This session invites contributions in the field of electromagnetic (EM) geophysical methods, covering applications across a broad spectrum of scales—from near-surface investigations to deep mantle studies. We welcome research focused on advancing instrumentation and data acquisition techniques that enable more precise measurements, as well as innovations in mathematical and numerical methods that enhance the efficiency and accuracy of data processing, modeling, and inversion. These methods should be applicable to a wide range of settings, including ground-based, offshore, airborne, and satellite-based missions. Key areas of interest include, but are not limited to, studies utilizing EM techniques for:
1. The use of natural and controlled EM sources for geophysical research.
2. Global electromagnetic induction and its implications for understanding Earth's conductivity and its internal structure.
3. Regional-scale imaging, particularly in tectonic, magmatic, or volcanic systems, which may involve tracking changes in geological features over time.
4. Applications aimed at resource exploration, such as the detection and characterization of hydrocarbon, geothermal, and mineral resources.
5. Investigations into the near-surface structure for applications relevant to environmental monitoring, urban development, and hydrological studies.
6. Studies on geomagnetically induced currents (GICs) and their effects on technological infrastructure.
7. Investigations into space weather phenomena and their interactions with the Earth’s magnetosphere.
8. Research related to the geomagnetic field, leveraging data from observatories and long-term monitoring stations to explore its dynamics and secular variations.
We are also interested in contributions that integrate EM methods with other disciplines, particularly multi-disciplinary studies that combine data from rock physics, geophysical techniques (seismic, gravity, etc.), geochemical analyses, and geological investigations. Such integration is critical for unraveling the complexities of subsurface structures and their temporal evolution. We aim to bring together researchers and practitioners working across diverse scales and applications of EM geophysical methods, encouraging the exchange of ideas, methodologies, and findings that push the boundaries of current knowledge and technological capability.
Electromagnetic Induction in Geophysics: Data, Models, Inversions and Interpretations
Convener:
Shunguo Wang
|
Co-conveners:
Paula RulffECSECS,
Matthew J. Comeau,
Wouter Deleersnyder,
Mitra Kangazian