Union-wide
Side Events
Disciplinary Sessions
Inter- and Transdisciplinary Sessions

Session programme

SSP2

SSP – Stratigraphy, Sedimentology & Palaeontology

Programme group chairs: Marc De Batist, Helmut Weissert, Ian Jarvis, Stephen Lokier, Guilhem Amin Douillet, Stephane Bodin, Cinzia Bottini, Thijs Vandenbroucke

SSP2 – Stratigraphy and Earth Systems History

ITS5.1/SSP2.1/CL3.01/GM6.7/SSS13.32 Media

The Anthropocene is a topic of broad and current interest that is being discussed across various disciplines, within Earth Sciences, but also in the humanities and in the media. Its significance and usefulness as the youngest epoch of the Geological Time Scale is examined by the Working Group of the Anthropocene of the Subcommission on Quaternary Stratigraphy, part of the International Commission on Stratigraphy. A multidisciplinary and transdisciplinary approach for investigating and discussing the Anthropocene is feasible, including not only various Earth Sciences disciplines such as stratigraphy, sedimentology, geochemistry and palaeontology, but also archaeology, geography, geomorphology and various disciplines of the humanities and the arts. This session invites transdisciplinary and interdisciplinary contributions on the significance, usefulness and application of the term, as well as case studies including proposals on possible GSSPs (Global Boundary Stratotype Section and Point) for a definition of the Anthropocene as part of the Geological Time Scale. The session will foster transdisciplinary dialogue and interdisciplinary cooperation and understanding on the scale and reach of anthropogenic changes within the Earth System.

Share:
Co-organized as SSP2.1/CL3.01/GM6.7/SSS13.32
Convener: Michael Wagreich | Co-conveners: Katrin Hornek, Kira Lappé, Colin N. Waters, Jan Zalasiewicz
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room N1
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X1
SSP2.2

Earth history is punctuated by major extinction events, by perturbations of global biogeochemical cycles and by rapid climate shifts. Investigation of these events in Earth history is based on accurate and integrated stratigraphy. This session will bring together specialists in litho-, bio-, chemo-, magneto-, cyclo-, sequence-, and chronostratigraphy with paleontologists, paleoclimatologists and paleoceanographers. An emphasis is placed upon the use of a variety of tools for deciphering sedimentary records and their stratigraphy across intervals of major environmental change. This session is organized by the International Subcommission on Stratigraphic Classification (ISSC) of the International Commission on Stratigraphy (ICS) and it is open to the Earth science community at large.

Share:
Co-organized as CL1.36, co-sponsored by ICS and ISSC
Convener: David De Vleeschouwer | Co-conveners: Sietske Batenburg, Frederik Hilgen, Werner Piller, Urs Schaltegger, I. Vasiliev, Patrick Grunert
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room -2.32
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X1
SSP2.4

The session investigate how massive volcanism and meteorite impacts may have caused mass extinctions and global environmental crises. We hope to bring together researchers across the geological, geophysical, and biological disciplines to present new and exciting researches. The session will focus on the six major Phanerozoic mass extinctions (end Ordovician, end Devonian, end-Permian, end-Triassic, end-Cretaceous), but contributions from theoretical studies or from other environmental crises (e.g. PETM) are also welcome.

Share:
Co-organized as GMPV6.9
Convener: Eric Font | Co-conveners: Sofie Lindström, Thierry Adatte, David Bond, Sverre Planke, Kasia K. Sliwinska, Margret Steinthorsdottir, Martin Schobben
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room G2
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall X1
SSP2.5

This session aims to showcase an interesting diversity of state-of-art advances in all aspects of Cambrian to Cretaceous paleoceanography, paleoclimatology and stratigraphy. Within this broad topic we intend to invite an exciting range of contributions including, but not limited to, organic and inorganic geochemistry, sedimentology, (micro-)paleontology, and modelling. Inter- or multidisciplinary studies are also encouraged. The session will potentially be organized into thematic blocks to allow more in-depth exploration and discussion of topics.

Share:
Co-organized as BG5.2/CL1.03
Convener: Jens O. Herrle | Co-conveners: David Bajnai, Cinzia Bottini, Stefan Huck, Christopher Fielding, Daniel Le Heron, Pierre Dietrich
Orals
| Mon, 08 Apr, 10:45–12:30, 14:00–18:00
 
Room D3
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X1
SSP2.9

Carbonate sediments have formed in a wide range of marine and non-marine settings through the complex interplay of biological, chemical and physical processes. Precisely-constrained high-resolution stratigraphic records are important for determining past global change and understanding the complex interactions between climatic processes, oceanographic and environmental changes, the biosphere and stratigraphic architecture. The complementary study of Recent carbonate depositional systems is crucial to the interpretation of these systems. This session invites contributions from general and interdisciplinary topics within the diverse fields of Carbonate Sedimentology, Stratigraphy and Bioconstructions, the session will explore a broad range of geochemical, biological and stratigraphic proxies and their applications to understanding Earth history.

