Union-wide
Side Events
Disciplinary Sessions
Inter- and Transdisciplinary Sessions

Session programme

GI3

GI – Geosciences Instrumentation & Data Systems

Programme group chairs: Masatoshi Yamauchi, Francesco Soldovieri, Vira Pronenko, Jean Dumoulin, Lara Pajewski

GI3 – Atmosphere and ocean monitoring, space instrumentation

GI3.1

An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft without a human pilot aboard. Originating mostly from military applications, their use is rapidly expanding to commercial, recreational, agricultural, and scientific applications. Unlike manned aircraft, UAVs were initially used for missions too "dull, dirty, or dangerous" for humans. Nowadays however, many modern scientific experiments have begun to use UAVs as a tool to collect different types of data. Their flexibility and relatively simple usability now allow scientist to accomplish tasks that previously required expensive equipment like piloted aircrafts, gas, or hot air balloons. Even the industry has begun to adapt and offer extensive options in UAV characteristics and capabilities. At this session, we would like people to share their experience in using UAVs for scientific research. We are interested to hear about specific scientific tasks accomplished or attempted, types of UAVs used, and instruments deployed.

Share:
Co-organized as AS5.5/CR2.13/EMRP2.20/NH6.11/OS4.27
Convener: Misha Krassovski | Co-conveners: Sebastien Biraud, Jens Klump
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room M1
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X1
GI3.2

Airborne observations are one major link to get an overall picture of processes within the Earth environment during measurement campaigns. This includes application to derive atmospheric parameters, surface properties of vegetation, soil and minerals and dissolved or suspended matter in inland water and the ocean. Ground based systems and satellites are other key information sources to complement the airborne data sets. All these systems have their pros and cons, but a comprehensive view of the observed system is generally best obtained by means of a combination of all three. Aircraft operations strongly depend on weather conditions either to obtain the atmospheric phenomenon of interest or the required surface-viewing conditions and hence require sophisticated flight planning. They can cover large areas in the horizontal and vertical space with adaptable temporal sampling. Future satellite instruments can be tested and airborne platforms and systems are widely used in the development process. The validation of operational satellite systems and applications is a topic that has come increasingly into focus with the European Copernicus program in recent years. The large number of instruments available on aircraft enables a broad and flexible range of applications. The range includes sensors for meteorological parameters, trace gases and cloud/aerosol particles and more complex systems like high spectral resolution lidar, hyperspectral imaging at wavelengths from the visible to thermal infra-red and synthetic aperture radar. The development of smaller state-of-the-art instruments, the combination of more and more complex sets of instruments simultaneously on one platform, with improved accuracy and high data acquisition speed together with high accuracy navigation and inertial measurements enables more complex campaign strategies even on smaller aircraft or unmanned aerial vehicles (UAV). This will further increase the capabilities of the existing fleet of airborne research.

This session will bring together aircraft operators and the research community to present
• an overview of the current status of airborne related research
• recent airborne field campaigns and their outcomes
• multi-aircraft campaigns
• satellite calibration/validation campaigns
• sophisticated airborne instrument setups and observations
• advanced airborne instrument developments
• UAV applications
• future plans for airborne research

Share:
Co-organized as AS5.4/BG1.11/HS9.1.8/OS4.26
Convener: Thomas Ruhtz | Co-conveners: Philip Brown, Paola Formenti
Orals
| Mon, 08 Apr, 14:00–18:00
 
Room 0.96
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X1
GI3.3

Remote sensing techniques and earth system modelling have been widely used in earth science and environmental science. In particular, the world is suffering significant environmental changes such as hydro-climatic extremes, sea level rise, melting glaciers and ice caps and forest fires. The earth observations and earth system models provide valuable insight into climate variability and environmental change. Meanwhile, the question on how to derive and present uncertainties in earth observations and model simulations has gained enormous attention among communities in the earth sciences.

However, quantification of uncertainties in satellite-based data products and model simulations is still a challenging task. Various approaches have been proposed within the community to tackle the validation problem for satellite-based data products and model simulations. These progress include theory advancement, mathematics, methodologies, techniques, communication of uncertainty and traceability.

The aim of this session is to summarize current state-of-the-art in uncertainty quantification and utilization for satellite-based earth observations and earth system models.

