Union-wide
Community-led
Inter- and Transdisciplinary Sessions
Disciplinary sessions

SSS – Soil System Sciences

Programme group chairs: Claudio Zaccone, Heike Knicker

MAL10
Alina Kabata-Pendias Medal Lecture by Ravendra Naidu & SSS Division Outstanding ECS Award Lecture by Gina Garland
Convener: Claudio Zaccone
Orals
| Tue, 25 Apr, 19:00–20:00 (CEST)
 
Room K2
Tue, 19:00
MAL23
Philippe Duchaufour Medal Lecture by Andreas A. Richter
Convener: Claudio Zaccone
Abstract
| Thu, 27 Apr, 19:00–20:00 (CEST)
 
Room K2
Thu, 19:00
DM13
Division meeting for Soil System Sciences (SSS)
Co-organized by SSS
Convener: Claudio Zaccone
Tue, 25 Apr, 12:45–13:45 (CEST)
 
Room G1
Tue, 12:45

SSS0 – Inter- and Transdisciplinary Sessions

ITS3.4/SSS0.1 EDI

Extreme climate and weather events, associated disasters and emergent risks are becoming increasingly critical in the context of global environmental change and interact with other stressors. They are a potential major threat to reaching the Sustainable Development Goals (SDGs) and one of the most pressing challenges for future human well-being. Nature-based solutions (NBS), defined as “'inspired and supported by nature, which are cost-effective, simultaneously provide environmental, social and economic benefits and help build resilience'”, are a fundamental part of the efforts to “repair the way we interact with nature”, established as a goal within the European Green Deal. NBS can provide multiple benefits, such as mitigating climate hazard risks (e.g. floods, droughts) and enhancing climate resilience. Although NBS have received increasing interest over the last years, there are still doubts regarding their efficacy in comparison with more well tested civil engineering solutions, depending on the type and magnitude of hazards and the robustness of the NBS. This session aims to explore the linkages between extreme climate and weather events, associated disasters, societal dynamics and resilience, as well as the technical, financial and operational feasibility and performance of NBS solutions. Specific topics include, but are not limited to:
• Impacts of extreme climate events (including risks emerging from compound events) and cascades of impacts on various aspects of ecosystems and societies;
• Key obstacles towards societal resilience and achievement of SDGs while facing climate extremes;
• Evidence-base of NBS solutions to support disaster risk reduction and climate adaptation;
• New methods and tools to investigate the role of NBS to enhance resilience and adaptation to climate change;
• Case studies of inspirational practice for successful implementation and upscaling of NBS projects;
• Financial instruments and business opportunities to stimulate NBS implementation;
• Future NBS performance under various climate change scenarios;
• Co-governance of climate mitigation and adaptation with NBS.

Convener: Carla FerreiraECSECS | Co-conveners: Jana Sillmann, Zahra Kalantari, Markus Reichstein, Haozhi Pan, Karen Sudmeier-Rieux
Orals
| Thu, 27 Apr, 08:30–12:30 (CEST)
 
Room 0.94/95
Posters on site
| Attendance Thu, 27 Apr, 16:15–18:00 (CEST)
 
Hall X3
Posters virtual
| Thu, 27 Apr, 16:15–18:00 (CEST)
 
vHall SSS
Orals |
Thu, 08:30
Thu, 16:15
Thu, 16:15
ITS4.1/SSS0.2 EDI

Several cross-boundary kinds of science are emerging in the field of geosciences.
Citizen science is gaining momentum across multiple disciplines, increasing multi-scale data production that is extending the frontiers of knowledge. Successful participatory science enterprises and citizen observatories can potentially be scaled-up in order to contribute to larger policy strategies and actions (e.g. the European Earth Observation monitoring systems), for example to be integrated in GEOSS and Copernicus. Making credible contributions to science can empower citizens to actively participate as citizen stewards in decision making, helping to bridge scientific disciplines.
Critical zone science is an integrative, transdisciplinary approach where the spatio-temporal interactions between life, energy and matter cycles in natural and anthropogenic environments are jointly considered through the combined lens of climatology, hydrology, soil science, ecology, geomicrobiology, biogeochemistry, geology and/or other fields. The number and richness of critical zone observatories established around the world are increasing and gaining strength (e.g., TERENO, OZCAR, DOE watersheds, eLTER).
Both citizen science and critical zone science can be seen in the context of Open Science, which is a broad movement embracing Open Data, Open Technology, Open Access, Open Educational Resources, Open Source, Open Methodology, and Open Peer Review. Increasingly, access to research data has become a core issue in the advance of science.
Open science, citizen science and critical zone science pose great challenges for researchers to facilitate effective participatory and actionable science, yet they are of critical importance to modern research and decision-makers.

We want to ask and find answers to the following questions:
Which approaches and tools can be used in Earth and planetary observation?
What are the biggest challenges in bridging geoscientific disciplines and how to overcome them?
How can we make knowledge on critical zone functioning transferable from one observatory to another place?
What kind of participatory citizen scientist involvement and open science strategies exist?
What kind of community-level perspectives exist regarding the limitations, challenges, and ethical considerations for collaborative, transdisciplinary and/or open science?
How can citizen science and open science approaches and initiatives be supported on different levels?

Convener: Taru Sandén | Co-conveners: Jannis GrohECSECS, Sylvain Kuppel, Daniel DörlerECSECS, Florian HeiglECSECS, Tamer Abu-Alam, Dilek Fraisl
Orals
| Thu, 27 Apr, 14:00–15:45 (CEST)
 
Room 0.94/95
Posters on site
| Attendance Thu, 27 Apr, 16:15–18:00 (CEST)
 
Hall X3
Posters virtual
| Thu, 27 Apr, 16:15–18:00 (CEST)
 
vHall SSS
Orals |
Thu, 14:00
Thu, 16:15
Thu, 16:15

SSS1 – History, Education and Society of Soil Science

Programme group scientific officers: Feliciana Licciardello, Manuel Esteban Lucas-Borja, Demetrio Antonio Zema

SSS2 – Soil Erosion and Conservation

Programme group scientific officers: Carla Ferreira, Milica Kasanin-Grubin, Panos Panagos

SSS2.1

Soil erosion is a major global soil degradation threat to land, freshwater and oceans. Scientific understanding of all erosional physical processes controlling soil detachment, transportation, and deposition is vital when developing methods and conservation alternatives to minimize the impacts associated with soil degradation and support decision making.

This session will discuss the latest developments in soil erosion and closely associated land degradation processes in agriculture, forest and rangelands. Providing space for presenting and discussing:

• measurements - from rill to gully erosion, by means of field essays or laboratory experiments;
• monitoring - short to long-term assessments, by mean of local assessments or remote sensing techniques;
• modelling approaches – from plot to global scale, addressing current and future land and climate change demands;
• mitigation and restoration – to address on-site and off-site impacts on soils and water.

Our main objective is to scientifically discuss soil erosion processes and impacts but also to explore strategies that may help land stakeholders (farmers, land managers or policy makers), and support the ongoing initiatives aiming for land degradation neutrality by 2030 and the upcoming UN Decade on Ecosystem Restoration (2021-2030).