Share:
Convener: Stephen Lokier | Co-conveners: Mariano Parente, Stephane Bodin, Joanna Pszonka, David Bond
Orals
| Wed, 10 Apr, 14:00–18:00
 
Room G2
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X1
CL1.18 | PICO

As the number of palaeoclimate data from glacial, marine, and continental archives is growing continuously, large-scale compilation and cross-comparison of these data is the imperative next phase in paleoclimate research. Large data sets require meticulous database management and new analysis methodologies to unlock their potential for revealing supra-regional and global trends in palaeoclimate conditions. The compilation of large scale datasets from proxy archives faces challenges related to record quality and data stewardship. This requires record screening and formulation of principles for quality check, as well as transparent communication.

This session aims to bring together contributions from paleoclimatic studies benefiting from the existence of such large data sets, e.g., providing a novel perspective on a proxy and the represented climate variables from the local to the global scale. We want to bridge the gap between data generation and modelling studies. In particular, comparing such large proxy-based datasets with climate modelling data is crucial for improving our understanding of palaeoclimate archives (e.g., bias effects and internal processes), to identify signal and noise components and their temporal dynamics, and to gain insight into the quality of model data comparisons.

We encourage submissions on data compilations, cross-comparison and modelling studies utilizing data repositories and databases (e.g., SISAL, PAGES2k, ACER, EPD), including, but not limited to:
-Comparative studies using one or several archives (e.g., including tests of temporal and spatial synchronicity of past regional to global climate changes)
-Proxy system models (and their tuning)
-Model data comparisons (including isotope enabled models or local calibration studies)
-Integrative multi-proxy/multi archive approaches at multiple study sites
-Large scale age model comparisons and record quality assessment studies, including methods aimed at cross validation between different records and variable spatial and temporal scales.

Share:
Co-organized as AS4.28/BG1.63/HS11.19/NP4.10/SSP2.10
Convener: Franziska Lechleitner | Co-conveners: Yuval Burstyn, Laia Comas-Bru, Sophie Warken, Kira Rehfeld
PICOs
| Fri, 12 Apr, 14:00–15:45
 
PICO spot 5a
GM4.1

Landscape evolution is driven by surface processes that are forced by the interaction of climate, tectonics and topography. In this session we will explore records of these interactions from mountain belts to basins. Presentations cover both well established and novel techniques that utilize geomorphic, erosional, and sedimentary records to quantify rates and styles of deformation, climatic changes, and topographic impacts on surface processes. Presentations are arranged around three themes: (1) Topographic stress control on surface processes: Tectonic and topographically generated stress fields affect the rate of local surface processes. Surface processes in turn modulate these stress fields and shape landscapes. Theoretical and numerical models as well as laboratory and field studies explore these controls and potential feedbacks. (2) Tectonic and climatic influence on eroding landscapes: The coupling between tectonic deformation and climate governs the rate of surface processes. Morphometric analyses, low-temperature thermochronology, and cosmogenic nuclides all provide useful insights into the rates at which surface processes occur and the feedbacks among tectonics and climate. (3) Morphometric and basin records of landscape evolution: Erosional products of surface processes modulated by climate, tectonics and topography are routed through rivers to depositional sinks, which themselves may be subsequently affected by tectonic deformation. This topic explores how sedimentary records and morphometric analyses can be used to reconstruct climatic and tectonic forcing of landscapes.

Share:
Co-organized as SSP2.11/TS4.5
Convener: Taylor Schildgen | Co-conveners: Anneleen Geurts, Dirk Scherler, Anne Voigtländer, Alex Whittaker
Orals
| Thu, 11 Apr, 10:45–12:30, 14:00–18:00
 
Room D3
Posters
| Attendance Fri, 12 Apr, 16:15–18:00
 
Hall X2
CL1.07

The pacing of the global climate system by orbital variations is clearly demonstrated in the timing of e.g. glacial-interglacial cycles. The mechanisms that translate this forcing into geoarchives and climate changes continue to be debated. We invite submissions that explore the climate system response to orbital forcing, and that test the stability of these relationships under different climate regimes or across evolving climate states (e.g. mid Pleistocene transition, Pliocene-Pleistocene transition, Miocene vs Pliocene, and also older climate transitions). Submissions exploring proxy data and/or modelling work are welcomed, as this session aims to bring together proxy-based, theoretical and/or modelling studies focused on global and regional climate responses to astronomical forcing at different time scales in the Phanerozoic.
Anna-Joy Drury will give an invited presentation about 'Fingerprinting the climate heartbeat of the late Miocene'.

