Union-wide
Side Events
Disciplinary Sessions
Inter- and Transdisciplinary Sessions

Session programme

AS5

AS – Atmospheric Sciences

Programme group chairs: Hinrich Grothe, Athanasios Nenes, Annica Ekman, Rune Grand Graversen, Jordi Vila-Guerau de Arellano

AS5 – Interdisciplinary Methods

AS5.1 | PICO

The International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) senses the solid Earth, the oceans and the atmosphere with a global network of seismic, infrasound, and hydroacoustic sensors as well as detectors for atmospheric radioactivity. The primary purpose of the IMS data is for nuclear explosion monitoring regarding all aspects of detecting, locating and characterizing nuclear explosions and their radioactivity releases. On-site verification technologies apply similar methods on smaller scales as well as geophysical methods such as ground penetrating radar and geomagnetic surveying with the goal of identifying evidence for a nuclear explosion close to ground zero. Papers in this session address advances in the sensor technologies, new and historic data, data collection, data processing and analysis methods and algorithms, uncertainty analysis, machine learning and data mining, experiments and simulations including atmospheric transport modelling. This session also welcomes papers on applications of the IMS and OSI instrumentation data. This covers the use of IMS data for disaster risk reduction such as tsunami early warning, earthquake hazard assessment, volcano ash plume warning, radiological emergencies and climate change related monitoring. The scientific applications of IMS data establish another large range of topics, including acoustic wave propagation in the Earth crust, stratospheric wind fields and gravity waves, global atmospheric circulation patterns, deep ocean temperature profiles and whale migration. The use of IMS data for such purposes returns a benefit with regard to calibration, data analysis methods and performance of the primary mission of monitoring for nuclear explosions.

Share:
Co-organized as NH1.18/SM5.3
Convener: Martin Kalinowski | Co-conveners: Lars Ceranna, Yan Jia, Peter Nielsen, Ole Ross
PICOs
| Fri, 12 Apr, 10:45–12:30
 
PICO spot 5a
GI2.4 | PICO

Instrumentation and measurement technologies are currently playing a key role in the monitoring, assessment and protection of environmental resources. Climate study related experiments and observational stations are getting bigger and the number of sensors and instruments involved is growing very fast. This session deals with measurement techniques and sensing methods for the observation of environmental systems, focusing on climate and water. We welcome contributions about advancements on field measurement approaches, development of new sensing techniques, low cost sensor systems and whole environmental sensor networks, including remote observation techniques.
Studies about signal and data processing techniques targeted to event detection and the integration between sensor networks and large data systems are also very encouraged. This session is open for all works about an existing system, planning a completely new network, upgrading an existing system, improving streaming data management, and archiving data.

Share:
Co-organized as AS5.2/CL5.17/ESSI2.5/HS1.1.5
Convener: Misha Krassovski | Co-conveners: Sebastien Biraud, Anna Di Mauro, Andrea Scozzari, Francesco Soldovieri
PICOs
| Wed, 10 Apr, 16:15–18:00
 
PICO spot 4
AS5.3

The instrumentation and its development play a key role in the advance in research, which makes it possible to offer to the researchers state-of-the-art tools to address scientific "open questions" and to open new fields of research leading to new discoveries.
Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the THz domain, which allows opening up new research avenues for observation of spatial and long-term trends in key atmospheric precursors, improving our understanding of tropospheric chemical processes and trends that affect regional air quality and global climate change. Extensive development of spectroscopic instruments for sensing the atmosphere continues to be carried out to improve their performance and functionality, and to reduce their size and cost.
This focus session entitled "Advanced Spectroscopic Measurement Techniques for Atmospheric Science" addresses the latest developments and advances in a broad range of photonic instrumentation, optoelectronic devices and technologies, and also their integration for a variety of atmospheric applications. The objective is to provide an opportunity to get a broad overview of the current state-of-the-art and future prospects in photonic instrumental development for atmospheric sensing. It provides an interdisciplinary forum to enhance interactions between experimentalists, atmospheric scientists, development engineers, as well as R&D and analytical equipment companies to define the needs of the atmospheric scientists to address current atmospheric science issues, and coordinate these needs with the current capabilities of spectroscopic measurement techniques.
Topics for presentation and discussion will include but not be limited to: cavity-enhanced spectroscopy including IBBCEAS, ICOS, CRDS, UAV- or balloon-based measurement techniques, heterodyne radiometry, and aerosol spectroscopy ....; and their applications to in situ photonic metrology (concentration, vertical concentration profile, isotopes, flux, ...) of atmospheric aerosol, radicals & trace gases (OH, HO2, RO2, NO3, HONO, NOx, greenhouse gases, halogens, CH2O, VOCs, BVOCs, light hydrocarbons, ....) in field observation, geological exploration, prospecting and survey, intensive campaigns and smog chamber study.

