organic matter in the primitive bodies (meteorites, comets, IDPs); c) observation and distribution of the organic matter in the protosolar disk and planetary surfaces.

Co-organized by EXO
Convener: Gabriele Arnold | Co-conveners: Claudio Codella, John Robert Brucato, Eric Quirico, Bastian Gundlach

Astrobiology is the study of whether present or past life exists elsewhere in the universe. To understand how life can begin in space, it is essential to know what organic compounds were likely available, and how they interacted with the planetary environment. This session seeks papers that offer existing/novel theoretical models or computational works that address the chemical and environmental conditions relevant to astrobiology on terrestrial planets/moons or ocean worlds, along with other theoretical, experimental, and observational works related to the emergence and development of Life in the Universe. This includes work related to prebiotic chemistry, the chemistry of early life, the biogeochemistry of life’s interaction with its environment, chemistry associated with biosignatures and their false positives, and chemistry pertinent to conditions that could possibly harbor life (e.g. Titan, Enceladus, Europa, TRAPPIST-1, habitable exoplanets, etc.). Understanding how the planetary environment has influenced the evolution of life and how biological processes have changed the environment is an essential part of any study of the origin and search for signs of life. Major Space Agencies identified planetary habitability and the search for evidence of life as a key component of their scientific missions in the next two decades. The development of instrumentation and technology to support the search for complex organic molecules and the endurance of life in space environments is critical to define unambiguous approaches to life detection over a broad range of planetary environments.

This session welcomes abstracts from several scientific domains such as prebiotic and interstellar chemistry, micropaleontology, limits of life, habitability, and biosignature detection.

Co-organized by OPS/EXO
Conveners: Felipe Gómez, Rosanna del Gaudio