Share:
Co-organized as AS4.40/CL2.21/ESSI2.11/NH6.10
Convener: Jian Peng | Co-conveners: Zheng Duan, Shengzhi Huang, Guoyong Leng, Shiqiang Zhang
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X1
GI3.4

This session invites contributions on the latest developments and results in lidar remote sensing of the atmosphere, covering
• new lidar techniques as well as applications of lidar data for model verification and assimilation,
• ground-based, airborne, and space-borne lidar systems,
• unique research systems as well as networks of instruments,
• lidar observations of aerosols and clouds, thermodynamic parameters and wind, and trace-gases.
Atmospheric lidar technologies have shown significant progress in recent years. While, some years ago, there were only a few research systems, mostly quite complex and difficult to operate on a longer-term basis because a team of experts was continuously required for their operation, advancements in laser transmitter and receiver technologies have resulted in much more rugged systems nowadays, many of which are already operated routinely in networks and some even being automated and commercially available. Consequently, also more and more data sets with very high resolution in range and time are becoming available for atmospheric science, which makes it attractive to consider lidar data not only for case studies but also for extended model comparison statistics and data assimilation. Here, ceilometers provide not only information on the cloud bottom height but also profiles of aerosol and cloud backscatter signals. Scanning Doppler lidars extend the data to horizontal and vertical wind profiles. Raman lidars and high-spectral resolution lidars provide more details than ceilometers and measure particle extinction and backscatter coefficients at multiple wavelengths. Other Raman lidars measure water vapor mixing ratio and temperature profiles. Differential absorption lidars give profiles of absolute humidity or other trace gases (like ozone, NOx, SO2, CO2, methane etc.). Depolarization lidars provide information on the shapes of aerosol and cloud particles. In addition to instruments on the ground, lidars are operated from airborne platforms in different altitudes. Even the first space-borne missions are now in orbit while more are currently in preparation. All these aspects of lidar remote sensing in the atmosphere will be part of this session.

Share:
Co-organized as AS5.6/BG1.34/NH6.16/PS5.8
Convener: Andreas Behrendt | Co-conveners: Adolfo Comeron, Paolo Di Girolamo, Doina Nicolae, Andreas Fix
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room 0.96
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X1
GI3.5

The interactions between geo-environmental and anthropic processes are increasing due to the ever-growing population and its related side effects (e.g., urban sprawl, land degradation, natural resource and energy consumption, etc.). Natural hazards, land degradation and environmental pollution are three of the possible “interactions” between geosphere and anthroposphere. In this context, spatial and spatiotemporal data are of crucial importance for the identification, analysis and modelling of the processes of interest in Earth and Soil Sciences. The information content of such geo-environmental data requires advanced mathematical, statistical and geomorphometric methodologies in order to be fully exploited.

The session aims to explore the challenges and potentialities of quantitative spatial data analysis and modelling in the context of Earth and Soil Sciences, with a special focus on geo-environmental challenges. Studies implementing intuitive and applied mathematical/numerical approaches and highlighting their key potentialities and limitations are particularly sought after. A special attention is paid to spatial uncertainty evaluation and its possible reduction, and to alternative techniques of representation of spatial data (e.g., visualization, sonification, haptic devices, etc.).

In the session, two main topics will be covered (although the session is not limited to them!):
1) Analysis of sparse (fragmentary) spatial data for mapping purposes with evaluation of spatial uncertainty: geostatistics, machine learning, statistical learning, etc.
2) Analysis and representation of exhaustive spatial data at different scales and resolutions: geomorphometry, image analysis, machine learning, pattern recognition, etc.

Share:
Co-organized as GM2.11/SSS12.7
Convener: Jean Golay | Co-conveners: Marco Cavalli, Mohamed Laib, Sebastiano Trevisani
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room 0.96
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X1
GI3.6 Media

'Cosmic rays’ collectively describe particles that bombard the Earth from space. They carry information about space and, once near the Earth, interact with the magnetosphere, atmosphere, hydrosphere and lithosphere. Secondary cosmic rays created within the atmosphere can provide information about our planet that is vital to science and society. Secondary neutron radiation plays an extraordinary role, as it not only carries information about solar activity, but also produces short and long living tracer isotopes, influences genetic information of living organisms, and is extraordinarily sensitive to hydrogen and therefore also to water. Given the vast spectrum of interactions of cosmic rays with matter in different parts of the Earth, cosmic-ray research ranges from studies of the solar system to the history of the Earth, and from health and security issues to hydrology and climate change.