Share:
Convener: Weidong Chen | Co-conveners: Dean Venables, Katherine Manfred, J. Houston Miller, D. Michelle Bailey
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room 0.31
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X5
GI3.2

Airborne observations are one major link to get an overall picture of processes within the Earth environment during measurement campaigns. This includes application to derive atmospheric parameters, surface properties of vegetation, soil and minerals and dissolved or suspended matter in inland water and the ocean. Ground based systems and satellites are other key information sources to complement the airborne data sets. All these systems have their pros and cons, but a comprehensive view of the observed system is generally best obtained by means of a combination of all three. Aircraft operations strongly depend on weather conditions either to obtain the atmospheric phenomenon of interest or the required surface-viewing conditions and hence require sophisticated flight planning. They can cover large areas in the horizontal and vertical space with adaptable temporal sampling. Future satellite instruments can be tested and airborne platforms and systems are widely used in the development process. The validation of operational satellite systems and applications is a topic that has come increasingly into focus with the European Copernicus program in recent years. The large number of instruments available on aircraft enables a broad and flexible range of applications. The range includes sensors for meteorological parameters, trace gases and cloud/aerosol particles and more complex systems like high spectral resolution lidar, hyperspectral imaging at wavelengths from the visible to thermal infra-red and synthetic aperture radar. The development of smaller state-of-the-art instruments, the combination of more and more complex sets of instruments simultaneously on one platform, with improved accuracy and high data acquisition speed together with high accuracy navigation and inertial measurements enables more complex campaign strategies even on smaller aircraft or unmanned aerial vehicles (UAV). This will further increase the capabilities of the existing fleet of airborne research.

This session will bring together aircraft operators and the research community to present
• an overview of the current status of airborne related research
• recent airborne field campaigns and their outcomes
• multi-aircraft campaigns
• satellite calibration/validation campaigns
• sophisticated airborne instrument setups and observations
• advanced airborne instrument developments
• UAV applications
• future plans for airborne research

Share:
Co-organized as AS5.4/BG1.11/HS9.1.8/OS4.26
Convener: Thomas Ruhtz | Co-conveners: Philip Brown, Paola Formenti
Orals
| Mon, 08 Apr, 14:00–18:00
 
Room 0.96
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X1
GI3.1

An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft without a human pilot aboard. Originating mostly from military applications, their use is rapidly expanding to commercial, recreational, agricultural, and scientific applications. Unlike manned aircraft, UAVs were initially used for missions too "dull, dirty, or dangerous" for humans. Nowadays however, many modern scientific experiments have begun to use UAVs as a tool to collect different types of data. Their flexibility and relatively simple usability now allow scientist to accomplish tasks that previously required expensive equipment like piloted aircrafts, gas, or hot air balloons. Even the industry has begun to adapt and offer extensive options in UAV characteristics and capabilities. At this session, we would like people to share their experience in using UAVs for scientific research. We are interested to hear about specific scientific tasks accomplished or attempted, types of UAVs used, and instruments deployed.

Share:
Co-organized as AS5.5/CR2.13/EMRP2.20/NH6.11/OS4.27
Convener: Misha Krassovski | Co-conveners: Sebastien Biraud, Jens Klump
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room M1
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X1
GI3.4