Share:
Co-organized as SSP2.12
Convener: Christian Zeeden | Co-conveners: Anne-Christine Da Silva, Stefanie Kaboth-Bahr, Matthias Sinnesael, Nicolas Thibault
Orals
| Wed, 10 Apr, 14:00–18:00
 
Room F2
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X5
CL1.06.2

The geological record provides insight into how climate processes may operate and evolve in a high CO2 environment and the nature of the climate system during a turnover from icehouse to greenhouse state — a transition that may potentially occur in the near future. In recent years we have seen major advances in many geochemical techniques and an increase in the complexity of Earth System Models. The aim of this session is to share progress in our understanding of global changes occurring during the pre-Quaternary based on the integration of geochemical/paleobotanical/sedimentological techniques and numerical models. Specifically, we encourage submissions describing research in which both model and data approaches are embedded. We invite abstracts that reconstruct Earth’s climate from the Cambrian to the Pliocene, investigate how the interconnections of the key surface reservoirs (vegetation-ocean-atmosphere-cryosphere-biogeochemistry) impact climate, and identify tipping points and thresholds. Pertinent themes may include greenhouse-icehouse transitions and intervals testifying for extreme changes.

Share:
Co-organized as SSP2.12.2
Convener: Yannick Donnadieu | Co-conveners: Caroline H. Lear, Gregor Knorr, Emmanuelle Puceat, Bas van de Schootbrugge, Jeremy Caves Rugenstein, Margret Steinthorsdottir
Orals
| Wed, 10 Apr, 14:00–18:00
 
Room L2
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall X5
CL1.21

Stable and radiogenic isotopic records have been successfully used for
investigating various settings, such as palaeosols, lacustrine, loess, caves, peatlands, bogs, arid, evaporative and marine environments. We are
looking for contributions using isotopes along with mineralogical, sedimentological, biological, paleontological and chemical records in
order to unravel the past and present climate and environmental changes.
The session invites contributions presenting an applied as well as a
theoretical approach. We welcome papers related to both reconstructions
(at various timescales) as well as on fractionation factors, measurement, methods, proxy calibration, and verification.

Share:
Co-organized as BG1.4/SSP2.13
Convener: Ana-Voica Bojar | Co-conveners: Octavian G. Duliu, Andrzej Pelc, Christophe Lecuyer, Grzegorz Skrzypek
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room 0.14
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X5
SSP2.14

The reconstruction of thermal evolution in sedimentary basins is a complex issue and requires knowledge on the tectonostratigraphic evolution of the basin, the present and past heat flows, the thermal conductivity and porosity of the rocks, among other inputs. The classical approaches used to reconstruct past temperatures in basins are traditionally based on the numerical basin modeling and the direct measurement of paleo-temperatures on natural rock samples by means of thermometric methods. The two approaches are complementary and the common practice consists in calibrating the modeled thermal histories with constraints derived from LT thermometry and thermo-chronometry data. However, this procedure may be complicated by the lack of data in some areas of the basin and/or by the limitations of the different thermometers.
The development of new thermometers, applicable in the diagenetic realm which dominates sedimentary basins and possibly overcoming the limitations of the conventional tools, has been growing in the last few years.
Aim of this session is to solicit presentation and discussion of recent achievements in this field where the most innovative approaches to reconstruct thermal evolution in sedimentary basins have been developed or adopted alongside with more traditional tools, with possible applications to solve future energy issues and old geodynamic controversies.

Share:
Co-sponsored by SGI-GE
Convener: Sveva Corrado | Co-conveners: Marta Gasparrini, Silvia Omodeo Salè, Andrea Schito
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X1
GM1.3

In the last 20 years, a major breakthrough in palaeo-environmental research has been the utilisation of 2D and 3D seismic reflection data and its integration with borehole petrophysics and core lithologies: the so-called “geological Hubble”. This step-change in seismic data quality and interpretive techniques has allowed imaging and analysis of the subsurface from the seafloor down to the Moho, and for palaeo-geographies and contemporary processes to be reconstructed across 1D (borehole) to 4D (repeat seismic) scales.

Though many Earth scientists know the basic principles of these subsurface datasets, they are often unaware of the full capability of seismic data paired with borehole data. We hope that this session will provide a window into the exciting and cross-disciplinary research currently being performed using geomorphological approaches, state-of-the-art seismic interpretation, and integrative methodologies.

Submissions are welcome from a range of geological settings, thus, exposing seismic interpreters and non-specialists to differing geological perspectives, the latest seismic workflows, and examples of effective seismic and borehole integration. Examples could include (but are not restricted to), glacigenic tunnel valley complexes, igneous intrusions, submarine landslides, channel and canyon systems, salt tectonics overburden expression, methane hydrates, and subsurface fluid flow, all under the theme of how seismic data are interpreted and how the results are applied (e.g. palaeo-environmental reconstruction, seafloor engineering, or carbon sequestration).