Convener: Pasquale Borrelli | Co-conveners: Diana VieiraECSECS, Panos Panagos
Orals
| Wed, 26 Apr, 08:30–10:15 (CEST), 10:45–12:20 (CEST), 14:00–15:45 (CEST)
 
Room D2
Posters on site
| Attendance Wed, 26 Apr, 16:15–18:00 (CEST)
 
Hall X3
Posters virtual
| Wed, 26 Apr, 16:15–18:00 (CEST)
 
vHall SSS
Orals |
Wed, 08:30
Wed, 16:15
Wed, 16:15
SSS2.3 EDI

Soils have a tremendous potential to mitigate and build resilience to climate change. However, key challenges about how to adapt, improve and optimize land management practises in order to maximize the potential soil ecosystem services whilst maximizing carbon sequestration. Particular challenges lie in soils that are subject to anthropogenic activities such as intensive agriculture, forestry or urbanization. Furthermore, spatial heterogeneity across different scales and environmental settings constitutes another challenge to extrapolate findings and build robust land use management strategies.
Increasing efforts are dedicated towards instrumentalising soils to sequester carbon whilst retaining or increasing productivity (e.g. the “4 per 1000" initiative), or increasing resilience (e.g. by reducing land degradation). From a governance perspective on a European level there is increasing interest in safeguarding soils as a strategic resource (e.g. EU Green Deal, European Joint Programme SOIL) to contribute to the ambitions of Zero Pollution agriculture and Farm to Fork Strategies, as well as the UN Sustainable Development Goal 13: Take urgent action to combat climate change and its impacts.
This session aims to discuss the potential for soils to contribute to climate neutrality and build resilience to climate change while maximising the synergy with soil health, and a clean environment. We welcome research including experimental and modelling studies addressing the following subjects:
- Studies on soil carbon sequestration related to management practises (e.g. tillage or fertilisation) especially from short- or long-term changes;
- Interactions between Climate Neutrality and land degradation reduction;
- Integration of digital tools, artificial intelligence and models in soil science to better support soil-related decision-making processes in achieving climate neutrality and climate resilience;
- Novel approaches to evaluate key soil ecosystem services such as soil carbon sequestration, water retention or nutrient cycling in integrative approaches for sustainable land use.

Co-organized by CL3
Convener: Gerard Ros | Co-conveners: Tessa Sophia van der VoortECSECS, Carla FerreiraECSECS, Zahra Kalantari, Tatiana Minkina
Orals
| Wed, 26 Apr, 16:15–18:00 (CEST)
 
Room 0.15
Posters on site
| Attendance Wed, 26 Apr, 14:00–15:45 (CEST)
 
Hall X3
Posters virtual
| Wed, 26 Apr, 14:00–15:45 (CEST)
 
vHall SSS
Orals |
Wed, 16:15
Wed, 14:00
Wed, 14:00

SSS3 – Soils as Records in Time and Space

Programme group scientific officers: Oren Ackermann, Ladislav Smejda, Brad Sion

SSS3.1 EDI

Soil is the function of soil forming factors. This basic principle of soil genesis lies behind the concept of soil memory: the capability of soil systems to imprint in their intrinsic features (environmental indicators) environmental conditions, thus keeping a memory of both current and past environments. Soils and paleosols can be studied to reconstruct environmental factors that were present during the time of their formation and to disentangle the relative influences of different environmental conditions, both local and regional, on soil formation.
Anthropogenic soils in archaeological settings provide valuable archives for geoarchaeological studies, with their stratigraphy and properties reflecting settlement life cycles (occupation, abandonment, and reoccupation) and land-use history. Land-use legacy soils also have enormous potential for process-related research.
Geophysical prospection and geospatial methods contribute to the detection and delimitation of buried structures as a prior step to an archaeological excavation, to the study of cultural heritage remains, and to paleosol and geoarchaeological studies.
This session is open to all contributions focused on the study of polygenetic soils and sediments; including paleosols, anthropogenic soils, and archaeological structures. The following aspects are of special consideration:
- The use of paleosols as records of present and former environments, both local and regional;
- Studies of soil memory linking pedogenesis and sedimentary processes;
- Anthropogenic soils and paleosols in archaeological contexts;
- Predictions of future soil changes as a result of changes in environmental conditions and/or land use, based on observed past soil responses to environmental changes;
- The methodological progress in the study of soil records (biochemical, geochemical, and micromorphological (sub-)microscopic techniques, interpretation of palaeoenvironmental data such as biomarker and isotope data, remote sensing or modelling methods, );
- Studies that combine geophysics (ground-penetrating radar, magnetics, electrical resistivity tomography, electromagnetic induction, seismics) with geospatial methods (photogrammetry, LIDAR, differential GNSS), to improve the data representation, increasing the understanding of the geophysical results;
- Studies of archaeological sites and structure characterization, with geophysical and geospatial methods, as well innovations in data acquisition and processing methods.

Co-organized by CL1.2/GM11
Convener: Anna SchneiderECSECS | Co-conveners: Anna Andreetta, Rui Jorge OliveiraECSECS, Oren Ackermann, Pedro Trapero FernándezECSECS, Bento Caldeira, Maria Bronnikova
Orals
| Tue, 25 Apr, 14:00–15:45 (CEST)
 
Room 0.15
Posters on site
| Attendance Tue, 25 Apr, 16:15–18:00 (CEST)
 
Hall X3
Posters virtual
| Tue, 25 Apr, 16:15–18:00 (CEST)
 
vHall SSS
Orals |
Tue, 14:00
Tue, 16:15
Tue, 16:15
GM11.4 | PICO

Human activity became a major player of global climatic and environmental change in the course of the Late Quaternary and became dominant during the Anthropocene. Consequently, it is crucial to understand these changes through the study of former human-environmental interactions at different spatial and temporal scales. Documenting the diversity of human responses and adaptations to climate, landscape and ecosystem change, natural disasters and varying natural resources availability in different regions of our planet, and vice versa, provides valuable opportunities to learn from the past. To do so, cross-disciplinary studies in geoarchaeology offer a chance to better understand archaeological records and landscapes in the context of human activity, and the hydroclimate-environment nexus, over time. This session seeks related interdisciplinary papers and specific geoarchaeological case-studies from both Earth Sciences and Archaeology/History that deploy various approaches and tools to address the reconstruction of former human-environmental interactions from the Palaeolithic through the modern period. Contributions may include (but are not limited to) insights about how people have coped with environmental disasters or abrupt changes in the past, how to define sustainability thresholds for farming or resource exploitation, or how to distinguish the baseline natural and human contributions to environmental changes. Ultimately, we would like to understand how strategies of human resilience and innovation can inform our modern policies for addressing the challenges of the emerging Anthropocene, a time frame dominated by human modulation of surface geomorphological processes and hydroclimatic conditions.

Co-organized by SSS3
Convener: Guido Stefano MarianiECSECS | Co-conveners: Jago Birk, Julia MeisterECSECS, Kathleen Nicoll, Hans von Suchodoletz
PICO
| Thu, 27 Apr, 08:30–10:15 (CEST)
 
PICO spot 2
Thu, 08:30

SSS4 – Soil Biology, Microbiology and Biodiversity

Programme group scientific officers: Lucia Fuchslueger, Edith Hammer, Stefan Geisen

SSS4.3

In recent years, the impacts of anthropogenic greenhouse gas emissions have become increasingly obvious, not only causing global warming, but also leading to more extreme weather events such as heatwaves, drought and torrential rainfall. On top of this, changes in land use and land use intensification are also occurring. Such phenomena are known to impact soil biota, which in turn affects carbon and nutrient biogeochemical cycles along with numerous other soil functions. Understanding the effects of land use, environmental stress and climate change on soil communities and the processes they mediate is therefore critical for improving predictions of the resistance and resilience of terrestrial ecosystems to future global change. Furthermore, mounting knowledge suggests that a sustainable intensification of land use needs to include the conservation of processes and functions run by soil biota that are essential for self-preservation, highlighting a need to explicitly consider the services provided by soil biota.

