SC – Short Courses
Programme Group Chairs:
Michael Dietze,
David Fernández-Blanco
SC1 – Welcome to EGU24
Sub-Programme Group Scientific Officers:
Michael Dietze,
David Fernández-Blanco
SC1.1
Are you unsure about how to bring order in the extensive program of the General Assembly? Are you wondering how to tackle this week of science? Are you curious about what EGU and the General Assembly have to offer? Then this is the short course for you!
During this course, we will provide you with tips and tricks on how to handle this large conference and how to make the most out of your week at this year's General Assembly. We'll explain the EGU structure, the difference between EGU and the General Assembly, we will dive into the program groups and we will introduce some key persons that help the Union function.
This is a useful short course for first-time attendees, those who have previously only joined us online, and those who haven’t been to Vienna for a while!
Programme
|
Mon, 15 Apr, 10:45–12:30 (CEST)
Room -2.61/62
SC1.2
The European Geosciences Union (EGU) is the largest Geosciences Union in Europe, largely run by volunteers. Conferences, journals, policy making and scientific communication are all important parts of EGU.
Whatever your closest link with EGU, would you like to get more involved?
Perhaps you are interested in running events, being a representative or being part of a committee. In this short course, we will provide an overview of all the activities of EGU, which are much more than just the General Assembly. We will give practical tips on how to get involved, who to contact and where to find specific information if you want to organise events, become an editor or nominate yourself for Division President. From blog writing to organising networking events, there’s something for everyone.
Programme
|
Mon, 15 Apr, 14:00–15:45 (CEST)
Room -2.61/62
SC1.3
LGBTQIA+ (Lesbian, Gay, Bisexual, Trans, Queer, Intersexual, Asexual, plus; or LGBT for short) geoscientists are likely to have to face several obstacles throughout their career compared to their cisgender/heterosexual colleagues. These obstacles can take many forms, e.g., inflexible bureaucratic limits on name/gender marker, changes on documentation, a lack of training for cruise/field leaders on LGBT topics, a lack of support for transgender and gender non-conforming (GNC) people on field trips and research cruises, and safety and medical considerations LGBT people must account for when travelling for either field work/cruises or when moving countries for a new position. These obstacles can be abated and overcome; with adequate understanding by colleagues and initiatives, LGBT academics can thrive, allowing them to contribute to research without obstacles.
In this short course, our invited speakers will discuss some of these topics, present their experience with the obstacles they have faced in their careers, and share how they have dealt with or overcome these obstacles. We will also highlight the changes that have occurred in recent years on an institutional level and on a General Assembly level and discuss future challenges and improvements to come.
Speakers
- Sean Vrielink, University of Twente, the Netherlands
- Karsten Haustein, Leipzig University, Germany
- Louis Rivoire, Massachusetts Institute of Technology, USA
Tue, 16 Apr, 14:00–15:45 (CEST)
Room -2.85/86
Sub-Programme Group Scientific Officers:
Michael Dietze,
David Fernández-Blanco
SC2.1
In this short course, we will introduce students and early-career researchers to the principles of Open Science, data, and software, as well as the benefits open practices can have for their own research careers, for science, and for society. Participants will have the opportunity to explore the practical impact of Open Science for their work. Participants will develop their digital presence, including using an ORCID to build a permanent profile of their work, and will make a plan to share their data, software, and publications as openly as possible. We will go over the open science outcomes and tools that advance research and collaboration and practice hands-on skills to advance participants’ careers through open science practices.
Participants in this short course will be able to define open science, discuss the benefits and challenges of open science, and identify practices that enable open science. Participants will develop their digital presence, including using an ORCID to build a permanent profile of their work, and will learn strategies for sharing research outputs, data, and software as openly as possible. This course is designed for students or other researchers new to open science; no previous experience with publishing research is required.
Mon, 15 Apr, 19:00–20:00 (CEST)
Room M1
Societal challenges in the 21st century are interconnected and complex. The amount of information needed to make an informed decision that adequately considers policy options is increasing and a broad range of scientific evidence is required to deal with them. However, despite the demand for more information, it can be difficult for scientists to know where their expertise is needed and how to create policy impact.
This session will provide an introduction into some key ‘science for policy’ themes and provide specific details about when and how scientists can engage with policy to increase the impact of their efforts. It will also provide resources and tips for scientists so that they can start their science for policy journeys. The last part of the Short Course will include a Q&A with those working on the science-policy interface. This session will be relevant to all career levels and scientific disciplines.
Mon, 15 Apr, 10:45–12:30 (CEST)
Room -2.85/86
SC2.3
Contributing to the policymaking process is a great way to engage with those outside of academia and to ensure your research has an impact! During this session, a panel of experts will build on the concepts outlined in the ‘Science for Policy 101’ Short Course by providing participants with an overview of the competences and skills that can help ensure that your policy engagement is meaningful and has an impact!
In the first half of the session, participants will be introduced to the Science for Policy Competence Framework Smart4Policy self-assessment tool created by the European Commission’s Joint Research Centre. The panelists will then provide an outline of the European policy landscape and some of the specific mechanisms that scientists can use to engage with it.