The submissions will highlight the rationale behind the interpretation of seismic geometries and will generate discussions around potential issues of equifinality (i.e. similar seismic geometries arising from different Earth processes). We thus invite submissions that aim to present new insights in seismic geomorphology and particularly welcome studies integrating borehole and geotechnical drilling information with shallow high-resolution seismic data and deeper traditional legacy oil industry data. Such studies are a crucial component in seismic inversion and refining or elucidating the accuracy of palaeo-geographies that are interpreted from just seismic data.

The session will be an excellent opportunity for subsurface geoscientists to showcase and discuss with contemporary geomorphologists and environmental scientists what can be achieved by utilising seismic and borehole data to unravel the Earth’s past.

Share:
Co-organized as CL1.28/CR2.10/SM1.7/SSP2.19
Convener: Andrew Newton | Co-conveners: Katrine Juul Andresen, Kieran Blacker, Rachel Harding, Elodie Lebas
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room 0.31
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X2
CL4.09

The Arctic Realm is changing rapidly and the fate of the cryosphere, including Arctic sea ice, glaciers and ice caps, is a source of concern. Whereas sea ice variations impact the radiative energy budget, thus playing a role in Arctic amplification, the Greenland Ice Sheet (GIS) retreat contributes to global sea level rise. Moreover, through various processes linking the atmosphere, ice and ocean, the change in the Arctic realm may modify the atmospheric and ocean circulation at regional to global scales, the freshwater budget of the ocean and deep-water formation as well as the marine and terrestrial ecosystems. The processes and feedbacks involved operate on all time scales and thus require several types of information: satellite and instrumental data, climate models, and reconstructions based on geological archives. In this session, we invite contributions from a range of disciplines and across time scales, including observational data, historical data, proxy data, model simulations and forecasts, for the past climate and the future. The common denominator of these studies will be their focus on a better understanding of mechanisms and feedbacks on short to long time scales that drive Arctic and Arctic-subarctic changes and their impact on climate, ocean and environmental conditions, at regional to global scales, including possible links to weather and climate outside the Arctic.

Share:
Co-organized as OS1.28/SSP2.20, co-sponsored by ArcTrain
Convener: Anne de Vernal | Co-conveners: Michal Kucera, Christof Pearce, Didier Roche, Marit-Solveig Seidenkrantz, Antoon Kuijpers, Richard Bintanja, Rune Grand Graversen
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room F2
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X5
CL1.37

During the Quaternary Period, the last 2.6 million years of Earth's history, changes in environments and climate shaped human evolution. In particular, large-scale features of atmospheric circulation patterns varied significantly due to the dramatic changes in global boundary conditions which accompanied abrupt changes in climate. Reconstructing these environmental changes relies heavily on precise and accurate chronologies. Radiocarbon dating continues to play a vital role in providing chronological control over the last 50,000 years, but advances in recent years on a range of other geochronological techniques that are applicable to the Quaternary have made available a much wider diversity of methods. In this session, contributions are particularly welcome that aim to (1) reduce, quantify and express dating uncertainties in any dating method, including high-resolution radiocarbon approaches, (2) use established geochronological methods to answer new questions, (3) use new methods to address longstanding issues, or (4) combine different chronometric techniques for improved results, including the analysis of chronological datasets with novel methods, such as Bayesian age-depth modelling. Applications may aim to understand long-term landscape evolution, quantify rates of geomorphological processes, or provide chronologies for records of climate change.

To fully diagnose the mechanisms behind the complex teleconnections of past abrupt climate transitions accurate dating and correlation is imperative. This is one of the main goals of the INTIMATE initiative. Furthermore, we aim towards a global approach to integrating climate data, by considering archives from the tropics to the poles and develop our understanding of proxy-sensitivities to different aspects of climate and environmental change (e.g. temperature, precipitation, nutrient availability, sunlight). Finally, we should test our hypotheses and challenge our ideas using models of atmosphere-ocean-biosphere processes. INTIMATE aims to provide a better understanding of the mechanisms of abrupt climate change, with a particular emphasis on the integration and interpretation of global records of abrupt climate changes during the last glacial to interglacial cycle.

Our invited speaker is Prof. Tim Jull, the Editor of the Radiocarbon Journal who will speak about
"Annual carbon-14 variability in tree-rings: Causes and Implications for the calibration curve."

Share:
Co-organized as GM2.9/SSP2.21/SSS3.12
Convener: Irka Hajdas | Co-conveners: Sarah Berben, W.Z. Hoek, Andreas Lang
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room F2
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X5