The aim of this session is to elucidate the impacts of different aspects of global change and land use on soil microbial communities and soil biota at large, and their feedback to to soil functions and ecosystem services. We are particularly interested in empirical and modelling studies on the resilience and associated recovery dynamics of soil microorganisms to environmental disturbances, as well as on their resistance or adaptation mechanisms. Disturbances of interest range from gradual changes in atmospheric CO2 or temperature, to more punctuated and extreme weather events such as heatwaves, droughts and rewetting. We will also focus on the role of soil biology in delivering soil functions in systems formed by humans, e.g. agricultural, forests or restored sites and the synergies and trade-offs that occur within the bundle of soil functions. We aim to connect researchers from different disciplines and to create a discussion platform to review the current state-of-the-art, identify knowledge gaps, share ideas, and tackle new challenges in the field.

Convener: Alberto CanariniECSECS | Co-conveners: Lettice Hicks, Martin Potthoff, Lucia Fuchslueger, Albert C. Brangarí, Ainara LeizeagaECSECS, Agnieszka JózefowskaECSECS
Orals
| Fri, 28 Apr, 08:30–10:15 (CEST)
 
Room K2
Posters on site
| Attendance Fri, 28 Apr, 10:45–12:30 (CEST)
 
Hall X3
Posters virtual
| Fri, 28 Apr, 10:45–12:30 (CEST)
 
vHall SSS
Orals |
Fri, 08:30
Fri, 10:45
Fri, 10:45
SSS4.4 EDI

In this session, we emphasize two important aspects of organic matter formation and transformation in the soil system, namely the role of plant-microbial interactions at soil interfaces and the link of matter and energy fluxes in soil systems. Firstly, we address the central role of the rhizosphere in interactions with other biogeochemical interfaces, considering the active role of roots crossing, penetrating, and even forming aggregates, bio-pores, and detritus. The key for overcoming the knowledge gaps in rhizosphere interfaces research is to link rates of matter fluxes with their spatial and temporal dynamics as well as with their associated energy fluxes. This requires concerted efforts to combine methods from different disciplines like plant genomics, imaging, soil physics, chemistry, thermodynamics and microbiology.
Secondly, the session will address how thermodynamic considerations can help to understand the transformation, degradation and stabilization of soil organic matter (SOM). SOM is increasingly seen as being comprised of biomolecules that are the result of microbial metabolism, including microbial biomass components and microbial-processed plant compounds.
Heterotrophic living microbes require energy delivered by the oxidation of organic matter. Soil systems, their biodiversity and ecosystem services are thus underpinned by mass and energy flows of organic compounds, in particular at hotspots of microbial activity, e.g. the rhizosphere. The formation of bio- and necromass as well as the storage of SOM are subjected to the laws of thermodynamics. Exploring the measurement of the SOM energy content and the regulation of the energy and matter flux processes has the potential to complete the knowledge of ecosystem control. In a wider perspective, bioenergetics and thermodynamics of soil systems may provide information on the development of sustainable and robust management of soils as ecological systems under climate change.
We therefore welcome experimental and modelling studies on rhizosphere functioning that aim at revealing spatial gradients of e.g. functional biodiversity of microorganisms, uptake and release patterns by roots, soil structure modification by root growth and feedbacks among them. This session also invites contributions presenting and discussing recent developments for the integration of thermodynamics in soil systems, including analytical developments as well as conceptual, empirical and modelling approaches.

Co-organized by BG3
Convener: Evgenia Blagodatskaya | Co-conveners: Anja Miltner, Nataliya BilyeraECSECS, Anke Herrmann, Artur Likhanov, Arjun ChakrawalECSECS, Stefanie MaierECSECS
Orals
| Thu, 27 Apr, 14:00–18:00 (CEST)
 
Room -2.20
Posters on site
| Attendance Thu, 27 Apr, 10:45–12:30 (CEST)
 
Hall X3
Posters virtual
| Thu, 27 Apr, 10:45–12:30 (CEST)
 
vHall SSS
Orals |
Thu, 14:00
Thu, 10:45
Thu, 10:45
SSS4.5 EDI

Soil is the habitat for a myriad of organisms. These include soil fungi and fauna who are crucial in providing soil related ecosystem services, often through their interaction with microorganisms and plants. Soil fungi and fauna are key agents in litter decomposition, soil organic matter formation, and soil structure formation.
The polarized, network forming growth of fungi, their diverse ecological roles such as mutualistic interactions with plants, and unique suites of metabolic activities make them important players for many soil ecosystem functions.
The activity of soil fauna can result in the production of decomposition by-products which are still poorly chemically and physically characterized, despite the fact that they are a springboard for soil organic matter formation as well as a potential source of nutrients.
In this session, we cover a wide range of topics related to the effect of soil fungi and fauna on biogeochemical cycling (e.g., organic carbon storage, nutrient availability, gas emissions) in interaction with soil properties (e.g., aggregation, bioturbation, biopores, weathering), biodiversity relationships, and trophic interactions. These include studies on the effect of soil fungi and fauna on litter decomposition and the analyses of the decomposition by-products, as well as studies that explicitly tackle the interactions between soil fauna, plants, fungi, and other microorganisms.
Contributions cover the changing role of soil fauna and fungi under climate and land use changes and how this affects sustainable soil fertility.

Convener: Erik Verbruggen | Co-conveners: Tullia CalogiuriECSECS, Gerrit AngstECSECS, Elly MorriënECSECS, Emilia Hannula, Dimitrios Floudas, Edith HammerECSECS
Orals
| Thu, 27 Apr, 08:30–10:15 (CEST)
 
Room 0.96/97
Posters on site
| Attendance Thu, 27 Apr, 10:45–12:30 (CEST)
 
Hall X3
Orals |
Thu, 08:30
Thu, 10:45
SSS4.7 EDI

Soil microorganisms decompose organic substrates to maintain their metabolic requirements and support growth. For growth and anabolic reactions, they require not only C and energy, but various nutrients (e.g., N and P) in stoichiometric relationships. Transformation of soil organic compounds therefore couples energy and matter flows via complex mechanisms dependent on environmental conditions and the intensity and efficiency of microbial metabolism. This coupling can be investigated from the perspective of microbial carbon use efficiency (CUE=ratio of biomass production to carbon substrate consumption), ecological stoichiometry, and microbial metabolic pathways. Elucidating the governing principles of energy and matter coupling is advancing through experimental work as well as modelling, with coupled matter and energy turnover now considered an essential feature of C cycling models.
This session invites experimental and modelling studies to understand how soil microbial life governs transformations of organic matter and the associated energy flows, with particular interest in growth, death, maintenance metabolism and necromass formation. In this context, this session also presents contributions on carbon and energy use efficiency as an indicator of microbial metabolism. These include CUE estimation in soil using advanced methods – isotope labelling, kinetic studies, isothermal calorimetry, and approaches disclosing the effect of microbial community composition and activity on CUE. We welcome innovative and interdisciplinary studies that are advancing the field of soil ecology from the understanding of biogeochemical processes to addressing global sustainability issues.

Co-organized by BG3
Convener: Sergey Blagodatsky | Co-conveners: Albert C. Brangarí, Minsu KimECSECS, Hanbang Zou, Ksenia GusevaECSECS, Kyle Mason-Jones
Orals
| Mon, 24 Apr, 08:30–12:25 (CEST), 14:00–15:40 (CEST)
 
Room K2
Posters on site
| Attendance Mon, 24 Apr, 16:15–18:00 (CEST)
 
Hall X3
Orals |
Mon, 08:30
Mon, 16:15

SSS5 – Soil Chemistry and Organic Matter Dynamics

Programme group scientific officers: Carsten W. Mueller, Cristina Santin, Gabriel Sigmund

SSS5.1 EDI

Soil systems harbor a high spatial complexity and soil architecture with diverse functions that shape biogeochemical matter cycles. In this session, we host novel studies that illuminate functional soil architectures and the spatial heterogeneity in soils from biological, physical, and chemical perspectives related to organic matter dynamics and other biogeochemical processes.

The advent of sophisticated instrumental techniques and advanced modeling tools has enabled studying soil structure, properties, and emerging functions. Spatially-explicit approaches extend our comprehension of heterogeneously distributed microbial habitats and processes, interactions of organic matter with mineral phases, and element storage. Aggregate structures and the void network of soil systems provides a dynamic scaffolding, which can protect soil components and influence local water retention and elemental distribution. Pedogenetic soil processes drive the differentiation at pedon scale and can result from a combination of small-scale processes determining soil ecosystem fluxes. Across different scale and structures, we look forward to discuss insights from microbial microenvironments via aggregated soil architecture up to the pedon scale.

This session is of interest to soil scientists with complementary biogeochemical and physical backgrounds working at different scales. The session responds to the growing awareness of the importance of spatial heterogeneity and architecture for ecosystem-relevant soil functions, such as the occlusion of organic residues, microbial colonization, provision of water and nutrients, and many more. We aim to present and discuss recent achievements, current obstacles, and future research directions to strengthen our conceptual understanding of the linkage of spatial heterogeneity and soil architecture with soil functions and organic matter dynamics across scales.

Co-organized by BG3
Convener: Steffen A. Schweizer | Co-conveners: Nadja RayECSECS, Kai Uwe Totsche, Nele MeyerECSECS, Sara KönigECSECS, Maik Lucas, Edith HammerECSECS
Orals
| Fri, 28 Apr, 10:45–12:25 (CEST)
 
Room K2
Posters on site
| Attendance Fri, 28 Apr, 14:00–15:45 (CEST)
 
Hall X3
Posters virtual
| Fri, 28 Apr, 14:00–15:45 (CEST)
 
vHall SSS
Orals |
Fri, 10:45
Fri, 14:00
Fri, 14:00
SSS5.2 EDI

Soil organic matter (SOM) plays a vital role not only in soil fertility and quality (by providing a number of physical, chemical, and biological benefits), but also in carbon cycling. SOM contains a vast range of diverse organic structures, and also a living component (microorganisms) with various residence times that define the central role SOM plays in the soil. The decline of SOM represents one of the most serious threats facing many arable lands of the world. One of the efficient approaches to increase SOM content and decrease land degradation is the application of organic amendments, such as crop residues and animal manures. Nowadays, organic amendments originate from many kinds of organic wastes, which are being increasingly produced mainly by farms, agro-food industries, municipalities, and energy plants. Besides serving as a source of organic matter and plant nutrients, these materials may contribute to reduce soil contamination, erosion, and desertification, as well as mitigate climate change. At the same time, a safe and useful application of organic amendments requires an in-depth scientific knowledge of their nature and impacts on the SOM pools and factions, soil-plant system, as well as on the surrounding environment.
This session will combine the current research and recent advances on the use of organic amendments in modern agriculture as well as for the restoration of degraded soils. Field and laboratory studies focused on the effects of management practices, climate change, environmental conditions, soil properties are highly welcome.

Co-sponsored by IUSS
Convener: César Plaza | Co-conveners: Diego Marazza, Anna GuninaECSECS, Christhel Andrade DiazECSECS, Claudio Zaccone
Orals
| Tue, 25 Apr, 14:00–18:00 (CEST)
 
Room -2.20
Posters on site
| Attendance Wed, 26 Apr, 08:30–10:15 (CEST)
 
Hall X3
Posters virtual
| Wed, 26 Apr, 08:30–10:15 (CEST)
 
vHall SSS
Orals |
Tue, 14:00
Wed, 08:30
Wed, 08:30
SSS5.3 EDI

Soil organic matter (SOM) is well known to exert a great influence on physical, chemical, and biological soil properties, thus playing a very important role in agronomic production and environmental quality. Globally SOM represents the largest terrestrial organic C stock, which can have significant impacts on atmospheric CO2 concentrations and thus on climate. The changes in soil organic C content are the result of the balance of inputs and losses, which strongly depends on the processes of organic C stabilization and protection from decomposition in the soil. This session will provide a forum for discussion of recent studies on the transformation, stabilization and sequestration mechanisms of organic C in soils, covering any physical, chemical, and biological aspects related to the selective preservation and formation of recalcitrant organic compounds, occlusion by macro and microaggregation, and chemical interaction with soil mineral particles and metal ions.

Co-organized by BG3/CL3, co-sponsored by IUSS
Convener: Claudio Zaccone | Co-conveners: Guido Wiesenberg, Boris Jansen, Karen Vancampenhout, Layla Márquez San EmeterioECSECS, Beatrice GiannettaECSECS, César Plaza
Orals
| Tue, 25 Apr, 08:30–12:30 (CEST)
 
Room -2.20
Posters on site
| Attendance Wed, 26 Apr, 08:30–10:15 (CEST)
 
Hall X3
Orals |
Tue, 08:30
Wed, 08:30
SSS5.5

Soils represent a major terrestrial store of both organic and inorganic carbon. At present soils are a net carbon sink, and building soil carbon stocks holds significant potential for achieving net zero carbon. Furthermore, the storage, stability, and cycling of carbon is fundamental to the productivity and resilience of soil systems, and preserving and enhancing soil carbon stocks is critical for allowing sustainable agricultural intensification.

Avenues for organic carbon sequestration include plant-based inputs, the addition of pyrogenic carbon (biochar), and addition of composts or other additives such as manures and soil conditioners. Enhanced silicate weathering may hold significant potential for building inorganic carbon stocks, while inputs from bedrock, and mediation by land use changes such as afforestation, may also enhance inorganic soil carbon.

This session seeks to explore how soil carbon stocks can be increased so as to simultaneously enhance agricultural productivity, mitigate negative repercussions of changing environmental conditions and achieve carbon neutrality. Alongside this, advances in methods for monitoring and modelling rates of soil carbon loss or sequestration are key to inform political, agronomical, and geo-engineering approaches. We welcome contributions exploring methods of increasing and monitoring both organic and inorganic carbon stocks, and studies exploring the storage, stability, and cycling of carbon within soil systems. Early career researchers are strongly encouraged to apply, and we seek submissions considering empirical, modelling, or meta-analytical approaches.

Co-organized by BG8
Convener: Chris McCloskey | Co-conveners: Daniel Evans, Laura SchneeECSECS, Mihai CimpoiasuECSECS, Sebastian Doetterl
Orals
| Thu, 27 Apr, 08:30–12:30 (CEST)
 
Room -2.20
Posters on site
| Attendance Thu, 27 Apr, 14:00–15:45 (CEST)
 
Hall X3
Posters virtual
| Thu, 27 Apr, 14:00–15:45 (CEST)
 
vHall SSS
Orals |
Thu, 08:30
Thu, 14:00
Thu, 14:00
SSS5.11 EDI

Regulation of the cycles of carbon (C) and nutrients (N, P, S) in soils and ensuring their linkage and retention are recognized as major challenges, especially under shifts in environmental factors (warming, drought, N deposition, overfertilization, salinization, alterations of landscapes, biodiversity loss, invasion of species and intensification of land use). The processes underlying C and nutrient cycling in soils are difficult to evaluate and separate, since multiple factors can shift process rates and directions, as well as determine pool sizes. Factors also frequently have an interactive effect. Estimation of the magnitude of C and nutrient pool response and the temporal scale of reactions to land use change or shifts of environmental factors remains a major challenge. Thus, this session invites contributions focused on the evaluation of the soil C, N, P, and S pools and process responses under global change scenarios at the local as well as larger scales. Studies that combine short-term laboratory observation focused on process rate estimation with long-term field experiments and evaluation of pools are highly welcome. Studies that focus on the effect of soil chemistry, including an application of isotopes to investigate the process rates, mineralogy, as well as the transition from conventional to organic agriculture/land restoration, are also highly relevant.

Convener: Anna GuninaECSECS | Co-conveners: Boris Jansen, Tonu TonutareECSECS, Viia Lepane
Orals
| Mon, 24 Apr, 16:15–17:45 (CEST)
 
Room K2
Posters on site
| Attendance Mon, 24 Apr, 14:00–15:45 (CEST)
 
Hall X3
Posters virtual
| Mon, 24 Apr, 14:00–15:45 (CEST)
 
vHall SSS
Orals |
Mon, 16:15
Mon, 14:00
Mon, 14:00

SSS6 – Soil Physics

Programme group scientific officers: Laurent Lassabatere, Frederic Leuther, Simone Di Prima

SSS6.1 EDI

Soil structure and its stability determine soil physical functions and chemical properties such as water retention, hydraulic conductivity, susceptibility to erosion, and redox potentials. These soil physical and chemical characteristics are fundamental for biological processes, among them root penetration and organic matter and nutrient dynamics. The soil pore network forms the habitat for soil biota, which in turn actively reshape it, often favorable to their needs. The soil biota, root growth, land management practices like tillage and abiotic drivers (e.g. wetting/drying cycles) lead to a constant evolution of the arrangement of pores, minerals and organic matter. With this, also the soil functions and properties are perpetually changing. The importance of the interaction between soil structure (and thus soil functions) on one side and soil biology, climate and soil management on the other, is highlighted by recent research outcomes, which are based on advanced imaging techniques, novel experimental setups and modelling approaches. Still, present studies have barely scratched the surface of what there is to discover.
In this session, we are inviting contributions on the formation and alteration of soil structure and its associated soil functions over time. Special focuses are on feedbacks between soil structure dynamics and soil biology as well as the impact of mechanical stress exerted by heavy vehicles deployed under land management operations. Further, we encourage submissions that are exploring new modelling concepts, integrating complementary measurement techniques or aim at bridging different scales.

Convener: Frederic LeutherECSECS | Co-conveners: Loes van Schaik, John Koestel, Ophélie SauzetECSECS, Ulrich Weller
Orals
| Thu, 27 Apr, 10:45–12:30 (CEST)
 
Room K2
Posters on site
| Attendance Thu, 27 Apr, 08:30–10:15 (CEST)
 
Hall X3
Posters virtual
| Thu, 27 Apr, 08:30–10:15 (CEST)
 
vHall SSS
Orals |
Thu, 10:45
Thu, 08:30
Thu, 08:30
SSS6.3

Soils largely contribute to sustain agro-systems production and provide many ecosystem services that are essential for addressing sustainable land and water management. Management of both soil and water resources is a primary socio-economic concern that requires a detailed description of the physical and biological process that occur into the soil-plant-atmosphere continuum system. Nevertheless, measuring soil state variables and hydraulic parameters is often difficult due to the many complex nonlinear physical, chemical and biological interactions that simultaneously control the transfer of heat and mass. Infiltration experiments have been proposed as a simple mean to estimate soil hydraulic properties but their effectiveness is hampered by the effects of spatio-temporal variability across scales. High-resolution measurements of soil state variables, both over space and time, are thus crucial to describe and analyze soil hydraulic properties adequately and understand flow processes, including preferential flows.
The session focuses on the principles, capabilities, and applications of different techniques for monitoring state variables of soil and estimating soil hydraulic properties and accounting for preferential flows. Specific topics include, but are not limited to:

• Multiple measurement techniques and modelling approaches for determining state variables of soil;
• Innovative soil-water measurements techniques for linking the interactions of soil with plant and atmosphere compartments;
• Field infiltration techniques from a wide variety of devices in combination with dielectric and geophysical methods (i.e., TDR, FDR, GPR, ERT, etc.);
• Understanding the effect of physical processes and geochemical processes on the dynamics of macropore-fracture and preferential flows across scales;
• Understanding the contribution of preferential flow to flow and mass transport in the vadose zone;
• New or revisited numerical and analytical models to account for physical, chemical and biological interaction in the soil-water flow models (multiple-porosity, permeability, hydrophobicity, clogging, shrinking-swelling, or biofilm development);
• Use of pedotransfer functions based on limited available in-situ measurements to estimate parameters that describe soil hydro-physical and thermal characteristics;
• Multi-data source methodologies also in combination with modelling for assessing the soil physics dynamics at different temporal and spatial scales.

Co-organized by BG3/HS13
Convener: Simone Di PrimaECSECS | Co-conveners: Laurent Lassabatere, Majdi R. Abou Najm, Ilenia MurgiaECSECS, Vilim Filipović, Jorge Lampurlanes, Giuseppe Longo-MinnoloECSECS
Orals
| Wed, 26 Apr, 08:30–10:10 (CEST), 10:45–12:25 (CEST)
 
Room -2.20
Posters on site
| Attendance Wed, 26 Apr, 14:00–15:45 (CEST)
 
Hall X3
Posters virtual
| Wed, 26 Apr, 14:00–15:45 (CEST)
 
vHall SSS
Orals |
Wed, 08:30
Wed, 14:00
Wed, 14:00
HS8.2.1 EDI

A number of physical (e.g. flow and transport), chemical (e.g. red-ox reactions) and biological (e.g. bio-mineralization) mechanisms are critical to the fate of geologic media where rocks, liquids, gases and microbes are in close interactions. The characterization and modeling of the complex interplay between these mechanisms is fundamental to our understanding of subsurface processes occurring in contaminant transport and remediation in groundwater and the vadose zone, in the geological storage of energy, CO2 and H2, as well as in enhanced oil and gas recovery. The increasing need to understand the evolution of such coupled processes in subsurface environments has motivated the development of novel experimental approaches, from laboratory to field, which are capable of quantifying the physical, chemical and biological properties of heterogeneous structures at different scales. Detailed experimental investigation and evidence of complex subsurface processes allow testing and validating new measuring techniques, and provide datasets with sufficient resolution to make the validation of coupled processes theories and numerical models possible.
The objective of this session is to discuss novel improvements in our understanding of coupled subsurface processes based on innovative methods allowing the quantification of relevant phenomena and their underlying mechanisms such as the dynamics of single and multiphase flows, conservative and reactive transport, chemically driven or biologically mediated processes, and bacterial dynamics and biofilm growth in heterogeneous porous and fractured media. Contributions may include, for example, experiments featuring high resolution measurements with novel sensors, analytical and imaging techniques, advanced in-situ single- and/or cross-borehole hydraulic tests, (hydro)geophysical techniques, strategies for borehole/borehole interval sealing, or inverse model techniques. We particularly encourage integrative multi-physic methods, i.e. hydraulic, chemical or heat methods aiming at elucidating the heterogeneity of flow, transport and related processes. Ideas for future strategies related to experimental methods, interpretation of existing data, and associated theoretical/numerical modeling, are particularly welcome.

Co-organized by SSS6
Convener: Maria Klepikova | Co-conveners: Yves Meheust, Nataline Simon, Oshri Borgman, Pietro De Anna, Clement Roques, Vittorio Di Federico
Orals
| Mon, 24 Apr, 08:30–12:25 (CEST)
 
Room 2.15
Posters on site
| Attendance Mon, 24 Apr, 16:15–18:00 (CEST)
 
Hall A
Orals |
Mon, 08:30
Mon, 16:15

SSS7 – Soil Pollution and Reclamation

Programme group scientific officers: Carmen Pérez-Sirvent, Erika Santos, Miriam Muñoz-Rojas

SSS7.1 EDI

Land degradation affects more than 52 billion hectares of land around the world. This is caused -to a large extent- by anthropogenic activities such as land abandonment, mining activities, deforestation, and inadequate land use and management. Disturbance or insufficient rebuilding of the soil physicochemical and biological characteristics can modify the ecosystem functions and services. In the absence of appropriate restoration, soils and ecosystems would remain in a disturbed state or continue to decline. Therefore, restoration and rehabilitation of degraded soils is critical to create healthy and functional ecosystems that support essential functions and services.
In this session, we welcome contributions covering experimental, observational, and theoretical studies this area of research. Topics of interest (although not limited to) are causes and impacts of land degradation and remedial actions and strategies for soil restoration and rehabilitation at local, regional or global scales.

Co-organized by BG3
Convener: Miriam Muñoz-Rojas | Co-conveners: Carlos Sánchez-García, Marcos FrancosECSECS, Demetrio Antonio Zema, Thomas Baumgartl, Layla Márquez San EmeterioECSECS, Manuel Esteban Lucas-Borja
Orals
| Thu, 27 Apr, 14:00–17:25 (CEST)
 
Room K2
Posters on site
| Attendance Thu, 27 Apr, 10:45–12:30 (CEST)
 
Hall X3
Posters virtual
| Thu, 27 Apr, 10:45–12:30 (CEST)
 
vHall SSS
Orals |
Thu, 14:00
Thu, 10:45
Thu, 10:45
SSS7.3 EDI

Soil contamination is one of the main concerns of modern society. Anthropic activities and soil management are the main causes of soil contamination, from inadequate agriculture, forestry and urban practices to unsuitable waste management and mining activities. Soil health and quality are affected due to increased concentrations of potentially hazardous substances such as metals/metalloids, radionuclides, and organic compounds. Therefore, biogeochemical and edaphic processes are disturbed, as well as water quality and, ultimately, the food chain. Along with the spatial and temporal variability of soil contamination, other soil degradation factors are usually identified in contaminated areas which increase the complexity of the evaluation and implementation of rehabilitation programmes.
Several materials and rehabilitation techniques have been studied, mainly at a laboratory/greenhouse scale, but their success may be limited in the field. Also, carbon-based wastes such as biomass residues and biosolids can emit substantial amounts of greenhouse gases if landfilled or burned off.
Evaluation of contaminated areas, the optimization and set up of new technologies as well as the application of rehabilitation strategies based on circular-economy are required. To do so, it is vital to understand the factors governing the interactions between potentially hazardous substances (PHS) and soil components, organisms and/or water, as well as the system’s behaviour in different edaphoclimatic conditions. A multidisciplinary approach and the linking of studies are, therefore, needed to achieve the Sustainable Development Goals and EU’s Green Deal.
This session aims to gather research studies presenting the most relevant advances in: Soil health and mitigation of contaminating processes; Evaluation and mapping of contaminated areas, and their risk, by classical techniques, as well as digital tools and remote sensing; Environmental rehabilitation techniques and materials (e.g. C based on wastes) with special relevance to those based on sustainable and natural processes; Evaluation of cost-effectiveness of organic and inorganic wastes and other matrices aon rehabilitation soil processes and their environmental applications; Modelling the behaviour of PHS and nutrients in contaminated and rehabilitated soils; Interactions between PHS, nutrients and soil components; Monitoring and environmental response of ecosystems after rehabilitation programmes implementation.

Convener: Snežana Maletić | Co-conveners: Erika SantosECSECS, Gabriel SigmundECSECS, Alba Otero-FariñaECSECS, Heike Knicker, Marijana Kragulj Isakovski, Maria Manuela Abreu
Orals
| Fri, 28 Apr, 08:30–12:25 (CEST)
 
Room -2.20
Posters on site
| Attendance Fri, 28 Apr, 16:15–18:00 (CEST)
 
Hall X3
Posters virtual
| Fri, 28 Apr, 16:15–18:00 (CEST)
 
vHall SSS
Orals |
Fri, 08:30
Fri, 16:15
Fri, 16:15
SSS7.4 EDI

There is a steadily growing scientific and public concern regarding macro-, micro- and nanoplastic accumulation in arable soils. This is mirrored in a substantial increase of scientific publications over the past 3 to 4 years. However, the soil plastic research is still in its infancy, with more questions unanswered than answered. Overall, still little is known about plastic accumulation, degradation, losses, and the potential effects of plastic particles of different size on soil fertility, soil health and generally soil properties. This is partly associated with substantial difficulties to identify and quantify, especially micro- and nanoplastic mixed into the soil matrix.
The intention of this session is to bring together scientists working on different aspects of plastic contamination of soils. Highly welcome are studies dealing with analytical techniques, input and output pathways, degradation of plastic in soils, eco-toxicology effects, and potential mitigation approaches.

Convener: Peter Fiener | Co-conveners: Melanie BraunECSECS, John Quinton, Florian WilkenECSECS
Orals
| Fri, 28 Apr, 14:00–15:45 (CEST)
 
Room K2
Posters on site
| Attendance Fri, 28 Apr, 16:15–18:00 (CEST)
 
Hall X3
Posters virtual
| Fri, 28 Apr, 16:15–18:00 (CEST)
 
vHall SSS
Orals |
Fri, 14:00
Fri, 16:15
Fri, 16:15
SSS7.7 EDI

The contamination of agricultural, urban and forest soils by mining activity has a direct impact on food security, human health and the environment. According to the European Commission, there are about 2.8 M soil contamination episodes that represent a source of exposure to potentially toxic elements (PTE) for humans, especially in urban areas. It is therefore necessary to assess the risk of contamination associated with extractive activities and to promote prevention, protection and clean-up measures to ensure the safety of our environment. To address soil contamination and develop strategies to prevent and mitigate its ecotoxicological and human health risk, it is necessary to invest in (i) the identification and characterization of these sites, from the identification of the contaminant to the characterization of the ecosystem, and (ii) the identification of possible solutions.

One of the most important factors in mining activity is water, which is affected in different ways depending on the exploitation phase considered. In the abandonment phase in some specific mines, acid mine drainage (AMD) is generated related to the oxidation process of sulfides, such as pyrite, a ubiquitous mineral in metallic mines, in which bacterial metabolisms may be involved.

The regulatory framework for the assessment of risks linked to potentially toxic elements includes a scheme applied to the source (natural or anthropogenic) and the receptors (population, flora and fauna). This requires a multidisciplinary approach - including soil science, phytotoxic testing, health risk assessment and epidemiological assessment - and aims to fill a knowledge gap in studies linking urban soils and adverse health outcomes in a mining area. With this in mind, we invite researchers to present their most recent and ongoing findings, and hope to establish new partnerships to create holistic strategies that can help assess, prevent, and mitigate soil contamination in urban settings in a consistent and rapid manner.

Another important aspect is monitoring programs that provide data for risk assessments, which should be tailored to remediation or remediation actions when there is evidence of unacceptable risk to human health or ecosystems.

Convener: Carmen Pérez-Sirvent | Co-conveners: Antonio Aguilar-GarridoECSECS, Maria Manuela Abreu, Carolina Rosca, Annika Parviainen, Jaume Bech, Luz García-Lorenzo
Orals
| Tue, 25 Apr, 16:15–17:40 (CEST)
 
Room K2
Posters on site
| Attendance Tue, 25 Apr, 14:00–15:45 (CEST)
 
Hall X3
Posters virtual
| Tue, 25 Apr, 14:00–15:45 (CEST)
 
vHall SSS
Orals |
Tue, 16:15
Tue, 14:00
Tue, 14:00

SSS8 – Soil, Environment and Ecosystem Interactions

Programme group scientific officers: Mariano Moreno de las Heras, Zahra Kalantari, Pablo Tittonell

SSS8.2 EDI

Soils play an essential role in supplying numerous ecosystem services such as food regulation, nutrient regulation, erosion regulation, water purification, carbon sequestration, food and fibre provisioning. Therefore, they play an essential role in human wellbeing. The unsustainable use of soil is one of the significant causes of land degradation due to soil erosion, sealing, pollution, salinization and wildfires—this trigger two of the most critical challenges of our time, biodiversity loss and climate change. A global effort is needed to tackle this unprecedented degradation trend caused by human actions, to maintain healthy soil functions and the services provided, especially in a growing consumption and population that are exhausting the ecosystem resources and contributing to climate change. It is paramount to develop creative solutions to make soil management more sustainable and maintain soil health.
In this session, we welcome contributions covering inter and transdisciplinary research through observational, theoretical and applied studies on soil ecosystem services and soil function in the context of a changing global environment. Topics of interest are (although not limited to): 1) Impacts of soil degradation on soil function and ecosystem services such as Climate neutrality and 2) Soil conservation and restoration actions for maintaining ecosystem services (including research, management, education and policy), 3) soil carbon sequestration related to land management practices and 4) integration of digital tools to support soil ecosystem services provisioning.

"This session is supported by the European Commission Horizon Europe project InBestSoil [Grant Agreement 101091099], and by the Swiss State Secretariat for Education Research, and Innovation (SERI) under contract number 22.00466".

Co-organized by BG8
Convener: Paulo Pereira | Co-conveners: Miriam Muñoz-Rojas, Wenwu Zhao, Yang YuECSECS, Paloma Hueso GonzálezECSECS
Orals
| Thu, 27 Apr, 10:45–12:30 (CEST)
 
Room 0.96/97
Posters on site
| Attendance Thu, 27 Apr, 08:30–10:15 (CEST)
 
Hall X3
Posters virtual
| Thu, 27 Apr, 08:30–10:15 (CEST)
 
vHall SSS
Orals |
Thu, 10:45
Thu, 08:30
Thu, 08:30
SSS8.4 EDI

Soil functions contribute to provide (soil-based) ecosystem services (ES), here defined as the benefits human obtain from the ecosystem. Although most of these functions are related to the soil biological activity, the current status and trends in soil biodiversity across Europe are poorly known, and adequate taxonomical and functional indicators are needed to evaluate the vulnerability of soils and its ES to climate change. Thus, in order to assess the health status of soils, i.e. its capacity of continuous provision of ecosystem services, there is the need to define robust indicators for assessment and monitoring, in joint programming with participating Member States’ national policy and programmes for soil quality monitoring, with taking into account not only biological processes but embracing all the bio-chemical-physical processes occurring in soils. As soil-based ecosystem services co-occur in space and overlap interacting at different spatial and temporal scales, their spatial distribution, as well as their spatial synergies and trade-offs must also be known.
The aim of this session is then collecting contributions on functional indicators, their modelling and mapping, as well as methodological approaches and applications at different spatial scales aimed to the characterization of bundles of soil ES and soil threats. The definition and evaluation of indicators including specific references to soil biodiversity and target values for healthy soils are particularly welcome.

Convener: Stefano Mocali | Co-conveners: Isabelle Cousin, Marialaura BancheriECSECS, Jack H. Faber, Fabio Terribile, Romina Lorenzetti, Christian Walter
Orals
| Fri, 28 Apr, 14:00–15:45 (CEST), 16:15–18:00 (CEST)
 
Room -2.20
Posters on site
| Attendance Fri, 28 Apr, 08:30–10:15 (CEST)
 
Hall X3
Orals |
Fri, 14:00
Fri, 08:30
SSS8.10

The present context of accelerated changes in both climate and land use imposes an unprecedent pressure on a number of vulnerable ecosystems including wetlands, forests and rangelands, in which vegetation closely interacts and coevolves with soils and landforms. Complex interactions between climate, soils and biotic factors are involved in the development of landform-soil-vegetation feedbacks and play an important role in making ecosystems resilient to disturbances. In addition, large shifts in the distribution of vegetation and soils are associated with losses of ecosystem services (including carbon capture), frequently involving thresholds of ecosystem stability and nonlinear responses to both human and climatic pressures.

This session looks back on the successful and exciting sessions on landform-soil-vegetation coevolution and ecosystem stability annually held at EGU since 2013 and will focus on ecogeomorphological and ecohydrological aspects of landscapes and wathersheds (including their connectivity), the conservation of both soil and water resources, and the restoration of ecosystem services and functions.

We welcome theoretical, modelling and empirical studies as well as scaling approaches from the soil profile to the landscape scale addressing soil structure and its functions, including carbon and nutrient cycling, the distribution of vegetation and their coevolving landforms, and also contributions with a wide appreciation of the soil erosion-vegetation relationships that rule the formation of broad, landscape-level spatial organization. We also welcome studies describing the implications of these spatial patterns for the resilience, stability and restoration of ecosystems under the pressure of climate change and/or human disturbances.

We are proud to announce that Prof. Susana Bautista (Head of the Ramon Margalef Multidisciplinary Institute for Environmental Studies, University of Alicante, Spain) has agreed to participate in the session with the invited talk "Within-patch plant diversity modulates the hydrological source-sink dynamics of dryland landscapes".

Co-organized by BG3/GM3
Convener: Mariano Moreno de las Heras | Co-conveners: Patricia Saco, Peng ShiECSECS, Omer Yetemen, Siyu CaiECSECS, Hu Liu, Jose Rodriguez
Orals
| Mon, 24 Apr, 08:30–12:30 (CEST)
 
Room -2.20
Posters on site
| Attendance Mon, 24 Apr, 14:00–15:45 (CEST)
 
Hall X3
Posters virtual
| Mon, 24 Apr, 14:00–15:45 (CEST)
 
vHall SSS
Orals |
Mon, 08:30
Mon, 14:00
Mon, 14:00
HS10.3 EDI

Vegetation is a structured and complex layer that importantly affects Earth’s surface processes. Hydrologically, the canopy intercepts precipitation (eventually evaporating) and redistributes it into throughfall and stemflow. Along those pathways, matter deposited on or produced in the canopy is transported to the forest floor. Canopies also interact with radiation and atmospheric conditions, impacting transpiration and root water uptake. Such, vegetation and canopies affect balances of water, matter and energy as well as their spatio-temporal distribution and generate feedbacks in ecosystems, water bodies and atmosphere. Moreover, plants absorb the energy of falling raindrops, reduce wind speed and contribute to soil stabilization through their root system. In this way, vegetation impacts the occurrence of erosion events. Plant traits, depending on their characteristics, can be erosion-reducing or erosion-promoting. Also, significant differences in erosion can be observed between and within different plant communities and developmental stages of the plant cover. Various mechanisms behind these complex processes are still not understood in detail and require the interdisciplinary expertise of soil scientists, geomorphologists, ecologists and botanists, as well as (eco-)hydrologists. This session broadly invites contributions from various disciplines to illustrate recent progress in research on vegetation and canopy impacts on soil erosion, soils, biogeochemical and hydrological processes of all (eco)systems by experimental work or modeling.

Co-organized by BG3/SSS8
Convener: Johanna Clara MetzgerECSECS | Co-conveners: Miriam MarzenECSECS, Kazuki Nanko, Steffen Seitz, Miriam Coenders-Gerrits, Jan Friesen, Pilar Llorens
Orals
| Thu, 27 Apr, 08:30–10:10 (CEST)
 
Room 2.31
Posters on site
| Attendance Thu, 27 Apr, 16:15–18:00 (CEST)
 
Hall A
Posters virtual
| Thu, 27 Apr, 16:15–18:00 (CEST)
 
vHall HS
Orals |
Thu, 08:30
Thu, 16:15
Thu, 16:15
BG3.19

Climate change is affecting the dynamic feedbacks between plant, soil, and microbial communities and thus strongly influences terrestrial biogeochemical cycling. In this session we address the question: What is the impact of changing environmental conditions on the plant-soil system, and what are the resulting effects on soil biogeochemistry? Given the positive and negative feedbacks with the climate system, dynamics of soil organic matter across terrestrial ecosystems are a key focus of this session.
We invite contributions from manipulative field experiments, observations in natural-climate gradients, and modelling studies that explore the climate change impacts on plant-soil interactions, biogeochemical cycling of C, N, P, microbial diversity and decomposition processes, and deep-soil biogeochemistry. Submissions that adopt novel approaches, e.g. molecular, isotopic, or synthesize outputs from large-scale, field experiments focusing on plant-soil-microbe feedbacks to warming, wetting, drying and thawing are very welcome.

Co-organized by SSS8
Convener: Claudia GuidiECSECS | Co-conveners: Avni MalhotraECSECS, Sebastian Doetterl, Michael W. I. Schmidt
Orals
| Wed, 26 Apr, 10:45–12:25 (CEST), 14:00–17:55 (CEST)
 
Room N2
Posters on site
| Attendance Thu, 27 Apr, 10:45–12:30 (CEST)
 
Hall A
Posters virtual
| Thu, 27 Apr, 10:45–12:30 (CEST)
 
vHall BG
Orals |
Wed, 10:45
Thu, 10:45
Thu, 10:45

SSS9 – Soils, Forestry and Agriculture

Programme group scientific officers: Rossano Ciampalini, Diana Vieira, Marta María Moreno Valencia

SSS9.1

Agrogeophysics harnesses geophysical methods such as ground-penetrating radar, electrical imaging, seismic,... from hand-held over drone to satellite-borne, to characterize patterns or processes in the soil-plant continuum of interest for agronomic management. These methods help develop sustainable agricultural practices by providing minimally-invasive, spatially consistent, multi-scale, and temporally-resolved information of processes in agro- ecosystems that is inaccessible by traditional monitoring techniques. The aim of this session is to feature applications of geophysical methods in agricultural research and/or show methodologies to overcome their inherent limitations and challenges. We welcome contributions monitoring soil or plant properties and states revealing information relevant for agricultural management; studies developing and using proximal or remote sensing techniques for mapping or monitoring soil-water-plant interactions; work focused on bridging the scale gap between these multiple techniques; or work investigating pedophysical relationships to better understand laboratory-scale links between sensed properties and soil properties and states of interest. Submissions profiting on data fusion, utilizing innovative modeling tools for interpretation, and demonstrating novel acquisition or processing techniques are encouraged.

Co-organized by BG2
Convener: Sarah Garré | Co-conveners: David O Leary, Alejandro Romero-Ruiz, Ellen Van De VijverECSECS
Orals
| Tue, 25 Apr, 14:00–15:45 (CEST)
 
Room K2
Posters on site
| Attendance Tue, 25 Apr, 16:15–18:00 (CEST)
 
Hall X3
Orals |
Tue, 14:00
Tue, 16:15
HS8.3.2 EDI

The interactions between plants and the environment play a prominent role in terrestrial fluxes and biochemical cycles. However, we still lack detailed knowledge of how these interactions impact plant growth and plant access to soil resources, particularly under deficient conditions. The main challenge arises from the complexity inherent to both soil and plants. To address these knowledge gaps, an improved understanding of plant-related transfer processes is needed.
Experimental techniques such as non-invasive imaging and three-dimensional root system modeling tools have deepened our insights into the functioning of water and solute transport processes in the soil-plant system. Quantitative approaches that integrate across disciplines and scales constitute stepping-stones to foster our understanding of fundamental biophysical processes at the interface between soil and plants.
This session targets research investigating plant-related resource transfer processes across different scales (from the rhizosphere to the global scale) and welcomes scientists from multiple disciplines ranging from soil to plant sciences. We are specifically inviting contributions on the following topics:
- Measuring and modeling of water and solute fluxes across soil-plant-atmosphere continuum at different scales.
- Novel experimental and modeling techniques assessing below-ground plant processes such as root growth, root water, and nutrient uptake, root exudation, microbial interactions, and soil aggregation
- Measuring and modeling of soil-plant hydraulics
- Bridging the gap between biologically and physically oriented research in soil and plant sciences
- Identification of plant strategies to better access and use resources from soil under abiotic stress
- Mechanistic understanding of drought impact on transpiration and photosynthesis and their predictions by earth system models

Co-organized by SSS9
Convener: Valentin Couvreur | Co-conveners: Mohsen Zare, Martin BoudaECSECS, Camilla Ruø Rasmussen
Orals
| Thu, 27 Apr, 10:45–12:30 (CEST), 14:00–18:00 (CEST)
 
Room 3.16/17
Posters on site
| Attendance Thu, 27 Apr, 08:30–10:15 (CEST)
 
Hall A
Posters virtual
| Thu, 27 Apr, 08:30–10:15 (CEST)
 
vHall HS
Orals |
Thu, 10:45
Thu, 08:30
Thu, 08:30
SSS9.4 EDI

Soil is the largest carbon (C) reservoir in terrestrial ecosystems and soil organic carbon (SOC) is the basis for soil’s biodiversity, health and fertility. Furthermore, enhancing SOC storage in agricultural soils is key for food security, provision of the soil-related ecosystem services, and climate change mitigation.

Investing in productive, highly resilient agriculture, based on appropriate land and soil management requires the knowledge base on drivers and processes controlling soil C storage and its dynamics in agroecosystems. Thus, this session will provide a forum to exchange knowledge about the key mechanisms and proxies controlling dynamics of soil C (both organic and inorganic) in cropping systems and natural/semi-natural areas.
Studies, opinions and other contributions in this session will aim to a wide range of topics related to SOC and soil organic carbon (SIC) and soil traits depending on SOC and SIC. These topics may also include soil fertility, provision of ecosystem services, and their changes.

Types of contribution appreciated include, but are not limited to, definitive and intermediate results; project outcomes; proposal of methods or sampling and modelling strategies, and the assessment of their effectiveness; projection of previous results at the light of climate change and climatic extremes; literature surveys, reviews, meta-analysis; and opinions. These works will be evaluated at the light of the organization of a special issue in an impacted journal

Co-organized by BG3
Convener: Sergio Saia | Co-conveners: Viktoriia Hetmanenko, Laura Quijano, Alina Premrov, Jorge Alvaro-Fuentes
Orals
| Mon, 24 Apr, 14:00–15:45 (CEST)
 
Room -2.20
Posters on site
| Attendance Mon, 24 Apr, 16:15–18:00 (CEST)
 
Hall X3
Posters virtual
| Mon, 24 Apr, 16:15–18:00 (CEST)
 
vHall SSS
Orals |
Mon, 14:00
Mon, 16:15
Mon, 16:15