While it is recommended that participants attend the ‘Science for Policy 101’ Short Course before this session, it isn’t necessary.
Tue, 16 Apr, 10:45–12:30 (CEST)
Room -2.85/86
SC2.4
In this short course, we will teach researchers the basics of making accurate and well-calibrated predictions, then get them to apply their skills to a range of problems in emissions scenarios, climate science and climate impacts.
Climate science is valuable because of its power to predict the future and guide it positively, but very little time goes into assessing how well we do and how we can do better with the human predictions we still rely on. For many problems encountered, there are no explicit models for how things will proceed, and we therefore rely on “expert judgement”. However, prediction comparisons find that in some domains, experts are worse than the less-informed public.
We will teach people how to express their beliefs systematically and explain some tools and platforms that facilitate doing this. Finally we’ll elicit predictions to inform climate modellers of high-risk missing data, inform IAM makers of realistic scenarios and inform policymakers of the realistic levels of climate change they will need to adapt to.
Early career researchers, late career researchers and all with an interest in learning how to make better predictions are welcome.
Mon, 15 Apr, 08:30–10:15 (CEST)
Room -2.61/62
SC2.5
What does 'ethics' mean and what is the role of ethics in your daily practices as a scientist? Where and how do ethics enter into your geoscientific research and teaching? Although ethics as a subject of study is traditionally the domain of social sciences and humanities, as scientists we are confronted with ethical questions and decisions every day. In the context of climate emergency, mass extinction and global social injustices, it is increasingly important to understand the role played by our research and the systems and structures within which our work is embedded. Ultimately, we could ask ourselves a question: does our research contribute to building a world that corresponds to our values?
This interactive workshop will ask geoscientists to delve beyond our individual research interests to consider how our work as academics intervenes in these big ethical questions. Participants will reflect on ethical questions and case studies related to geoscientific practice and be introduced to ideas and materials drawn from other disciplines such as philosophy, sociology, and political sciences.
The workshop is designed and led by an interdisciplinary team including geoscientists, social scientists and humanities scholars. Participants will be provided with materials which can be freely repurposed and reused, whether to teach aspects of (geo)scientific ethics or to inspire discussion amongst colleagues in the context of environmental and social crisis.
To facilitate discussion, we will have a maximum of 40 participants.
Mon, 15 Apr, 16:15–18:00 (CEST)
Room 1.85/86
SC2.7
For decades, scientists have been sounding the alarm regarding the climate and ecological crisis. Each successive report has delivered alarming findings, yet regrettably, these warnings have been met with insufficient responses and political inertia. Consequently, the disastrous effects of human activity on land, water, and atmosphere persist, surpassing the Earth's system boundaries and posing significant threats to both nature and humanity [1,2]. Concurrently, an impassioned climate movement has emerged, led primarily by young activists demanding immediate climate action [3]. As the consequences of the climate crisis become increasingly evident, also scientists and academics are contemplating the most effective roles they can assume within our next to this movement [4,5,6].
This course explores the role of social movements in driving change. We'll discuss how scientists and academic institutions can contribute to urgent climate action. We highly encourage participants to share examples of how scientists can collaborate with their institutions to incorporate advocacy and activism into the academic narrative. Our goal is to inspire participants to think about their roles and provide stepping stones to take meaningful action. The course unfolds in three distinct parts.
1. Interdisciplinary insights: Invited experts will shed light on social movements and universities' roles in historical changes.
2. Scientists in action: Discussion on the pivotal roles scientists and institutions can play in climate justice today, using case studies by facilitators and participants.
3. Brainstorming ways forward: Through interactive discussions and group activities, we'll explore action avenues, from transformative changes in the university to joining non-violent civil disobedience actions.
This short course transcends traditional academic boundaries and seeks to nurture enthusiasm for collective academic action, empowering scientists to step out of their comfort zones and into a world in environmental emergency mode. The course is organized by scientists who are also members of Scientist Rebellion, which advocates for a paradigm shift in the role of scientists—from passive observers to proactive activists pressing for the urgent and necessary actions.
[1] IPCC AR6 SYR 2023 [2] Rockström et al. 2023 Nature [3] Shuman et al. 2021 JPSP [4] Artico et al. 2023 Front Sustain [5] Capstick et al. 2022 Nat. Clim. Chang. [6] Gardner et al. 2021 Front Sustain
Programme
|
Tue, 16 Apr, 19:00–20:00 (CEST)
Room M1
SC2.8
Geoscience has a long history, wound up with the history of science itself, and thus with colonialism and colonial thinking. We see the manifestation of this colonial history in practices such as “parachute science”, where international scientists, usually from higher-income countries, conduct field work or collect data and samples in another country, usually of lower income countries, and then elaborate the data and publish scientific papers without involving local scientists and/or local communities from that nation. This is an example of scientific neo-colonialism. We see this in the exploitation of local people whose lands are visited for field work and in the exclusion or partial extractive collaboration with in-country geoscientists. Part of this disparity between researchers is also reflected in the difference in experience of access to funding, ease of mobility, issues of visa and fear of speaking out against the status quo.