This session invites contributions on the latest developments and results in lidar remote sensing of the atmosphere, covering
• new lidar techniques as well as applications of lidar data for model verification and assimilation,
• ground-based, airborne, and space-borne lidar systems,
• unique research systems as well as networks of instruments,
• lidar observations of aerosols and clouds, thermodynamic parameters and wind, and trace-gases.
Atmospheric lidar technologies have shown significant progress in recent years. While, some years ago, there were only a few research systems, mostly quite complex and difficult to operate on a longer-term basis because a team of experts was continuously required for their operation, advancements in laser transmitter and receiver technologies have resulted in much more rugged systems nowadays, many of which are already operated routinely in networks and some even being automated and commercially available. Consequently, also more and more data sets with very high resolution in range and time are becoming available for atmospheric science, which makes it attractive to consider lidar data not only for case studies but also for extended model comparison statistics and data assimilation. Here, ceilometers provide not only information on the cloud bottom height but also profiles of aerosol and cloud backscatter signals. Scanning Doppler lidars extend the data to horizontal and vertical wind profiles. Raman lidars and high-spectral resolution lidars provide more details than ceilometers and measure particle extinction and backscatter coefficients at multiple wavelengths. Other Raman lidars measure water vapor mixing ratio and temperature profiles. Differential absorption lidars give profiles of absolute humidity or other trace gases (like ozone, NOx, SO2, CO2, methane etc.). Depolarization lidars provide information on the shapes of aerosol and cloud particles. In addition to instruments on the ground, lidars are operated from airborne platforms in different altitudes. Even the first space-borne missions are now in orbit while more are currently in preparation. All these aspects of lidar remote sensing in the atmosphere will be part of this session.

Share:
Co-organized as AS5.6/BG1.34/NH6.16/PS5.8
Convener: Andreas Behrendt | Co-conveners: Adolfo Comeron, Paolo Di Girolamo, Doina Nicolae, Andreas Fix
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room 0.96
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X1
GI4.5

The IR (MWIR 3-5micron and LWIR 7-12micron) sensing technologies have reached a significant level of maturity and has become a powerful method of Earth surface sensing.
Thermal sensing is currently used for characterize land surface Temperature (LST) and Land Surface Emissivity (LSE) and many other environmental proxy variables, which part of them can have a further relevance when assimilated into hydrological and climatological models.
The usefulness of IR sensing has been experimented in many environmental applications and also in the spatio-temporal domain for spatial patterns identification.
The session welcomes communications based on the actual of next future IR imagery from broadband to multi/hyperspectral applied to proximal or remote sensing (ECOSTRESS, ASTER, Sentinel3, Landsat etc. and airborne sensors) in the following specific objectives:
- IR instruments solution
- Instrument radiometric calibration procedures
- Algorithms retrieval for Temperature and Emissivity
- Soil properties characterization
- Evapo-Transpiration, water plants stress and drought
- IR targets identification
- Archaeological prospection
- Urban areas and infrastructure investigation
- Geophysical phenomena characterization
- IR synergy with optical imagery

LINKED TO THIS SESSION IS A REMOTE SENSING JOURNAL SPECIAL ISSUE "Proximal and Remote Sensing in the MWIR and LWIR Spectral Range" WITH DEADLINE DECEMBER 2019.

https://www.mdpi.com/journal/remotesensing/special_issues/EGU_TIR

SUBMISSIONS TO THIS SESSION AND TO THE RS JOURNAL SPECIAL ISSUE ARE WELCOME

Share:
Co-organized as AS5.9/HS6.9/NH6.17/SSS12.14
Convener: Stefano Pignatti | Co-conveners: Eyal Ben Dor, Maria Fabrizia Buongiorno, Angelo Palombo, Francesco Marchese, Nicola Genzano, Vasco Mantas, George Xian
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room 0.96
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X1
G5.2