Although research on cosmic-ray particles is connected to a variety of disciplines and applications, they all share similar questions and problems regarding the physics of detection, modeling, and environmental factors that influence the intensity. Questions that all disciplines have in common are, for example, “How does the cosmic-ray intensity and energy spectra change with time and location on Earth?”, “How to correct the signal for magnetospheric or atmospheric fluctuations?”, “What is the influence of local structures, water bodies, and surface conditions?”, “Which computer model for cosmic-ray propagation is correct?”, or “What can we learn from other types of cosmic-ray particles?”.

The session brings together scientists from all fields of research that are related to monitoring and modeling of cosmogenic radiation. It will allow sharing of expertise amongst international researchers as well as showcase recent advancements in their field. The session aims to stimulate discussions about how individual disciplines can share their knowledge and benefit from each other.

We solicit contributions related but not limited to:
- Health, security, and radiation protection: cosmic-ray dosimetry on Earth and its dependence on environmental and atmospheric factors
- Planetary space science: satellite and ground-based neutron and gamma-ray sensors to detect water and soil chemistry
- Neutron monitor research: detection of high-energy cosmic rays variations and its dependence on local and atmospheric factors
- Hydrology and climate change: low-energy neutron sensing to measure water in reservoirs at and near the land surface, such as soils, snow pack and vegetation
- Cosmogenic nuclides: as tracers of atmospheric circulation and mixing; as a tool in archaeology or glaciology for dating of ice and measuring ablation rates; and as a tool for surface exposure dating and measuring rates of surficial geological processes
- Detector design: technological advancements for the detection of cosmic rays
- Cosmic-ray modeling: advances in modeling of the cosmic-ray propagation through the magnetosphere and atmosphere, and their response to the Earth’s surface
- Impact modeling: How can cosmic-ray monitoring support environmental models, weather and climate forecasting, irrigation management, and the assessment of natural hazards

Share:
Co-organized as AS4.55/EMRP2.41/HS11.18/NH11.14/PS4.6/ST4.8
Convener: Martin Schrön | Co-conveners: Konstantin Herbst, Markus Köhli, W. Rühm, Marek Zreda
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room -2.47
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X1
GI3.7

This session aims at bringing together multidisciplinary studies that address the current state of Arctic observing systems, including strategies to improve them in the future. We invite contributions covering atmosphere, ocean, cryosphere and terrestrial spheres, or combinations thereof, by use of remote sensing, in situ observation technologies, and modeling. Particular foci are placed on (i) the analysis of strengths, weaknesses, gaps in spatial/temporal coverage, and missing monitoring parameters in existing observation networks and databases, and (ii) studies describing the development and/or deployment of new sensors or observation platforms that extend the existing observing infrastructure with multidisciplinary measurements. This session will be supported by the EU-H2020 project INTAROS, and welcomes contributions from other pan-Arctic networks (e.g. INTERACT, GTN-P, NEON, ICOS, SIOS, IASOA, AOOS), multi-disciplinary campaigns (e.g. ABoVE, NGEE Arctic, Arctic Ocean 2018, RV Polarstern cruises) or databases.

Share:
Co-organized as AS5.15/BG1.65/CL5.20/CR2.14/OS1.17/SSS13.21
Convener: Roberta Pirazzini | Co-conveners: Andreas P. Ahlstrøm, Agnieszka Beszczynska-Möller, Mathias Göckede, Stein Sandven
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room M1
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X1
GI3.8 | PICO

Radioactivity is ubiquitous in the natural environment as a result of i) cosmic radiation from space and secondary radiation from the interaction of cosmic rays with atoms in the atmosphere, ii) terrestrial sources from mineral grains in soils and rocks, particularly Potassium (K-40), Uranium (U-238) and Thorium (Th-232), and their decay products, and iii) Radon gas (Rn-222). The use of nuclear techniques enables the measurement of natural radioactivity in air, soils and water even at trace levels, making it a particularly appealing tool for characterizing time-varying environmental phenomena. This session welcomes contributions addressing the measurement and exploitation of environmental radioactivity in all areas of geosciences, including, but not limited to:

- volcanic monitoring and surveillance;
- identification of faults and tectonic structures;
- earthquakes;
- groundwater contamination;
- coastal and marine monitoring;
- atmospheric tracing, including of greenhouse gases and pollutants;
- air ionisation and atmospheric electricity;
- cosmic rays;
- public health including the EU BSS directive.