Building on an EGU2023 short course and Great Debate, here we propose a more informal session to provide participants with an introduction to the colonial background of geosciences, defining the terminology and outlining efforts to decolonize geosciences. Our goal is to raise awareness among the EGU members who may unintentionally be part of neo-colonial research practices and open up a space to discuss solutions. We also aim to open up the discussion for geoscientists on the receiving end of such practices to share stories, ideas and experiences to build a more inclusive, responsive community of practice.
Thu, 18 Apr, 12:45–13:45 (CEST)
Room 1.15/16
SC2.9
Approximately 71% and 15% of the total area on earth is covered by oceans and Asia-Africa, respectively. Surprisingly, the proportion is the same for development-policy-research published in high-impact journals (73% & 16%) by researchers based in the Global North and the Global South, respectively (Liverpool, 2021). This disparity may extend to the Geoscience field as well.
When it comes to publishing in high-impact journals, advantages such as funding, access to state-of-the-art equipment, and better collaborations often favor researchers based in developed countries which also enhances their research visibility. In addition to the lack of these advantages, researchers from developing countries are often unable to effectively communicate complex & technical ideas – an essential prerequisite for publishing in high-impact journals.
We have tailored a short course for early career researchers ECRs primarily from the global south, addressing these challenges. The program aims to enhance their ability to effectively communicate their research findings, expand their outreach, select the most suitable academic journals, and actively participate in the broader academic conversations within their respective disciplines. The knowledge and skills gained from this session can be categorized into three key areas: tools, necessities, and challenges.
• Tools – What are the things to remember while writing high-impact journals from the perspective of an Early Career Scientist?
• Necessities – What is required by an impactful journal from an editor’s perspective?
• Challenges – What are the challenges faced by an Early Career Scientist belonging to the Global South while publishing in high-impact journals? How to deal with them?
This course shall be open to everyone with an interest in increasing the communicability of their scientific writing. ECRs from the Global South are especially encouraged to participate as they will be provided with an opportunity to interact with editors of reputable journals and gain insights on what they expect from a manuscript. For any additional information or inquiries, please do not hesitate to contact the course convener.
Liverpool L. Researchers from global south under-represented in development research. Nature. 2021 Sep 17. doi: 10.1038/d41586-021-02549-9.
Tue, 16 Apr, 19:00–20:00 (CEST)
Room N2
SC2.10
The research we conduct doesn’t fall into a vacuum. Once published, it enters a large information ecosystem, where we hope that our findings will resonate. As researchers, we devote our whole careers to the study of a narrow field of knowledge. This devotion is not shared by other players in this ecosystem who engage with our research, which might lead to misunderstandings and thus unintentional misinformation. Even others in the ecosystem intentionally seek to spread false information or foster ideologically driven disinformation campaigns. Thus, the players in the ecosystem range from fellow scientists from the same or other disciplines, journalists, politicians, social media influencers, the general public, to troll farms. Clearly, not all of them have or seek an in-depth understanding of the scientific context in which a particular piece of information slots into, and some merely seek to generate attention or outrage with their writing.
Many scientists feel somewhat uneasy in this ecosystem - lacking the tools to engage meaningfully. For example, when talking to journalists, information on the uncertainty of data may not be conveyed for the sake of clear and easy-to-follow storylines. Facts may be simplified or even misrepresented, which might lead to a certain reluctance of scientists to talk to journalists. However, especially this type of direct science-media-interaction is crucial for the debunking of mis- and disinformation.
On the other end of the spectrum is disinformation, which is not a misunderstanding, but happens intentionally: Deliberate false information is a common occurrence that we have all encountered around topics of societal relevance, such as climate change. Real data may be used out of context - or data might be an outright lie, made up for the sake of an argument, presented by questionable ‘experts’. The spread of such disinformation follows a political agenda or a certain ideology. It fosters polarization, disrupts informed decision-making, obstructs constructive dialogue, and subsequently poses a threat to social cohesion and democracy. The extreme end of the mis-/disinformation spectrum are conspiracy theories, which can cause considerable harm to social solidarity and peace.
This short course is a space for researchers to meet with journalists, fact checkers, and media-experienced scientists to provide a platform for questions, mutual understanding and creating a joint force against mis- and disinformation.
Programme
|
Wed, 17 Apr, 14:00–15:45 (CEST)
Room -2.61/62
Sub-Programme Group Scientific Officers:
Michael Dietze,
David Fernández-Blanco
SC3.1
Research, especially for early career scientists (ECS), starts with the spark of an idea but then often challenged by empirical or methodological road bumps and seemingly dead ends. In Earth Science research, we face a diverse range of challenges, including (1) access difficulties, whether for field sites, equipment or data, (2) problems of temporal and spatial scaling and extrapolation and (3) a lack of methods, theory, or knowledge or (4) every day live challenges as a scientist. In this short course we address some of those 'problems'. In discussing these challenges, we seek to find possible solutions, suggest new research approaches and methods, and encourage further networking amongst all scientists.
The short course follows the concept of a participatory, structured and timed discussion. We will start the session with 2 minute ‘pop-up’ presentations outlining three to four challenges, which are discussed for 45 minutes in breakout groups. The discussions are facilitated, and guided by the idea that you don’t have to be an expert to understand a problem – you might likely contribute a fresh perspective or relate from your background. We present the solutions and suggestions from each breakout group in a final penal discussion.
This short course lives by your input in two ways. First, in the preparation by letting us know, if you have a ‘problem”, and second by active participation during the short course.
To ensure a safe and open discussion we expect a non-hierarchic, respectful, and constructive communication which will empower and encourage the participants to identify and approach problems faced in the Earth Sciences.
If you have a 'problem' you would like to discuss in the networking session with us, please send a short statement (3-4 sentences) of your idea or challenge and your motivation for solving it to us, by March 1st, 2024.
Wed, 17 Apr, 16:15–18:00 (CEST)
Room -2.85/86
SC3.2
The scientific communication landscape in the digital era is rapidly becoming all about effectively delivering ideas in brief. As scientific conferences move from longer physical meetings to more condensed hybrid formats, not only are short presentations necessary for pitching yourself to senior scientists or your next entrepreneurial venture to Venture Capitalists, but also for promoting your research. The opportunities of networking rarely reveal themselves, unless you are able to tell a brief, informative, and compelling story about you and your research.
It is truly an art to engage people through these short presentations and ignite a fire in their hearts, which will burn long enough for them to remember you and reach out to you later about relevant opportunities. While practice makes perfect is the mantra for delivering power-packed short presentations, there are several tricks to make your content stand out and set yourself apart from the crowd.
In this hybrid format course, we will bring together ideas and tips from years of sci-comm experience to provide you a one stop shop with the tricks of the trade. Finally, a hands-on exercise where participants will receive structured feedback on all aspects of their talk will help solidify the learning outcomes. The learning objectives of this short course are as follows:
Structuring a killer elevator pitch – learning from 1/2/3-min examples
Knowing your audience – harnessing the power of tailored openings/closings
Captivating delivery – leveraging body language to your advantage
Harnessing creativity - choosing the right medium
Enunciating to engage – communicating across borders
Effectively practising your pitch – making the best of your time
Early career and underrepresented scientists are particularly encouraged to participate as they can gain the most from the learning outcomes of this short course.
Thu, 18 Apr, 14:00–15:45 (CEST)
Room -2.61/62
Finally, the time has come to present your scientific work, maybe at a big conference like the EGU General Assembly. Congratulations, you made it! It is a great opportunity to gain more experience in how to summarise your work and talk to a scientific audience. Especially if you are an early-career-scientist, you will get some visibility and some feedback on your research!
But instead of being super happy, you feel fear? Fear of giving a presentation?
We are here to remind you that you are not alone, and there might be a solution to this! This short course deals with the various reasons and symptoms of stage fright and how they can be overcome. Scientists will share their experiences and what has helped them to deal with their fear of presenting. There will be practical tips and room for questions as well as exchange of experiences.
This short course is offered by the Life-Work-Balance Group.
Mon, 15 Apr, 14:00–15:45 (CEST)
Room -2.85/86
SC3.4
Science has long been a source of inspiration for artists, writers and other creative professionals, but as anyone who has seen a science-based film can tell you, the gap between inspiration and fact can sometimes be wide. So what do you do if you are approached by an artist or creative profession to collaborate on a project? How do you ensure that your subject is represented accurately, whilst at the same time respecting the artist’s creative freedom? And how do you find a creative professional to collaborate with you on your research?
In this short course we will explain some basic tips to help you with these issues, from the very first step of contacting, or being contacted by a creative professional, understanding the collaborative brief and how to write one, how the working styles of artists and scientists are different (and the same) and how to decide where the boundary between fact and fiction lies for you. Drawing experience from artists who have worked with scientists and scientists who have worked with artists across a range of mediums from theatre and opera, to sculpture, dance, creative writing and painting, this short course will give you the information you need to collaborate with confidence.
Wed, 17 Apr, 10:45–12:30 (CEST)
Room -2.85/86
If you think your research is important and can make a difference in the world, but aren’t writing papers about making the world realize this, this is the session for you! To us, geoscience communication spans education, outreach, engagement and any studies into how any public (e.g. government, industry, an interest group) interacts with or consumes the geoscience that is your core business.
The session is a drop-in ‘clinic’ with the journal editors, so bring your ideas and questions!
The session will consist of roughly 10 mins of us talking, followed by small group or 1-to-1 discussion with a Geoscience Communication editor about your research idea – or how to integrate research into your geoscience communication activity (i.e. make it publishable).
It doesn’t matter if you know very little already. No question is too basic. It doesn’t matter how well developed (or not) your idea is. We can help you think about how to improve it, and to make it publishable – of course, we’d prefer Geoscience Communication. Alternatively, you could be an experienced geoscience communication practitioner who gets on with doing it, getting results, rather than writing a paper on it. In that case, we’d like to convince you that trying to publish is worth it!
Wed, 17 Apr, 10:45–12:30 (CEST)
Room -2.61/62
SC3.7
There are times when we find that our general communication tools stop working. One of these times is when we are dealing with risk communication for which we need to reach into our risk communication toolbox and use communication strategies that go beyond sharing scientific facts and data. This short course will equip you with a set of tools and skills you can use to work more effectively in different risk communication environments. Topics covered include basic risk communication principles, cognitive biases, risk perception, trust, and the use of media and social media in risk communication.
Who should join this course? The course is particularly designed for students, early-career and experienced natural hazard scientists and practitioners as well as science communicators who are keen to enhance their risk communication skills.
The course structure includes:
(1) Introduction (5 min)
(2) Expert panel discussion (30 min)
(3) Q&A with panel (25 min)
Those interested in attending this short course, might also be interested in the EOS session session "Challenges and opportunities in risk communication related to natural and anthropogenic hazards."
SPEAKERS
Lydia Cumiskey, Senior Post Doctoral Researcher, University College Cork, Ireland
Marina Mantini, Head Of Communications, CIMA Research Foundation, Italy
Thu, 18 Apr, 19:00–20:00 (CEST)
Room M2
Sub-Programme Group Scientific Officers:
Michael Dietze,
David Fernández-Blanco
SC4.1
Building a successful academic career is a challenge. Doing it while also building a family might push you to your limit. Many early and mid-career scientists are faced with the question of how to balance family and academic career. They are finding themselves left with a private problem, when it is actually a shared and societal issue, linking to other overarching themes of participation and diversity.
It is crucial to find support and confidence in going forward as an individual, and we as a community need to talk about parenting in academia to be able to demand and develop sustainable solutions that benefit many, instead of fighting private battles over and over again.
This short course aims to follow up on what has been discussed at the EGU General Assembly in 2023 and will (1) provide some insight into how being a parent affects your every day academic life, (2) highlight the existing support measures for parents in academia in different countries, and (3) offer some experience-based strategies that are being shared by a panel of academic parents, (4) concluding with an open discussion, touching on the public discourses on equal parenting and life-work balance. This course targets scientists who think about having a family, as well as parents in academia keen to connect, and faculty staff with responsibilities towards parenting employees.
Tue, 16 Apr, 10:45–12:30 (CEST)
Room -2.61/62
SC4.2
Persistent issues of bullying, harassment, and other exclusionary behaviours remain prevalent in research and academic settings, disproportionately impacting underrepresented groups. Bystander intervention offers a proactive approach that enables individuals to safely counteract these instances of exclusionary behaviours and support those who are targeted.
This Short Course is facilitated by ADVANCEGeo and is designed to equip participants with the skills to be effective active bystanders. Workshop participants will be trained to: (i) discern various types of hostile behaviours such as bullying, microaggressions, and sexual harassment, (ii) identify the institutional structures and practices in research and academia that support their prevalence, and (iii) respond in a manner that's both safe and constructive.
Wed, 17 Apr, 16:15–18:00 (CEST)
Room -2.61/62
Have you been asked to join a committee or review a paper, but your time was already limited? You wanted to say no, but you didn’t know how to say it. At the end you probably agreed to join the committee or do the review, but you were not able to focus on your research due to this. We all know that great scientific work is a process which needs focus and time. Both are very limited resources in research and need to be handled with care. Therefore it is inevitable from time to time to decline an offer and “say no”. But “how can we say no” and when is it best to decline the request to join a committee and better focus on our own research?
In this short course, geoscientists from different career stages will talk about their experiences in ”saying no” and how this had an effect (or not) on their scientific research. There will be concrete scenarios with tips, room for questions and an open part for exchange and discussion.
Thu, 18 Apr, 08:30–10:15 (CEST)
Room -2.61/62
SC4.4
The European Research Council (ERC) is a leading European funding body supporting excellent investigator-driven frontier research across all fields of science. The ERC offers various outstanding funding opportunities with grant budgets of €1.5 to €3.5 million for individual scientists. ERC calls are open to researchers around the world: all nationalities of applicants are welcome for projects carried out at a host institution in Europe (European Union member states and associated countries). At this session, the main features of ERC funding will be presented, including the new changes implemented in relation to the launch of the 2024 work programme. Furthermore, two invited speakers, a current ERC grantee and a former member of the evaluation panel, will provide an overview of their experience with the ERC evaluation process.
Tue, 16 Apr, 19:00–20:00 (CEST)
Room N1
SC4.5
After the PhD, a new challenge begins: finding a position where you can continue your research or a
job outside academia where you can apply your advanced skills. This task is not
always easy, and frequently a general overview of the available positions is missing. Furthermore,
in some divisions, up to 70% of PhD graduates will go into work outside of academia. There are many
different careers which require or benefit from a research background. But often, students and
early career scientists struggle to make the transition due to reduced support and networking.
In this panel discussion, scientists with a range of backgrounds give their advice on where to find
jobs, how to transition between academia and industry and what are the pros and cons of a career
inside and outside of academia.
In the final section of the short course, a Q+A will provide the audience with a chance to ask
their questions to the panel. This panel discussion is aimed at early career scientists but anyone
with an interest in a change of career will find it useful. An extension of this short course will
run in the networking and early career scientist lounge, for further in-depth or
one-on-one questions with panel members.
Thu, 18 Apr, 19:00–20:00 (CEST)
Room M1
SC4.6
Going through a career transition (such as moving into or out of a formal research environment) can be a challenge that many people feel underprepared for. Being able to consider the value of a position in its entirety, beyond salary, is an important skill that can be difficult to master until you have had some practical experience. Many elements beyond salary may fall into the category of employment conditions, including: flexible working hours and conditions; contracted hours; location; workplace culture and values; paid leave allowance; healthcare benefits; pension; bonuses; and much more – though only some of these will be negotiable. This short course aims to mitigate the gap in experience through a transparent discussion of not only what you can consider as valuable in a job role, but also when and how you can negotiate these aspects. By drawing on the experience of senior career workers, as well as HR professionals, this short course will address questions such as: what elements you should consider as negotiables in your current or prospective position; what are the processes for negotiating your employment conditions; when is a good time to negotiate a pay rise; and how to negotiate employment conditions once you have received a job offer.
As a practical exercise, this short course will guide participants through the writing of their own letter of application for a salary increase or change of employment conditions, with the target that each participant will be knowledgeable and confident enough to put these skills to use when navigating the job market.
Thu, 18 Apr, 10:45–12:30 (CEST)
Room -2.61/62
Networking is crucial for scientists of all career stages for collaborations as well as for their personal growth and career pathways. Your scientific network can offer valuable support in navigating the challenges of academic life, aiding in career decisions, and providing constructive input on job applications, proposals, and research papers. Not only that but also, a scientific network can offer fresh insights, open doors to interdisciplinary partnerships, and spark innovative projects.
Establishing an initial network can prove daunting, particularly when extending beyond the boundaries of your research institution. As scientific conferences and social media platforms are evolving, the possibilities of academic networking are also changing. In this short course, we will share tips and tricks on how to establish, grow and maintain your scientific network. Additionally, panellists will talk about their own personal experiences. In the latter part of this course, we will engage in a networking exercise to put theory into practice. This short course is relevant to scientists who are starting to build/grow their network or want to learn more about networking in today’s scientific settings.
Mon, 15 Apr, 08:30–10:15 (CEST)
Room -2.85/86
SC4.8
Preparing a manuscript for submission to a scientific journal can be a challenging task for many scientists. However, it's crucial to recognize that scientific writing is an indispensable component of the research process. In fact, the manner in which results are presented is often just as significant as the results themselves. Crafting a scientific paper is a skill that can be cultivated over time and progressively advances with practice. This concise course aims to provide early career scientists with straightforward guidelines for effectively communicating their research and, consequently, enhancing their prospects of successful publication. Our program will invite guest editors from various respected journals who will impart fundamental insights into paper writing. They will also offer practical advice on how to embark on the writing process, how to structure the paper for maximum impact, and how to adeptly address reviewers' comments.
We warmly encourage participants to submit any questions they may have for our speakers in advance of the course by reaching out to the organizers. This will enable our speakers to tailor their presentations to address specific concerns and inquiries from the attendees.
While this course is open to everyone with an interest in scientific writing, please bear in mind that the number of available seats is limited due to the room's capacity. Therefore, we kindly request that attendees arrive promptly to secure their place. For any additional information or inquiries, please do not hesitate to contact the course conveners. We are here to assist and support your journey toward becoming a more proficient scientific writer.
If you are interested in the aspects of writing your manuscript - don’t miss the short course: Meet the editors (2): how to publish and peer review. Both courses can be listened to independently.
Mon, 15 Apr, 19:00–20:00 (CEST)
Room M2
SC4.9
Publishing papers is a crucial part of science communication, but it can be daunting. Whether you are working on your first draft, or perfecting your tenth, there can still be uncertainties about what the publishing process has in store. In this short course you will have the opportunity to meet editors of internationally renowned journals in the field of geoscience and biogeoscience. After a short introduction of the editors, we will explore various facets of scientific publishing and peer-reviewing, such as:
● What are the duties and roles of editors, authors and reviewers?
● How to choose a suitable journal for your manuscript and what is important for early career authors?
● How can early career scientists get involved in successful peer-reviewing?
● What is important for appropriate peer-reviewing?
● What are ethical aspects and responsibilities of publishing?
In this short course, there will be an opportunity to have an open discussion about how to make your manuscript seamlessly ready for submission and the whole publication and peer-reviewing process. Together with the editors from different journals, we will explore different aspects of publishing and related topics, such as cover letters, and how to get involved in peer-reviewing and editing.
If you are interested in the aspects of writing your manuscript - don’t miss the short course: Meet the editors (1): how to write and revise your manuscript. Both courses can be listened to independently.
Wed, 17 Apr, 19:00–20:00 (CEST)
Room M2
SC4.10
How to learn and get the key info when listening to the report of a colleague who works on
something completely different from you but on the same project? How to deliver your report so
that everyone understands you? How to find common ground for joint research which will impact
both the project and your career?
Trans-disciplinarity and cross-fertilisation are key aspects of many research projects, especially
when dealing with natural hazards. To study the natural phenomenon and evaluating hazard and
risk related to them, in fact, there is the need of many different and technical expertise. Many
European founded projects award a collaboration between hard and social science. Approaching
such complex and multifaceted topics, especially in the first phase of one’s career can be very
challenging. This short course is created by and dedicated to Early Career Scientists. The main aim
is to deliver simple but effective tools to use when working on a trans-disciplinary, cross-cultural
project.
Tue, 16 Apr, 14:00–15:45 (CEST)
Room -2.61/62
SC4.11
Anyone entering the job market or looking for a new job after academia will confront the phrase ‘transferable skills’. PhD candidates and scientists are advised to highlight their transferable skills when applying for non-academic jobs, but it can be hard to know what these skills are. Similarly, for those looking to change scientific research areas or take a leap into a new field for their PhD, it is important to highlight your transferable skills. Big data analysis, communicating your findings, supervising, teaching, project management and budgeting are skills you might have from your research/science career. But there are many more. In this interactive workshop, we will start your journey of identifying your transferable skills and highlighting careers where these will be necessary!
Programme
|
Fri, 19 Apr, 08:30–10:15 (CEST)
Room -2.61/62
SC5 – Approaches & Concepts
Sub-Programme Group Scientific Officers:
Michael Dietze,
David Fernández-Blanco
SC5.1
This short course aims to introduce non-geologists to the structural geological and petrological principles that are used by geologists to study system earth.
The data available to geologists is often minimal, incomplete, and representative only for part of the geological history. Besides learning the field techniques that are needed to take measurements and acquire data, geologists also need to develop a logical way of thinking to overcome these challenges and to solve this complex puzzle.
In this course we briefly introduce the following subjects:
1) Geology rocks: Introduction to the principles of geology.
2) Moving rocks: The basics of plate tectonics.
3) Breaking rocks: From lab experiments to natural examples.
4) Dating rocks: Absolute and relative dating of rocks.
5) Shaping rocks: Using the morphology of landscapes as tectonic constraints.
6) Q&A!
Our aim is not to make you the next specialist in geology, but we will try and make you aware of the challenges a geologist faces when they go out into the field. We will also address currently used methodologies for the collection of geological data, to give other earth scientists a feel for the capabilities and limitations of geological research.
This course is given by Early Career Scientists and forms a quintet with the short courses on ‘Geodynamics 101’, ‘Seismology 101’, ‘Tectonics 101’, and ‘Geodesy 101’. For this reason, we will also explain what kind of information we expect from the fields of geodynamics, seismology and geodesy, and we hope to receive input on the kind of information you could use from our side.
Wed, 17 Apr, 12:45–13:45 (CEST)
Room N2
SC5.2
What is the “Potsdam Gravity Potato”? What is a reference frame and why is it necessary to know in which reference frame GNSS velocities are provided? Geodetic data, like GNSS data or gravity data, are used in many geoscientific disciplines, such as hydrology, glaciology, geodynamics, oceanography and seismology. This course aims to give an introduction into geodetic datasets and presents what is necessary to consider when using such data. This 90-minute short course is part of the quartet of introductory 101 courses on Geodynamics 101, Geology 101 and Seismology 101.
The short course Geodesy 101 will introduce basic geodetic concepts within the areas of GNSS, gravity data analysis and coordinate transformations. In addition, we will talk about glacial isostatic adjustment, a process that is observed by several various geodetic data. We will also show short examples of data handling and processing using open-source software tools. Participants are not required to bring a laptop or have any previous knowledge of geodetic data analysis.
Our aim is to give you more background information on what geodetic data can tell us and what not. You won’t be a Geodesist by the end of the short course, but we hope that you are able to have gained more knowledge about the limitations as well as advantages of geodetic data. The course is run by scientists from the Geodesy division, and is aimed for all attendees (ECS and non-ECS) from all divisions who are using geodetic data frequently or are just interested to know what geodesists work on on a daily basis. We hope to have a lively discussion during the short course and we are also looking forward to feedback by non-geodesists on what they need to know when they use geodetic data.
Mon, 15 Apr, 12:45–13:45 (CEST)
Room 1.15/16
During this short course we will introduce the participants to the principles and application of analogue models in interpreting tectonic systems.
Tectonic processes act at different spatial and temporal scales. What we observe today in the field or via direct and indirect measurement is often just a snapshot of processes that stretch over hundreds or thousands of km, and take millions of years to unfold. Thus, it is challenging for researchers to interpret and recontrust the dynamic evolution of tectonic systems. Analogue modeling provides a tool to overcome this limitation, allowing for the physical reproduction of tectonic processes on practical temporal and spatial scales (Myr → hrs, km → cm/m). Of course, the reliability of analogue models is a function of the assumptions and simplifications involved, but still their usefulness in interpreting data is outstanding.
In this course we will go through the following outline:
- History of Analogue Modelling
- Model setups and Materials
- Model scaling
- Monitoring Techniques
- Interpreting Model Results
- Interactive Demonstration: Running a Model
- Q&A
The final aim of this short course will be to present analogue modeling as a valid technique to be applied side by side with observations and data from the real world to improve our interpretation of the evolution of natural tectonic systems. We also intend to inspire the course participants to develop and run their own analogue tectonic modeling projects, and to provide them with the basic skills, as well as directions to find the additional resources and knowledge required to do so.
Wed, 17 Apr, 18:15–20:05 (CEST)
Room 1.15/16
SC5.4
How do seismologists detect earthquakes? How do we locate them? Is seismology only about earthquakes? Seismology has been integrated into a wide variety of geo-disciplines to be complementary to many fields such as tectonics, geology, geodynamics, volcanology, hydrology, glaciology and planetology. This 90-minute course is part of the Solid Earth 101 short course series together with 'Geodesy 101', ‘Geodynamics 101’, and ‘Geology 101’ to better illustrate the link between these fields.
In ‘Seismology 101’, we will present an introduction to the basic concepts and methods in seismology. In previous years, this course was given as "Seismology for non-seismologists" and it is still aimed at those not familiar with seismology -- in particular early career scientists. An overview will be given on various methods and processing techniques, which are applicable to investigate surface processes, near-surface geological structures and the Earth’s interior. The course will highlight the role that advanced seismological techniques can play in the co-interpretation of results from other fields. The topics will include:
- the basics of seismology, including the detection and location of earthquakes
- understanding and interpreting those enigmatic "beachballs"
- the difference between earthquake risks and hazards
- an introduction to free seismo-live.org tutorials and other useful tools
- how seismic methods are used to learn about the Earth, such as for imaging the Earth’s interior (on all scales), deciphering tectonics, monitoring volcanoes, landslides and glaciers, etc...
We likely won’t turn you into the next Charles Richter in 90 minutes but would rather like to make you aware how seismology can help you in geoscience. The intention is to discuss each topic in a non-technical manner, emphasising their strengths and potential shortcomings. This course will help non-seismologists to better understand seismic results and can facilitate more enriched discussion between different scientific disciplines. The short course is organised by early career scientist seismologists and geoscientists who will present examples from their own research experience and from high-impact reference studies for illustration. Questions from the audience on the topics covered will be highly encouraged.
Tue, 16 Apr, 12:45–13:45 (CEST)
Room N2
The main goal of this short course is to provide an introduction into the basic concepts of numerical modelling of solid Earth processes in the Earth’s crust and mantle in a non-technical manner. We discuss the building blocks of a numerical code and how to set up a model to study geodynamic problems. Emphasis is put on best practices and their implementations including code verification, model validation, internal consistency checks, and software and data management.
The short course introduces the following topics:
(1) The physical model, including the conservation and constitutive equations
(2) The numerical model, including numerical methods, discretisation, and kinematical descriptions
(3) Code verification, including benchmarking
(4) Model design, including modelling philosophies
(5) Model validation and subsequent analysis
(6) Communication of modelling results and effective software, data, and resource management
Armed with the knowledge of a typical numerical modelling workflow, participants will be better able to critically assess geodynamic numerical modelling papers and know how to start with numerical modelling.
This short course is aimed at everyone who is interested in, but not necessarily experienced with, geodynamic numerical models; in particular early career scientists (BSc, MSc, PhD students and postdocs) and people who are new to the field of geodynamic modelling.
Tue, 16 Apr, 16:15–18:00 (CEST)
Room -2.85/86
Since Claude Shannon coined the term 'Information Entropy' in 1948, Information Theory has become a central language and framework for the information age. Across disciplines, it can be used for i) characterizing systems, ii) quantifying the information content in data and theory, iii) evaluating how well models can learn from data, and iv) measuring how well models do in prediction. Due to their generality, concepts and measures from Information Theory can be applied to both knowledge- and data-based modelling approaches, and combinations thereof, which makes them very useful in the context of Machine Learning and hybrid modeling.
In this short course, we will introduce the key concepts and measures of Information Theory (Information, Entropy, Conditional Entropy, Mutual Information, Cross Entropy and Kullback-Leibler divergence), with practical examples of how they have been applied in Earth Science, and give a brief introduction to available open-source software.
This course assumes no previous knowledge or experience with Information Theory and welcomes all who are intrigued to learn more about this powerful theory.
Fri, 19 Apr, 10:45–12:30 (CEST)
Room -2.61/62
SC5.7
In recent years, machine learning (ML) algorithms have evolved at a very fast pace, revolutionizing, along the way, numerous sectors of modern society. ML has found countless applications in our daily lives, making it almost impossible to describe all of its uses. Notably, artificial neural networks (NNs) stand out as one of the most powerful and diverse classes of models. The NN-empowered tools assist in navigating our routes to the target destinations, providing personalized recommendations for entertainment, suggesting shopping preferences, classifying emails, translating text, and can even mimic human interactions in the form of chat bots. All of these applications are inspired by the same idea: using artificial intelligence can enhance our lives and boost efficiency when dealing with these tasks. The scientific community has seen a boom in machine learning studies, and many of the latest NN-based models outperform the traditional approaches by a very large margin. Therefore, the potential of integrating NN models into various scientific applications is boundless.
At the same time, NNs are usually criticized for being “black-box” models that are hard to interpret and understand, with an aura of mystery surrounding these algorithms. In this short course, we will delve into the foundations of neural networks, emphasizing approaches and best practices to model training, independent validation and testing, as well as model deployment. We will describe both the basic concepts and building blocks of the neural network architectures, and also touch upon the more advanced models. Our objective is to explain how neural network models can be understood in comprehensive but relatable terms for participants coming from a broad range of backgrounds.