Geodesy contributes to Atmospheric Science by providing some of the Essential Climate Variables of the Global Climate Observing System (GCOS) such as: sea level from radar altimetry, mass changes ofice and terrestrial water from satellite gravimetric missions, atmospheric water vapor from ground-based and space-based GNSS, as well as from VLBI and DORIS, atmospheric temperature from GNSS RO. Sensing of the neutral atmosphere with space geodetic techniques is an established field of research and applications, thanks to the availability of regional and global ground-based networks as well as satellite-based missions. Water vapor, the most abundant greenhouse gas of the atmosphere, is under-sampled in the current meteorological and climate observing systems, therefore obtaining and exploiting more high-quality humidity observations is essential to weather forecasting and climate monitoring. The production, exploitation and evaluation of operational GNSS-Meteorology for weather forecasting is well established in Europe due to two decades of outstanding cooperation between the geodetic community and European national meteorological services. Advancements in Numerical Weather Prediction Models (NWP) to improve forecasting of extreme precipitation, require GNSS troposphere products with a higher resolution in space and shorter delivery times than are currently in use. Homogeneously reprocessed GNSS observations on a regional and global scale have high potential for monitoring water vapor climatic trends and variability. With shortening orbit repeat periods SAR measurements are a new potential source of information to improve NWP models. At the same time, high-resolution NWP data have recently been used for deriving a new generation of mapping functions. In real-time GNSS processing these data can be employed to initialize Precise Point Positioning (PPP) processing algorithms, shortening convergence times and improving positioning. Furthermore, GNSS-reflectometry is establishing itself as an alternative method for retrieving soil moisture and has the potential to be used to retrieve near-surface water vapor.

We welcome, but not limit, contributions on the subjects below:

· Estimates of the state of the neutral atmosphere using ground-based and space-based geodetic data, use of those estimates in weather forecasting and climate monitoring.
· Multi-GNSS and multi-instruments approaches to retrieve and inter-compare tropospheric parameters.
· Real-Time and reprocessed tropospheric products for now-casting, forecasting and climate monitoring.
· Assimilation of GNSS tropospheric products in NWP and in climate reanalysis models.
· Production of SAR-based tropospheric parameters and use of them in NWP.
· Methods for homogenization of long-term GNSS tropospheric products.
· Studies of the delay properties of the GNSS signals for Earth-space propagation experiments.
· Usage of NWP data in GNSS data processing.
· Techniques on retrieval of soil moisture from GNSS observations and of ground-atmosphere boundary interactions.
· Usage of satellite gravity observations, as obtained from GRACE and its successor GRACE-FO, for studying the atmospheric water cycle.

Share:
Co-organized as AS5.11
Convener: Rosa Pacione | Co-conveners: Gert Mulder, Maximilian Semmling, Felicia Norma Teferle, Henrik Vedel
Orals
| Mon, 08 Apr, 14:00–18:00
 
Room -2.21
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X3
G3.3

A wide range of processes in the earth system directly affect geodetic observations. This session invites a wide array of contributions which showcase the use of geodesy for Earth science and climate applications, providing crucial insights into the state and change of the earth system and/or understanding its processes.

Data driven quantification of water mass fluxes through boundaries of Earth’s different regions and spheres provides important insights to other geoscience communities and informs model validation and improvement. Changes in regional sea level and ocean circulation are observed by altimetry and gravimetry. Natural and anthropogenic alterations of the terrestrial water cycle lead to changes in river runoff, precipitation, evapotranspiration, and water storage which may cause surface deformation sensed by GNSS stations and InSAR measurements as well as mass/gravity changes observed by satellite/ground gravimetry. Mass changes in the ice sheets and glaciers are detectable by both geometrical and gravimetric techniques. And other novel applications of geodetic techniques are emerging in many fields.

In addition, individual sensor recordings are often affected by high-frequency variability caused by, e.g., tides in the solid Earth, oceans, and atmosphere and their corresponding crustal deformations affecting station positions; non-tidal temperature and moisture variability in the troposphere modifying microwave signal dispersion; rapid changes in the terrestrially stored water caused by hydrometeorologic extreme events; as well as swift variations in relative sea-level that are driven by mass and energy exchange of the global oceans with other components of the Earth system, which all might lead to temporal aliasing in observational records. 

This session invites a wide array of contributions which showcase the use of geodesy for Earth science and climate applications. This session aims to cover innovative ways to use GRACE, GRACE-FO and other low Earth orbiters, GNSS techniques, InSAR, radar altimetry, and their combination with in-situ observations. We welcome approaches which tackle the problem of separating signals of different geophysical origin, by taking advantage of model output and/or advanced processing and estimation techniques. Since the use of geodetic techniques is not always straightforward, we encourage authors to think of creative ways to make their findings, data and software more readily accessible to other communities in hydrology, ocean, cryospheric, atmospheric and climate sciences. With author consent, highlights from the oral and poster session will be tweeted with a dedicated hashtag during the conference in order to increase the impact of the session.