Contributions on novel methods and instrumentation for environmental radioactivity monitoring are particularly encouraged, including payloads for airborne measurements and small satellites.

Share:
Co-organized as NH8.8
Convener: Susana Barbosa | Co-conveners: Katalin Zsuzsanna Szabó, Quentin Crowley
PICOs
| Thu, 11 Apr, 08:30–10:15
 
PICO spot 4
NH6.3 | PICO

World population growth combined with continuous climate changes increase the possibility of the human settles to be affected by landslides, earthquakes, floods and others natural and anthropogenic geohazards. As consequences, human settlements, structures and infrastructures can suffer important damage, casualties and injuries, and an enormous amount of resources are needed to restore direct and indirect costs. Furthermore, the social impact and the loss of cultural and historical heritage must be considered.
The International Disaster Database created by the Centre for Research on the Epidemiology of Disasters (CRED) states that more than 14,000 worldwide relevant natural disasters occurred during the last century, causing casualties or requiring of international assistance.
For this reason, the investigation, characterization and monitoring of geo-hazardous phenomena play a fundamental role in order to improve the knowledge for avoiding further recurrences with additional social, human and economic losses. The use of Earth Observation (EO) techniques for monitoring and characterizing geohazards is a well-known way to study these phenomena. The application of EO methods in this field has risen exponentially in the last decades yet nowadays is constantly evolving.
Remote sensing approaches allow to efficiently retrieve relevant information on geological processes at regional scale to investigate, characterize, monitor and model, as well as to prevent, geohazards. Satellites constellations, air and ground platforms equipped with different sensors, (e.g. optical camera, radar or LiDAR), coupled with advanced processing techniques and algorithms are one of the best ways to investigate geohazards. The possibility to combine different types of data allows to perform multi-sensor and multi-temporal analyses. In this way, the wide area coverage capabilities combined with high accuracy and precision play an important role in the widespread use for different applications.
Submissions are encouraged to cover a broad range of topics on the various applications of remote sensing techniques, which may include, but are not limited to, the following topics: i) innovative applications and methods on remote sensing, ii) significant cases of study, iii) applications and models concerning the use of satellite, iv) air and ground platform taking advantage of the use of different sensors for investigating a broad range of topic (e.g. landslide, subsidence, damage assessment, infrastructure stability).

Share:
Co-organized as GI3.9
Convener: Matteo Del Soldato | Co-conveners: Federico Raspini, Roberto Tomás Jover, Gerardo Herrera, Zhenhong Li
PICOs
| Wed, 10 Apr, 10:45–12:30
 
PICO spot 1
AS3.19 | PICO

The session focuses on the variability of the tropospheric and stratospheric chemical composition on diurnal, seasonal and longer timescales and looks at the processes driving this variability. Special emphasis is put on the scientific value of high-quality long-term measurement data sets and supporting model simulations. Both approaches contribute to improved understanding of the mechanisms that control the variability of atmospheric chemical composition (including multiple gaseous species). Presentations related to the projections of the atmospheric composition are welcome in this session as well.
Researchers are invited to present novel scientific results from mid- and long-term observational time series from various programmes and networks such as the Global Atmosphere Watch (GAW) Programme, European Monitoring and Evaluation Programme (EMEP), Network for the Detection of Atmospheric Composition Change (NDACC), Southern Hemisphere Additional Ozonesondes (SHADOZ), Advanced Global Atmospheric Gases Experiment (AGAGE), National Oceanic and Atmospheric Administration (NOAA), regular airborne (e.g. CARIBIC, IAGOS, CONTRAIL) and other campaigns as well as satellite data and model simulations. Data relevant to tropospheric and stratospheric composition, in particular related to ozone depletion, climate change and air quality as well as firn data on past atmospheric composition are welcome. We welcome contributions from multi-year modeling studies and inter-comparison exercises which address past and future tropospheric or stratospheric composition changes, carried out in the framework of international projects and initiatives. The session will be dedicated in particular to the celebration of the 30th anniversary of the GAW Programme.