Share:
Co-organized as AS5.12/CL5.19/CR2.7/ESSI1.3/HS2.5.6/OS1.12
Convener: Roelof Rietbroek | Co-conveners: Bert Wouters, Wei Feng, Vincent Humphrey, Anna Klos, Carmen Blackwood, Henryk Dobslaw, Krzysztof Sośnica
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room D2
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X3
NH6.2

The availability of high spatial resolution Synthetic Aperture Radar (SAR) data, the advances in SAR processing techniques (e.g. interferometric, polarimetric, and tomographic processing), and the fusion of SAR with optical imagery as well as geophysical modelling allow ever increasing use of Imaging Geodesy using SAR/InSAR as a geodetic method of choice for earth system monitoring and investigating geohazard, geodynamic and engineering processes. In particular, the exploitation of data from new generation SAR missions such as Sentinel-1 that provide near real-time measurements of deformation and changes in land cover/use has improved significantly our capabilities to understand natural and anthropogenic hazards and then helped us mitigate their impacts. The development of high-resolution X-band SAR sensors aboard missions such as Italian COSMO-SkyMed (CSK) and German TerraSAR-X (TSX) has also opened new opportunities over the last decade for very high-resolution radar imaging from space with centimetre geometric accuracy for detailed analysis of a variety of processes in the areas of the biosphere, geosphere, cryosphere and hydrosphere. All scientists exploiting radar data from spaceborne, airborne and/or ground-based SAR sensors are cordially invited to contribute to this session. The main objective of the session is to present and discuss the progress, state-of-the-art and future perspectives in scientific exploitation of SAR data, mitigating atmospheric effects and error sources, cloud computing, machine learning and big data analysis, and interpretation methods of results obtained from SAR data for various types of disasters and engineering applications such as earthquakes, volcanoes, landslides and erosion, infrastructure instability and anthropogenic activities in urban areas. Contributions addressing scientific applications of SAR/InSAR data in biosphere, cryosphere, and hydrosphere are also welcome.

Share:
Co-organized as AS5.13/CR2.15/G2.7/GD10.3/HS11.45/NP4.11/SM1.14
Convener: Mahdi Motagh | Co-conveners: Ziyadin Cakir, Franz J Meyer, Zhenhong Li
Orals
| Mon, 08 Apr, 08:30–12:30, 14:00–15:45
 
Room M2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X3
ST4.6

Space is at the verge of a paradigm change. Earlier, mostly larger space agencies or international organizations were able to launch spacecraft. Today, the less expensive access to space increases the number of spacecraft, space-faring interest groups, and space-based research fields. The Science with CubeSats session emphasizes this new trend and highlights the possibilities and science objectives that can be achieved by small dedicated spacecraft, which can be built faster and in a more cost-efficient way than larger missions. These CubeSat missions can be either standalone or complementary to larger missions. The session solicits abstracts related to science onboard past, current or future CubeSats missions. We also solicit abstracts related to miniaturized instrument designs that can be accommodated on CubeSats as well as abstracts related to technologies and subsystems that enable science with CubeSats.

Share:
Co-organized as AS5.14/GI3.18
Convener: Minna Palmroth | Co-conveners: Lauren Blum, Martin Kaufmann, Friedhelm Olschewski, Jaan Praks
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room 2.44
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X4
GI3.7

This session aims at bringing together multidisciplinary studies that address the current state of Arctic observing systems, including strategies to improve them in the future. We invite contributions covering atmosphere, ocean, cryosphere and terrestrial spheres, or combinations thereof, by use of remote sensing, in situ observation technologies, and modeling. Particular foci are placed on (i) the analysis of strengths, weaknesses, gaps in spatial/temporal coverage, and missing monitoring parameters in existing observation networks and databases, and (ii) studies describing the development and/or deployment of new sensors or observation platforms that extend the existing observing infrastructure with multidisciplinary measurements. This session will be supported by the EU-H2020 project INTAROS, and welcomes contributions from other pan-Arctic networks (e.g. INTERACT, GTN-P, NEON, ICOS, SIOS, IASOA, AOOS), multi-disciplinary campaigns (e.g. ABoVE, NGEE Arctic, Arctic Ocean 2018, RV Polarstern cruises) or databases.

Share:
Co-organized as AS5.15/BG1.65/CL5.20/CR2.14/OS1.17/SSS13.21
Convener: Roberta Pirazzini | Co-conveners: Andreas P. Ahlstrøm, Agnieszka Beszczynska-Möller, Mathias Göckede, Stein Sandven
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room M1
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X1
NP4.1

This interdisciplinary session welcomes contributions on novel conceptual approaches and methods for the analysis of observational as well as model time series and associated uncertainties from all geoscientific disciplines.

Methods to be discussed include, but are not limited to:
- linear and nonlinear methods of time series analysis
- time-frequency methods
- predictive approaches
- statistical inference for nonlinear time series
- nonlinear statistical decomposition and related techniques for multivariate and spatio-temporal data
- nonlinear correlation analysis and synchronisation
- surrogate data techniques
- filtering approaches and nonlinear methods of noise reduction

We particularly encourage submissions addressing the problem of uncertainty of geoscientific time series and its treatment in the context of statistical and dynamical analysis, including:
- representation of time series with uncertain dating (in particular paleoclimatic records from ice cores, sediments, speleothems etc.)
- uncertainties in change point / transition detection
- uncertainty propagation in time series methods like correlation, synchronization, spectral analysis, PCA, networks, and similar techniques
- uncertainty propagation in empirical (i.e., data-derived) inverse models

Share:
Co-organized as AS5.17/CL5.24/HS3.7/NH11.5/SM7.7
Convener: Reik Donner | Co-conveners: Andrea Toreti, Niklas Boers, Bedartha Goswami, Aljoscha Rheinwalt
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room L3
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X4
NP5.1

Many situations occur in Geosciences where one wants to obtain an accurate description of the present, past or future state of a particular system. Examples are prediction of weather and climate, assimilation of observations, or inversion of seismic signals for probing the interior of the planet. One important aspect is the identification of the errors affecting the various sources of information used in the estimation process, and the quantification of the ensuing uncertainty on the final estimate.

The session is devoted to the theoretical and numerical aspects of that broad class of problems. A large number of topics are dealt with in the various papers to be presented: algorithms for assimilation of observations, and associated mathematical aspects (particularly, but not only, in the context of the atmosphere and the ocean), predictability of geophysical flows, with stress on the impact of initial and model errors, inverse problems of different kinds, and also new aspects at the crossing between data assimilation and data-driven methods. Applications to specific physical problems are presented.


Solicited Speakers
Olivier Pannekoucke (Météo-France, Toulouse)
Manuel Pulido (University of Reading)

Share:
Co-organized as AS5.18/HS3.6/OS4.21
Convener: Olivier Talagrand | Co-conveners: Javier Amezcua, Natale Alberto Carrassi, Amos Lawless, Mu Mu, Wansuo Duan, Stéphane Vannitsem
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room L2
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X4
NP1.1

Taking inspiration from the Mathematics of Planet Earth 2013 initiative, this session aims at bringing together contributions from the growing interface between the geophysical, the mathematical, and the theoretical physical communities. Specific topics include: PDEs, numerical methods, extreme events, statistical mechanics, large deviation theory, response theory, model reduction techniques, coarse graining, stochastic processes, parametrizations, data assimilation, and thermodynamics. We invite talks and poster both related to specific applications as well as more speculative and theoretical investigations. We particularly encourage early career researchers to present their interdisciplinary work in this session.

Share:
Co-organized as AS5.19/CL5.23/HS11.33/NH11.10
Convener: Valerio Lucarini | Co-conveners: Freddy Bouchet, Dan Crisan, Michael Ghil, Darryl Holm
Orals
| Wed, 10 Apr, 14:00–18:00
 
Room E2
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X4
NP4.3

This session aims to bring together researchers working with big data sets generated from monitoring networks, extensive observational campaigns and detailed modeling efforts across various fields of geosciences. Topics of this session will include the identification and handling of specific problems arising from the need to analyze such large-scale data sets, together with methodological approaches towards semi or fully automated inference of relevant patterns in time and space aided by computer science-inspired techniques. Among others, this session shall address approaches from the following fields:
• Dimensionality and complexity of big data sets
• Data mining in Earth sciences
• Machine learning, including deep learning and other advanced approaches
• Visualization and visual analytics of big data
• Informatics and data science
• Emerging big data paradigms, such as datacubes