Share:
Co-organized as BG1.14/GI3.10
Convener: Oksana Tarasova | Co-conveners: Pedro Jimenez-Guerrero, Euan Nisbet, Andrea Pozzer, Sophie Szopa
PICOs
| Wed, 10 Apr, 08:30–12:30, 14:00–18:00
 
PICO spot 5a
HS6.5

Ensuring long-term water sustainability for increasing human populations is a common goal for water resource managers. Measuring evapotranspiration (ET) at watershed or river-reach scales, upland or urban areas is required to estimate how much water can be apportioned for human needs while maintaining healthy vegetation and habitat for wildlife.
Consequently, much research has been devoted to this topic. However although there have been many advances in meteorological equipment and observations, more universal recognition of the impact of climate and land cover changes on evaporation and hydrology, and the increased accessibility of many parts of the world, evaporation from much of the globe remains elusive to quantify. This is particularly true in areas with few meteorological observations, in regions where precipitation is particularly hard to predict such as in arid and semi-arid or mountain environments. ET measurements are often made on local scales, but scaling up has been problematic due to spatial and temporal variability.
There are challenges associated with handling temporal variability over complex agro-climatic regions and in places with strong effects of unpredictable climate oscillations. For instance, crop/plant coefficients vary seasonally, particularly for riparian, upland vegetation, and urban greenery; traditional approaches of ET estimation commonly neglect the heterogeneity of microclimate, density, species, and phenology that have often led to gross overestimates of plant water use.
In this session, we want to focus on quantifying evapotranspiration dynamics in diverse climates and environments as a tool for improving hydrologic assessments and predictions at a catchment scale. Remote sensing products in many cases are the only spatially distributed information available to account for seasonal climate and vegetation variability and are thus extremely valuable data sources for ET estimation on larger scales.
We invite researchers to contribute theoretical and empirical ET model applications for a variety of dryland vegetation associations and other sensitive environments. We welcome studies that estimate ET using both prognostic and diagnostic approaches from process-based models that rely on the integration of precipitation and soil-vegetation dynamics to a more direct estimation of ET using e.g. remote sensing based data streams. Applications in drought-prone forests, rangelands, mountain and urban areas at a range of spatial and temporal scales are encouraged.

Share:
Co-organized as BG1.44/ESSI1.12/GI3.12
Convener: Pamela Nagler | Co-conveners: Claire Brenner, Chris Jarchow, Hamideh Nouri, Gabriel Senay, Natalie Ceperley, Mathew Herrnegger
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room B
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall A
BG1.30

Using a wide range of sensors and platforms, remote sensing allows examining and gathering information about an object or a place from a distance. A key development in remote sensing has been the increased availability of data with very high-temporal, spatial and spectral resolution. In the last decades, several types of remote sensing data, including optical, radar, LiDAR from terrestrial, UAV, aerial and satellite platform, have been used to detect, classify, evaluate and measure the Earth surface, including different vegetation covers and forest structure. For the forest sector, such information allow the efficient monitoring of changes over time and space, in support of sustainable forest management, forest, and carbon inventory or for monitoring forest health and their disturbances. Remote Sensing data can provide both qualitatively and quantitatively information about forest ecosystems. In a qualitative analysis forest cover types and species composition can be classified, whereas the quantitative analysis can measure and estimate different forest structure parameters related to single trees (e.g., DBH, height, basal area, timber volume, etc.) and to the whole stand (e.g. number of trees per unit area, distribution, etc.). However, to meet the various information requirements, different data sources should be adopted according to the application, the level of detail required and the extension of the area under study. The integration of in-situ measurements with satellite/airborne/UAV imagery, Structure from Motion, LiDAR and geo-information systems offer new possibilities, especially for interpretation, mapping and measuring of forest parameters and will be a challenge for future research and application. This session explores the potentials and limitations of several types of remote sensing applications in forestry, with the focus on the identification and integration of different methodologies and techniques from different sensors and in-situ data for providing qualitative and quantities forest information.

Share:
Co-organized as GI3.13
Convener: Livia Piermattei | Co-conveners: Christian Ginzler, Xinlian Liang, Eva Lindberg, Emanuele Lingua
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room 2.31
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall A
NH6.9

The session aims to collect original or review contributions on the use of data from Low-Earth-Orbiting (LEO) satellites making measurements in the thermosphere-ionosphere to investigate ionospheric anomalies related to space weather, geophysical and artificial sources. In fact, data from LEO satellites can provide a global view of near-Earth space variability and are complementary to ground-based observations, which have limited global coverage. The AMPERE project and integration of the Swarm data into ESA’s Space Weather program are current examples of this. The availability of thermosphere and ionosphere data from the DEMETER satellite and the new operative CSES mission demonstrates that also satellites that have not been specifically designed for space weather studies can provide important contributions to this field. On the other hand, there are evidences that earthquakes can generate electromagnetic anomalies into the near Earth space. A multi-instrumental approach, by using ground observations (magnetometers, magnetotelluric stations, GNSS receivers, etc.) and LEO satellites (DEMETER, Swarm, CSES, etc.) measurements can help in clarifying the missing scientific knowledge of the lithosphere-atmosphere-ionosphere coupling (LAIC) mechanisms before, during and after large earthquakes. We also solicit contributions on studies about other phenomena, such as tropospheric and anthropogenic electromagnetic emissions, that influence the near-Earth electromagnetic and plasma environment on all relevant topics including data processing, data-assimilation in models, space weather case studies, superimposed epoch analyses, etc.

Share:
Co-organized as AS4.57/EMRP2.10/ESSI1.9/GI3.14/NP9.3/SM5.4/ST4.10
Convener: Mirko Piersanti | Co-conveners: Livio Conti, Rune Floberghagen, Xuhui Shen, Michel Parrot
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room M2
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X3
PS1.1

The Open Session on Moon, Mars, Mercury, Venus as terrestrial planets systems aims at presenting highlights of relevant recent results through observations, modelling, laboratory and theory. Key research questions concerning the surface, subsurface, interior and their evolution will be discussed, as well as instruments and techniques from Earth and space.
Review talks on specific topics will be accepted on the basis of invitation by the conveners. Please contact the conveners if you have a topic that may be suitable for a review talk.
The session is open to all branches of terrestrial planets systems geosciences, and is intended as an open forum and discussion between their diverse experts and Earth geoscientists.

Share:
Co-organized as GD9.4/GI3.16
Convener: Bernard Foing | Co-conveners: Gregor Golabek, Johannes Benkhoff, Dmitrij Titov
Orals
| Fri, 12 Apr, 10:45–12:27, 14:00–15:46
 
Room L8
Posters
| Attendance Fri, 12 Apr, 16:15–18:00
 
Hall X4
ST4.6

Space is at the verge of a paradigm change. Earlier, mostly larger space agencies or international organizations were able to launch spacecraft. Today, the less expensive access to space increases the number of spacecraft, space-faring interest groups, and space-based research fields. The Science with CubeSats session emphasizes this new trend and highlights the possibilities and science objectives that can be achieved by small dedicated spacecraft, which can be built faster and in a more cost-efficient way than larger missions. These CubeSat missions can be either standalone or complementary to larger missions. The session solicits abstracts related to science onboard past, current or future CubeSats missions. We also solicit abstracts related to miniaturized instrument designs that can be accommodated on CubeSats as well as abstracts related to technologies and subsystems that enable science with CubeSats.

Share:
Co-organized as AS5.14/GI3.18
Convener: Minna Palmroth | Co-conveners: Lauren Blum, Martin Kaufmann, Friedhelm Olschewski, Jaan Praks
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room 2.44
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X4
NH6.1 Media

Remote sensing and Earth Observations (EO) are used increasingly in the different phases of the risk management and in development cooperation, due to the challenges posed by contemporary issues such as climate change, population pressure and increasingly complex social interactions. EO-based applications have a number of advantages over traditional fieldwork expeditions including safety, the provision a synoptic view of the region of interest, the availability of data extending back several years and, in many cases, cost savings. Fortunately, the advent of new, more powerful sensors and more finely tuned detection algorithms provide the opportunity to image, assess and quantify natural hazards, their consequences, and vulnerable regions, more comprehensively than ever before.
For these reasons, the civil protections, the development agencies and space agencies have now inserted permanently into their programs applications of EO data to risk management. In particular, the Committee on Earth Observation Satellites (CEOS) has a permanent working group on Disasters that supports and promotes the use of EO data for Disaster Risk management (DRM). During the preparedness and prevention phase EO revealed, especially in data scarce environments, fundamental for hazard, vulnerability and risk mapping. EO data intervenes both in the emergency forecast and early emergency response, thanks to the potential of rapid mapping. EO data is also increasingly being used for mapping useful information for planning interventions in the recovery phase, giving to managers and emergency officials a wealth of time-continuous information for assessment and analysis of natural hazards, from small to large regions around the globe. In this framework, CEOS has been working from several years on disasters management related to natural hazards (e.g., volcanic, seismic, landslide and flooding ones), including pilots, demonstrators, recovery observatory concepts, Geohazard Supersites and Natural Laboratory (GSNL) initiatives and multi-hazard management projects.

The session is dedicated to multidisciplinary contributions especially focused on the demonstration of the benefit of the use of EO for the risk management, with an operational user-oriented perspective.
The research presented might focus on:
- Addressed value of EO data in risk/hazard forecasting models (observation of possible precursory events and evaluation of potential predictive capabilities)
- Innovative applications of EO data for rapid mapping.
- Innovative applications of EO data for hazard, vulnerability and risk mapping.
- Innovative applications of EO data for the post-disaster recovery phase.
- Innovative applications in support to disaster risk reduction strategies (eg. landscape planning).
- Development of tools and platforms for assessment and validation of hazard/risk models

The use of different types of remote sensing (e.g. thermal, visual, radar, laser, and/or the fusion of these) might be considered, with an evaluation of their respective pros and cons. Evaluation of current sensors, data capabilities and algorithms will be welcomed, as will suggestions for future sensor considerations, algorithm developments and opportunities for emergency management agency buy-in.
Early stage researchers are strongly encouraged to present their research. Moreover, contributions from international cooperation, such as CEOS and GEO initiatives, are welcome.

Share:
Co-organized as GI3.20/HS11.38
Convener: Paolo Tarolli | Co-conveners: Nicola Casagli, Kuo-Jen Chang, Peter Webley, Antonio Montuori, Simona Zoffoli, Michelle Parks
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30, 14:00–15:45
 
Room M2
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X3
NH6.7

Significant recent changes in climate are linked to an increase in the frequency and intensity of extreme weather and weather-related events such as heat and cold waves, floods, wind and snow storms, droughts, wildfires, tropical storms, dust storms, etc. This underscores the critical need for: (i) monitoring such events; (ii) evaluating the potential risks to the environment and to society, and; (iii) planning in terms of adaptation and/or mitigation of the potential impacts. The intensity and frequency of such extreme weather and climate events follow trends expected of a warming planet, and more importantly, such events will continue to occur with increased likelihood and severity.

Agricultural and forested areas cover large surfaces over many countries and are a very important resource that needs to be protected and managed correctly for both the environment and the local communities. Therefore, potential impacts deriving from a changing climate and from more frequent and intense extreme events can pose a serious threat to economic infrastructure and development in the coming decades, and also severely undermine food, fodder, water, and energy security for a growing global population.

Remote Sensing that includes the use of space, aerial and proximal sensors provide valuable tools to monitor, evaluate and understand ecosystem response and impacts at local, regional, and global scales based on spatio-temporal analysis of long-term imagery and related environmental data. Further, studies allowing the quantitative or qualitative evaluation of the risks, including integrating environmental and socio-economical components are particularly important for the stakeholders and decision-makers at all administrative levels. Thus, it is important to better understand links between climate change/extreme events in relation to associated risks for better planning and sustainable management of our resources in an effective and timely manner.

Relevant abstracts will be encouraged to submit a full paper to a related special issu in the journal NHESS (Natural Hazards and Earth System Sciences - https://www.nat-hazards-earth-syst-sci.net/special_issue980.html).

We especially encourage, but not limit, the participation of Early Career Scientists interested in the field of Natural Hazards.

The session is organized in cooperation with NhET (Natural hazard Early career scientists Team).

Share:
Co-organized as BG2.61/GI3.21/SSS13.17
Convener: Jonathan Rizzi | Co-conveners: Luigi Lombardo, Mahesh Rao, Wenwu Zhao
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X3
NH6.4 | PICO

The use of Remotely Piloted Aircraft Systems (RPAS) for geosciences applications has strongly increased in last years. Nowadays the massive diffusion of mini- and micro-RPAS is becoming a valuable alternative to the traditional monitoring and surveying applications, opening new interesting viewpoints. The advantages of the use of RPAS are particularly important in areas characterized by hazardous natural processes, where the acquisition of high resolution remotely sensed data could be a powerful instrument to quickly assess the damages and plan effective rescues without any risk for operators.
In general, the primary goal of these systems is the collection of different data (e.g., images, LiDAR point clouds, gas or radioactivity concentrations, etc.) and the delivery of various products (e.g., 3D models, hazard maps, high-resolution orthoimages, etc.).
The possible use of RPAS has promising perspectives not only for natural hazards, but also in the different field of geosciences, to support a high-resolution geological or geomorphological mapping, or to study the evolution of active processes. The high repeatability of RPAS flight and their limited costs allows the multi-temporal analysis of a studied area. However, methodologies, best practices, advantages and limitations of this kind of applications are yet unclear and/or poorly shared by the scientific community.
This session aims at exploring the open research issues and possible applications of RPAS in geosciences, collecting experiences, case studies, and results, as well as define methodologies and best practices for their practical use. The session will concern the contributions aiming at: i) describing the development of new methods for the acquisition and processing of RPAS dataset, ii) introducing the use of new sensors developed or adapted to RPAS, iii) reporting new data processing methods related to image or point cloud segmentation and classification and iv) presenting original case studies that can be considered an excellent example for the scientific community.

Share:
Co-organized as G6.5/GI3.22/GM2.14
Convener: Daniele Giordan | Co-conveners: Marc Adams, Yuichi S. Hayakawa, Francesco Nex, Fabio Remondino
PICOs
| Tue, 09 Apr, 10:45–12:30
 
PICO spot 1
PS5.1 | PICO

This session will cover instrumentation and measurement techniques for all aspects of space borne scientific sensors. The intention is to encourage a discussion between instrument scientists/engineers across the fields on the one hand and between these people and the data exploiting scientists on the other hand. We welcome contributions discussing new ideas and enabling technologies as well as reviews and presentations of instruments already in space or near launch. In addition, generic talks discussing design principles, miniaturisation, shared use of subsystems, component selection, instrument calibration etc. are most appreciated

Share:
Co-organized as GI3.23
Convener: Maike Brigitte Neuland | Co-conveners: David Mimoun, Kim Reh
PICOs
| Thu, 11 Apr, 10:45–12:30
 
PICO spot 4
PS5.2

This session is seeking papers that address new mission concepts, enabling technologies, and terrestrial analogue studies for future planetary science and exploration. In particular, papers describing mission studies proposed for ESA and international space agency programs are encouraged.

Share:
Co-organized as GI3.24
Convener: Kim Reh | Co-conveners: Angelo Pio Rossi, Monica Pondrelli, Barbara Cavalazzi, Maike Brigitte Neuland
Orals
| Fri, 12 Apr, 16:15–18:00
 
Room L8
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X4
PS5.3

The analysis of spectral remote sensing observations from orbiting spacecraft and rovers in the last decades has improved our knowledge about the different bodies in our Solar System. Visible to near infrared as well as thermal infrared spectroscopy enable the mapping of surface compositions of the different planetary surfaces, through the detection of rock-forming minerals as well as secondary mineralogies. Moreover, future explorations will likely involve other spectroscopic techniques (e.g., Raman) and will achieve new scientific goals including high spatial resolution hyperspectral mapping of planetary bodies (e.g. Mercury, asteroids, Phobos, and outer icy moons) and the search for biosignatures (e.g. Mars, Europa, and Enceladus).
Each Solar System object has its specifics, including surface temperature ranges, atmospheric pressure and composition and exposition level to solar and galactic energetic particles. For these reasons, past and future explorations, both from orbit and in-situ, need the support of laboratory activities involving different types of spectroscopic techniques, sample characterization and the integration of those different data sets.
Papers on experimental works and modeling of laboratory data, as well as the integration of data from different experimental techniques applied to planetary missions are solicited to provide the scientific community the opportunity to exchange their expertise and knowledge.

Share:
Co-organized as GI3.25
Convener: Cristian Carli | Co-conveners: Rosario Brunetto, Sabrina Ferrari
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X4
PS2.5

The session should address all aspects of dust detection in space by both dedicated and non-dedicated dust detectors (i.e., electric field antennas, Faraday cups, etc.), theoretical approaches to detection mechanisms, and laboratory simulations of dust impact.

Solicited talk by Paul Kellogg (Minnesota Institute of Astrophysics, University of Minnesota, Minneapolis, MN, USA) focused on the dust impacts detected by STEREO.

Share:
Co-organized as GI3.26/ST1.7
Convener: Jiri Pavlu | Co-conveners: Harald Krüger, Jakub Vaverka
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X4