Share:
Co-organized as AS5.20/CL5.25/ESSI2.3/GD8.5/HS3.5/NH11.11/SM7.8
Convener: Mikhail Kanevski | Co-conveners: Peter Baumann, Sandro Fiore, Kwo-Sen Kuo, Nicolas Younan
Orals
| Mon, 08 Apr, 10:45–12:30, 14:00–18:00
 
Room L3
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X4
EOS10.1

State-of-the-art environmental research infrastructures become increasingly complex and costly, often requiring integration of different equipment, services, and data, as well as extensive international collaboration. Clear and measurable impact of the research Infrastructures is therefore needed in order to justify such investments (from member states and the EU) - whether it is an impact in terms of knowledge, developments in the environmental field of science, new innovative approaches, capacity-building or other socio-economic impacts. Moreover, improving the impact supports the long-term sustainability of the research infrastructures.

This session aims at discussing how to best monitor, interpret, and assess the efficiency and impact of environmental and Earth system research infrastructures. Even more importantly, the session seeks a breadth of contributions, with focus on ways to increase and improve the impact of research infrastructures, not only through the scientific outcomes they produce, but also, for example, through increasing the number of touchpoints with other actors in the society, or awareness of the services they offer- whether this is enhanced by lobbying, direct cooperation with industrial partners, or any other action. Talks on how to enhance the impact through the strategic communications activities are especially welcome.

Share:
Co-organized as AS5.25/BG1.59/GI1.8/OS4.34/SM5.8
Convener: Katri Ahlgren | Co-convener: Magdalena Brus
Orals
| Wed, 10 Apr, 10:45–12:30
 
Room L8
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X4
BG1.5

Stable isotopes give a powerful tool used in many applications (biogeochemistry, atmospheric science, greenhouse gases, paleoclimate, hydrogeology, geology, forensics etc) and, as such, isotope data should fit-for-purpose. To produce reliable data and make trustworthy interpretations, data produced in different laboratories should be comparable (be on the same scale) and compatible (be within target uncertainty). However, the uncertainty provided often involves only the measurement repeatability on a few runs. There are no commonly agreed ways of uncertainty estimations and some uncertainty components may be missing from considerations. Thereafter, use of basic quality control tools such as performance charts, quality control materials and lab-to-lab comparisons is of high importance. This multi-disciplinary session aims to address aspects related to the quality of stable isotope data starting from calibrations, uncertainty estimation as well as various tools used for quality control.

Share:
Co-organized as AS5.27
Convener: Sergey Assonov | Co-conveners: Philip Dunn, Grzegorz Skrzypek, David Soto
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room L2
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall A
BG1.2

Stable isotopes and other novel tracers, such as carbonyl sulfide (COS) and clumped isotopes, help to identify and quantify biological, chemical and physical processes that drive Earth's biogeochemical cycling, atmospheric processes and biosphere-atmosphere exchange. Recent developments in analytical measurement techniques now offer the opportunity to investigate these tracers at unprecedented temporal and spatial resolution and precision.

This session includes contributions from field and laboratory experiments, latest instrument developments as well as theoretical and modelling activities that investigate and use the isotope composition of light elements (C, H, O, N) and their compounds as well as other novel tracers for biogeochemical and atmospheric research.

Topics addressed in this session include:
- Stable isotopes in carbon dioxide (CO2), water (H2O), methane (CH4) and nitrous oxide (N2O)
- Novel tracers and biological analogues, such as COS
- Polyisotopocules ("clumped isotopes")
- Intramolecular stable isotope distributions ("isotopomer abundances")
- Analytical, method and modelling developments
- Flux measurements
- Quantification of isotope effects
- Non-mass dependent isotopic fractionation and related isotope anomalies

We are really excited to announce our solicited speakers:

Dr Laura Meredith
The University of Arizona
@DrLauraMeredith
http://www.laurameredith.com/

Prof. Thomas Röckmann
Utrecht University
https://www.uu.nl/staff/TRoeckmann/Profile

Share:
Co-organized as AS5.28
Convener: Lisa Wingate | Co-conveners: Matthias Cuntz, Jan Kaiser, Alexander Knohl
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room L2
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall A