Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

BG

BG – Biogeosciences

Programme group chair: Giuliana Panieri

DM2
Division meeting for Biogeosciences (BG)
Convener: Giuliana Panieri
Thu, 07 May, 12:45–13:45 (CEST)

BG1 – General Biogeoscienes

Programme group scientific officer: Giuliana Panieri

BG1.2

Anthropogenic disturbance of the nitrogen (N) cycle has more than doubled the amount of reactive N circulating in the terrestrial biosphere alone. Exchange of reactive/non-reactive nitrogen gases between land and atmosphere are strongly affecting Earth’s atmospheric composition, air quality, climate change and human health. This session seeks to improve our understanding and modelling on how global land use and climate change affect N biogeochemistry in terrestrial and aquatic ecosystems and what atmospheric interactions will be most important in influencing the climate. We seek to link microbiological N cycling processes and exchanges of nitrogen gases at the land-air interface with ecosystem dynamics, air quality and atmospheric chemistry. Despite being intensively studied for a long time, it is still difficult to predicting N transformation pathways because of our lack to quantitatively understand N cycling processes and the numerous processes contributing to (gaseous) N losses in terrestrial ecosystems. The session covers fluxes of different reactive and non-reactive nitrogen gases and the underlying transport and transformation processes in soils and sediments, e.g., fixing of atmospheric dinitrogen (N2) in ecosystems, emission/deposition of ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), nitrous acid (HONO), nitrogen dioxide (NO2), and N2 (as a result of denitrification) as well as their interactions with ozone (O3), volatile organic compounds (VOCs), free radicals and aerosols in the atmosphere, and the associated impacts on air quality. To predict processes an understanding of the soil heterogeneity is pivotal not only in surface soils and at field scale but also deeper in the soil profile and at small scales (µm). Recent technological improvements of experimental and analytical tools like measurements of N2 fluxes, linking structure and activity of functional microbial communities with flux rates, small scale resolution of soil structure, and improved numerical methods as well as computational power offer new opportunities in this area. Furthermore, the interactions of N cycling with other elemental cycles (e.g., carbon, phosphorus) in ecosystems and terrestrial-aquatic linkages, and feedbacks to biodiversity loss and water pollution will be explored. We welcome contributions covering a wide range of studies including methods development and application of new devices, observational, experimental, and modeling approaches.

Share:
Convener: Tuula Larmola | Co-conveners: Sami Ullah, Dianming Wu, Kristina Kleineidam, Christoph Müller, Pauline Sophie Rummel
Displays
| Attendance Mon, 04 May, 08:30–10:15 (CEST)
BG1.3

The session aims at collecting contributions from all scientists daily faced with the need of discriminating between what is natural and what is the result of the interaction of humans with the surrounding environment, with respect to elemental concentrations. Commonly, geoscientists involved in environmental projects are requested to define local or regional reference concentration values for those chemical substances (mostly potentially harmful elements) and, recently, radioisotopes which can be originating from both geological materials and human driven processes.
To discriminate natural contributions from anthropogenic ones is a very complicated task and several scientists have applied different methods and multiple approaches (from statistics to the weight of evidence) in order to provide guidance and reliable solutions to government institutions and professional stakeholders.
Case studies on solid matrices (soil, sediments, etc.), natural water and other environmental media are of interest for the session together with more methodological studies mostly focusing on the proposal of innovative techniques for defining these values.

Share:
Co-organized by NH8
Convener: Stefano Albanese | Co-conveners: Ariadne Argyraki, Gevorg Tepanosyan
Displays
| Attendance Mon, 04 May, 10:45–12:30 (CEST)
BG1.6

The critical zone comprises the Earth's permeable near-surface layer from the top of the canopy to the bottom of the groundwater. It is the zone where hydrosphere, atmosphere, pedosphere and geosphere interact with the biosphere. This fragile skin of our planet, which supports the life and survival of humans maintaining food production and drinking water quality, is endangered by threats such as climate change and land use change.
New approaches and innovative modeling strategies are needed to understand these complex interactions between hydrological, biogeochemical cycles and human resilience processes that may govern critical zone system dynamics, including sources, dynamics and chemistry of water, models to quantify external influences like human activities or erosion, weathering rate, water transfer in the frame of global change and biological feedback mechanisms.
This session focuses on the advancing proxies that may address pressing interdisciplinary scientific questions in coupling various disciplines like hydrology, soil science and biogeochemistry that cover single-site investigations, targeted experiments, remote sensing studies, large data compilations and modelling. This will be illustrated in this session through studies regarding the critical zone as a whole or within its different compartments, including the different environmental processes (geological, physical, chemical, and biological), their couplings and reactive transport modeling , and exploring the cities resilience.

Share:
Co-organized by HS10/SSS12
Convener: Gerd Gleixner | Co-conveners: Antonello Provenzale, Beatrice Bechet, Tamara Kolbe, Philippe Negrel
Displays
| Attendance Tue, 05 May, 08:30–10:15 (CEST)
BG1.7

Phosphorus (P) is essential to life, and as a key limiting nutrient, regulates productivity in terrestrial and aquatic systems. Strong geochemical interactions between P and other elements control the mobility and bioavailability of P in the environment, necessitating a coupled understanding of element cycles influencing P. At the same time P provides perhaps the most topical example of a critical resource element whose use is currently inefficiently managed. Leakage of mined P into the environment through a variety of processes (e.g. excess chemical fertiliser usage, or effluent discharges) is responsible for eutrophication and the acceleration of natural P cycling in terrestrial and aquatic systems. This puts P at the forefront of environmental and societal concerns and demands that our biogeochemical knowledge of P cycling ought to be developed through interdisciplinary research. This session aims to explore biogeochemical P cycling in the context of benefitting ‘systems understanding’ spanning terrestrial and aquatic compartments.

Topics included will explore:
Links between P and wider element cycles, for example with other macro- and micro- nutrients and controls of P availability through geochemical parameters such as Fe;
P cycling studies that bring into focus the interplay of biotic and abiotic controls within, and between, environmental compartments;
Drivers of change (climate, management, societal) acting on the coupling of P with other element cycles.
Processes, modelling and management against a background of the key issues for: P release from soil to plants; P release from soil to water; long term P supplies and the global P cycle.
Sustainable use of P, recovering of P from natural and waste water, managing P fluxes in agricultural areas.

Share:
Convener: Marc Stutter | Co-conveners: Andreas Voegelin, Sylvia Walter, Thilo Behrends, Tom Jilbert, Federica Tamburini
Displays
| Attendance Tue, 05 May, 10:45–12:30 (CEST)
SSS5.8

Soils represent a major terrestrial carbon store and fulfil a variety of functions from which the environment and humankind benefit. Soils processes operate and interact across the Critical Zone: the near-surface terrestrial layer extending from the bedrock through to the lower atmosphere. Multiple external pressures may result in changes to soil functioning, and we need a good understanding of how soils respond at a range of spatial and temporal scales.

The storage, stability, and cycling of carbon is fundamental to the resilience of soil systems. It is essential that we consider the role of carbon in all soil systems, from the microbial and aggregate scale to the catchment and the whole land surface, in order to better understand the interconnectivity between rocks, soils, plants, and the atmosphere. This is particularly important as soils are facing multiple perturbations, ranging from rapid shifts in land use and management to degradation and long-term environmental and climatic change. To maintain soil functions we need to develop further knowledge of how resistant soils are to these changes, alongside if, and how, they recover.

This session will consider terrestrial carbon pools and dynamics, and explore soil resilience at any, or multiple scales. We welcome contributions that consider processes within and between different elements of the Critical Zone, alongside innovative methods of quantifying and investigating change. Early career researchers are strongly encouraged to apply, and we seek submissions considering empirical, modelling, or meta-analytical approaches.

Share:
Co-organized by BG1
Convener: Chris McCloskey | Co-conveners: Emily Dowdeswell-Downey, Daniel Evans, Victoria Janes-Bassett
Displays
| Attendance Mon, 04 May, 14:00–15:45 (CEST)
CR1.5

Rationale: Progressive thawing of permafrost poses a significant threat to the stability of arctic landscapes, and has strong consequences for our climate. To predict the transition of arctic landscapes and its consequence for climate-feedback, we need to understand the dynamics of permafrost thaw. Most climate models assume a gradual, top-down thawing of permafrost, resulting in gradual decomposition of carbon and enhanced plant growth (“Arctic Greening”). However, evidence of an alternative, abrupt thawing trajectory of permafrost (“Arctic Browning”) is currently increasing across the Arctic. Consequences for landscape stability and climate feedback diverge widely between these trajectories, which emphasizes the need to understand their triggers.

Aim: In this session we aim to bring together and integrate the state-of the art on the future development of permafrost ecosystems from various disciplinary backgrounds. Thereby, we hope to improve our understanding of (i) the anticipated occurrence of various thaw phenomena under global warming, (ii) the implications of these various thaw phenomena for permafrost ecosystems and (iii) the implications of various thaw phenomena for climate feedbacks.

We have compiled an exiting programme covering mechanisms, processes and fluxes at different spatial scales, from landscape to microbe. Contributions come from accross all permafrost regions from a wide range of research institutes.

The session will be started of by professor Merritt Turetsky (incoming Director, INSTAAR at the University of Colorado Boulder) on our current knowledge and the main research gaps related to the cross-scale impacts of abrupt thaw phenomena, from local-scale changes that affect water and food security to carbon emissions and global climate. She will also discuss how permafrost thaw is interacting with other disturbance regimes such as wildfire.

Share:
Co-organized by BG1
Convener: Juul Limpens | Co-conveners: Rúna Magnússon, Gabriela Schaepman-Strub
Displays
| Attendance Tue, 05 May, 16:15–18:00 (CEST)
ITS1.12/BG1.20

A grand challenge facing society in the coming decades is to feed the growing human population in a sustainable and healthy manner. This problem is made more complex by an increasingly globalised food system and its interactions with a changing climate. Agri-food system actors - including policy makers, corporations, farmers, and consumers - must meet this challenge while considering potentially conflicting priorities, such as environmental sustainability (e.g., minimising disturbance to ecosystems via greenhouse gas emissions and the use of water, land, fertilisers and other inputs), economic viability (e.g., revenues for food producers and guaranteed access for consumers), nutritional balance and quality (e.g., addressing overconsumption and undernourishment), and resilience to climate change.
This growing complexity of agri-food systems, which can involve global supply chains and difficult environmental and societal tradeoffs, needs to be better understood.
The type of product (e.g. plant or meat based, fresh or processed), as well as the location and method of production, can play an important role in improving the nutritional quality and environmental sustainability of global food production, to enable healthy and sustainable diets. Quantifying and assessing these multiple outcomes while accounting for the linkages, interconnections, and scales of local and global supply chains will be essential for informing decisions aimed at developing sustainable and resilient agri-food systems.
This session welcomes submissions that quantify and assess a range of outcomes from agri-food systems across multiple spatial and temporal scales, and the trade-offs or synergies between them. The session will include studies providing improved methods for quantifying multiple environmental, economic or social dimensions, studies that incorporate the role of food trade into solution-development, and studies that seek to achieve multiple sustainability goals together.

Share:
Co-organized by ERE7/HS12/SSS12
Convener: Carole Dalin | Co-conveners: Kyle Frankel Davis, Matti Kummu, Landon Marston, Marta Tuninetti
Displays
| Attendance Thu, 07 May, 10:45–12:30 (CEST)
AS3.8

The interactions between aerosols, climate, and weather are among the large uncertainties of current atmospheric research. Mineral dust is an important natural source of aerosol with significant implications on radiation, cloud microphysics, atmospheric chemistry and the carbon cycle via the fertilization of marine and terrestrial ecosystems.
In addition, properties of dust deposited in sediments and ice cores are important (paleo-)climate indicators.

This interdivision session is open to contributions dealing with:
(1) measurements of all aspects of the dust cycle (emission, transport, deposition, size distribution, particle characteristics) with in situ and remote sensing techniques,
(2) numerical simulations of dust on global and regional scales,
(3) meteorological conditions for dust storms, dust transport and deposition,
(4) interactions of dust with clouds and radiation,
(5) influence of dust on atmospheric chemistry,
(6) fertilization of ecosystems through dust deposition,
(7) any study using dust as a (paleo-)climate indicator including investigations of Loess, ice cores, lake sediments, ocean sediments and dunes.

We especially encourage to submit papers on the integration of different disciplines and/or modeling of past, present and future climates.

Public information:
Please be aware that there are a number (N=3) changes in the order in which the presentations will be discussed. Please have a look at the provided session materials for the final program.

Share:
Co-organized by BG1/CL4/GM8/SSP3, co-sponsored by ISAR
Convener: Jan-Berend Stuut | Co-conveners: Paola Formenti, Joanna Nield, Claire Ryder, Mingjin Tang
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)
SSP1.5

(Bio)minerals, in particular carbonates (but also others e.g. phosphates), play an essential role in shaping our understanding of the evolution of life and the Earth System, and constitute one of the most important archives of past climatic and environmental conditions. Geochemical, petrographic or crystallographic approaches have yielded new insights into the physico-chemical conditions governing their formation, including through biomineralisation pathways. These capture vital information about the environment and fluid chemistry during precipitation in the form of their specific elemental or isotopic signatures, mineralogies or micromorphologies. Over the past decades, a refined understanding of both biogenic as well as abiotic carbonates and other mineral archives, together with the development of new analytical methods and palaeo-proxies, has led to numerous breakthroughs in palaeoclimate research. However, the quality and reliability of the climatic and environmental information we extract from these records depends, critically, on careful proxy calibrations and the evaluation of secondary controls such as kinetic or vital effects and diagenetic influences. This session seeks contributions from sedimentology, geochemistry, (palaeo)biology, and mineralogy that utilise carbonate or other relevant (bio)minerals to improve our understanding of past environmental conditions over a broad range of timescales, including (but not limited to) microbialites, mollusc shells, coral skeletons or foraminifera. We welcome experimental or theoretical studies dealing with culturing of calcifying organisms, synthetic mineral precipitation, transformation or alteration processes, elemental partitioning or isotopic fractionation (to give but a few examples). The aim of this session is to synthesize recent progress on the investigation as well as application of these important archives, and to showcase methodological advances that will help us to build a more comprehensive understanding of past global changes.

Share:
Co-organized by BG1/CL1/GMPV5
Convener: Niels de Winter | Co-conveners: Hana Jurikova, Patrick Meister, Johan Vellekoop, Sebastian Viehmann, Alexandra Rodler, Silvia Frisia, Dorothee Hippler
Displays
| Attendance Mon, 04 May, 14:00–18:00 (CEST)
GI2.8

The session gathers geoscientific aspects such as dynamics, reactions, and environmental/health consequences of radioactive materials that are massively released accidentally (e.g., Chernobyl and Fukushima nuclear power plant accidents, wide fires, etc.) and by other human activities (e.g., nuclear tests).

The radioactive materials are known as polluting materials that are hazardous for human society, but are also ideal markers in understanding dynamics and physical/chemical/biological reactions chains in the environment. Thus, the radioactive contamination problem is multi-disciplinary. In fact, this topic involves regional and global transport and local reactions of radioactive materials through atmosphere, soil and water system, ocean, and organic and ecosystem, and its relation with human and non-human biota. The topic also involves hazard prediction and nowcast technology.

By combining 34 years (> halftime of Cesium 137) monitoring data after the Chernobyl Accident in 1986, 9 years dense measurement data by the most advanced instrumentation after the Fukushima Accident in 2011, and other events, we can improve our knowledgebase on the environmental behavior of radioactive materials and its environmental/biological impact. This should lead to improved monitoring systems in the future including emergency response systems, acute sampling/measurement methodology, and remediation schemes for any future nuclear accidents.

The following specific topics have traditionally been discussed:
(a) Atmospheric Science (emissions, transport, deposition, pollution);
(b) Hydrology (transport in surface and ground water system, soil-water interactions);
(c) Oceanology (transport, bio-system interaction);
(d) Soil System (transport, chemical interaction, transfer to organic system);
(e) Forestry;
(f) Natural Hazards (warning systems, health risk assessments, geophysical variability, countermeasure);
(g) Measurement Techniques (instrumentation, multipoint data measurements);
(h) Ecosystems (migration/decay of radionuclides).

The session consists of updated observations, new theoretical developments including simulations, and improved methods or tools which could improve observation and prediction capabilities during eventual future nuclear emergencies. New evaluations of existing tools, past nuclear contamination events and other data sets also welcome.

Public information:
Here is instruction of a live chat,
(1) Convener’s summary at the beginning of Chat 10:45-11:00
(2) We then go each presentation for 5 minutes including discussion.
(3) Each presenter posts their own "a few sentence summary within 80 words" in total, and the discussion. Omit any greeting to save time.
(4) To save time, we even offer to post your summary when we introduce your talk if you send me before hand
Live chat schedule
10:45 Convener summary
— we present one highlight slide from each presentation and give audience to search for presentation to deeply look into.
11:00 10066 Mykola Talerko et al
11:05 15257 Joffrey Dumont Le Brazidec et al
11:10 233 Sheng Fang et al
11:15 5844 Elena Korobova et al
11:20 2252 Misa Yasumiishi et al
11:25 13220 Yuichi Onda et al (solicited/Highlights)
11:30 13965 Fumiaki Makino et al
11:35 12301 Michio Aoyama et al
11:40 22136 Yasuhito Igarashi et al
11:45 12465 Hikaru Iida et al
11:50 19250 Mark Zheleznyak et al
11:55 12477 Yoshifumi Wakiyama et al
12:00 3175 Michio Aoyama et al (solicited)
12:05 11813 Yayoi Inomata and Michio Aoyama
12:10 12627 Daisuke Tsumune et al
12:15 21319 Susumu Yamada (Masahiko Machida) et al
12:20 6987 Hikaru Miura et al
12:25 Closing remark

The session gathers geoscientific aspects such as dynamics, reactions, and environmental/health consequences of radioactive materials that are massively released accidentally (e.g., Chernobyl and Fukushima nuclear power plant accidents, wide fires, etc.) and by other human activities (e.g., nuclear tests).

In addition to hazardous aspect for human society, the radioactive materials are used as ideal markers in understanding dynamics and physical/chemical/biological reactions chains in the environment. This multi-disciplinary session gathers all these aspect.

Share:
Co-organized by AS4/BG1/ERE4/GM12/NH9
Convener: Daisuke Tsumune | Co-conveners: Nikolaos Evangeliou, Yasunori Igarashi, Liudmila Kolmykova, Masatoshi Yamauchi
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)
ITS3.2/NH10.7

Climate change is projected to result in an increase in extreme and compound weather events, which pose a growing threat to human well-being and the achievement of the UN Sustainable Development Goals (SDGs). Further warming is also projected to reduce the efficacy of carbon sinks acting as negative feedbacks on warming and increase the risk of crossing tipping points and triggering cascading changes in the climate and ecosystems. These processes may reduce the Earth system’s resilience, which has the potential to further amplify climate change and extremes and worsen societal impacts.

Maintaining Earth in the Holocene-like conditions that have enabled the development of the world’s societies will require better understanding of feedbacks and tipping dynamics in both the human world and the biophysical Earth. Societies will need to embark on rapid socio-economic and governance transformations in order to both reduce the risk of triggering tipping points and to improve societal resilience to increasingly likely extreme events. Earth resilience brings the complex dynamics and perturbations associated with human activities into Earth system analysis, and increasingly captures socio-economic as well as biophysical dynamics.

In this session we welcome transdisciplinary and cross-scale contributions relating to climate extremes, tipping dynamics, and Earth resilience, covering topics ranging from the cascading impacts of extreme and compound events, key feedbacks and tipping points in both biophysical and human systems, enhancing societal resilience to extreme events, and the potential for rapid social transformations to global sustainability.

Public information:
EGU 2020 Session TS3.2/NH10.7
Climate Extremes, Tipping Dynamics, and Earth Resilience in the Anthropocene
6 May, 14:00-18:00

This session will run as an EGU website hosted text-based chat accessible here, as well as through a simultaneous Zoom video room (link to be provided during the livechat).

Both the EGU chatroom and the Zoom video room will be moderated.
Comments on the presentations can be made at the EGU website at any time, for asynchronous responses.
Comments and questions asked in the EGU chatroom will be forwarded to the Zoom presenters. This means all questions will get responses, but this may not happen within the timeslot of the presentation.
To facilitate real-time dialogue with the presenters, please go to the Zoom session.

When joining the Zoom session remember to mute yourself, and to ask questions please raise your hand (available from the 'participants' button) and unmute when the chair calls on you. If you are a presenter, unmute when called on and share your screen if you have a few slides to show. Each presenter gets 10 minutes max including Q&A, so we suggest presenting some summary slides for a few minutes and then taking questions for the rest.

Share:
Co-organized by BG1/CL2/CR7/NP8/OS1, co-sponsored by Future Earth
Convener: Felix Riede | Co-conveners: David Armstrong McKay, Jana Sillmann, Jonathan Donges, Dorothea Frank, Sarah Cornell, Ricarda Winkelmann
Displays
| Attendance Wed, 06 May, 14:00–18:00 (CEST)
ITS5.1/CL3.6

Remaining carbon budgets specify the quantity of CO2 that can be emitted before a given warming level (such as the 1.5 °C target) is reached, and are thus of high interest to the public and policymakers. Yet, there are many sources of uncertainty which make it challenging to deduce this finite amount of CO2 emissions. The theoretical foundation of carbon budgets is based on the concept of the Transient Climate Response to cumulative CO2 Emissions (TCRE). This is the pathway-independent ratio of global warming per unit of cumulative CO2 emissions. However, accounting for non-CO2 forcings and changes in albedo or other Earth system feedbacks provides further challenges in calculating TCRE and the remaining carbon budgets.

This session aims to further our understanding of the climate response under different emission scenarios, and to advance our knowledge of associated carbon budgets consistent with meeting various levels of warming. We invite contributions that use a variety of tools, including fully coupled Earth System Models, Integrated Assessment Models, or simple climate model emulators. We welcome studies exploring different aspects related to carbon budgets and the TCRE framework, including: the governing mechanisms behind linearity of TCRE and its limitations, effects of different forcings and feedbacks (e.g. permafrost carbon feedback) and non-CO2 forcings (e.g. aerosols, and other non-CO2 greenhouse gases), estimates of the remaining carbon budget to reach a given temperature target (for example, the 1.5 °C warming level from the Paris Agreement), the role of pathway dependence, the climate-carbon responses to different emission scenarios (e.g. SSP scenarios, or idealized scenarios), and the behaviour of TCRE in response to artificial CO2 removal from the atmosphere (i.e. negative emissions). Contributions from the fields of climate policy and economics focused on applications of carbon budgets are also encouraged.

Share:
Co-organized by EOS4/BG1/ERE1
Convener: Katarzyna (Kasia) Tokarska | Co-conveners: Andrew MacDougall, Joeri Rogelj, Kirsten Zickfeld
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)
AS2.16

To showcase their strong thematic connection, the two sessions “Air-Land Interactions (General Session)” and “Understanding and Characterization of Land-Atmosphere Feedback” were merged.

The session is addressed to experimentalists and modellers working on land surface fluxes from local to regional scales. The programme is open to a wide range of new studies in micrometeorology. The topics include the development of new devices, measurement techniques and experimental design methods, as well as novel findings on surface layer theory and parametrization at the local scale. The theoretical parts encompass soil-vegetation-atmosphere transport, internal boundary-layer theories and flux footprint analyses, etc.. Of special interest are comparisons of experimental data, parametrizations and models. This includes energy and trace gas fluxes (inert and reactive) as well as water, carbon dioxide and other GHG fluxes. Specific focus is given to outstanding problems in land surface boundary layer descriptions such as complex terrain, energy balance closure, stable stratification and night time fluxes, as well as to the dynamic interactions with atmosphere, plants (in canopy and above canopy) and soils including the scale problems in atmosphere and soil exchange processes.

The understanding of feedback processes in the land-atmosphere (L-A) system is crucial for advanced modeling and prediction of weather and climate. However, the impact of soil moisture and evapotranspiration on the diurnal cycle of the planetary boundary layer (PBL), clouds, and precipitation remains a sore gap in our understanding of weather processes and climate statistics. For this purpose, the exchange of momentum, water, energy, and carbon at the land surface and at the top of the PBL has to be investigated from the local to regional scales in great detail. In this session, we accept observational and modeling approaches to address these challenges. With respect to the observations, emphasis is put on the application of new sensor synergies for studying L-A exchange processes and entrainment at the PBL top based on long-term data sets or recent field campaigns, e.g., combining multi-tower, scanning lidar, airborne, and satellite observations. With respect to theoretical understanding and modeling, we welcome the study of feedback processes as well as the derivation and application of feedback metrics from the mesoscale to turbulent scales, e.g., derived by large eddy simulations.

Share:
Co-organized by BG1/HS13
Convener: Andreas Ibrom | Co-conveners: Christoph Thomas, Natascha Kljun, Volker Wulfmeyer, Linda Schlemmer, Matthias Mauder, Georg Jocher
Displays
| Attendance Wed, 06 May, 10:45–12:30 (CEST), Attendance Wed, 06 May, 14:00–15:45 (CEST)
SSS8.10

The dynamics of the solid Earth and its surface are strongly affected by their interplays as well as biota and climate. These constant feedback systems operate at a variety of spatial and temporal scales that are regulated in a complex system of interactions. For instance, in the critical zone -the terrestrial surface environment ranging from the lower atmosphere to the solid parent material- interplays not only regulate manifold ecosystems and bio-geochemical cycles, but also shape the Earth’s surface at the interface between atmosphere and lithosphere, where soils develop. At much larger scales, plate tectonics and global geodynamics control the physiography, climate and hydrosphere, which in turn strongly affect the surface feedback processes via tectonic, biological, geochemical and hydrological processes. Ultimately, climate and tectonics are prominent macro-ecological drivers of landscape development. But even though the underlying geology and tectonic processes have long been recognized as driving parameters, this is much less so for biological processes. The driving force of microorganisms, plants and animals on the shape of land surfaces is still poorly understood.
Understanding the links between the solid Earth and the external spheres of the Earth has experienced a recent upswing due to advanced analytical techniques, but also thanks to fostered interactions between researchers from different disciplines. This session aims to bring together geoscientists, soil scientists, climatologists and biologists working at different spatial and temporal scales on the feedback interactions between geology, topography, soils, climate and biosphere at the surface of the Earth. The session covers a multitude of topics from the microbial to the geodynamics time and space scales.

Solicited speakers are:
Carina Hoorn, University of Amsterdam, The Netherlands
Alexia Stokes, French National Institute for Agricultural Research – INRA, France
Veerle Vanacker, University of Louvain, Belgium

Share:
Co-organized by BG1/CL4/GD1/GM4/SSP2
Convener: Steffen Seitz | Co-conveners: Laurent Husson, Annegret Larsen, Carsten W. Mueller, Pierre Sepulchre, Kirstin Übernickel
Displays
| Attendance Fri, 08 May, 08:30–10:15 (CEST)

BG2 – Methods in Biogeosciences

Programme group scientific officer: Giuliana Panieri

BG2.1

Stable isotopes and other novel tracers, such as carbonyl sulfide (COS) and clumped isotopes, help to identify and quantify biological, chemical and physical processes that drive Earth's biogeochemical cycling, atmospheric processes and biosphere-atmosphere exchange. Recent developments in analytical measurement techniques now offer the opportunity to investigate these tracers at unprecedented temporal and spatial resolution and precision.

This session includes contributions from field and laboratory experiments, latest instrument developments as well as theoretical and modelling activities that investigate and use the isotope composition of light elements (C, H, O, N) and their compounds as well as other novel tracers for biogeochemical and atmospheric research.

Topics addressed in this session include:
- Stable isotopes in carbon dioxide (CO2), water (H2O), methane (CH4) and nitrous oxide (N2O)
- Novel tracers and biological analogues, such as COS
- Polyisotopocules ("clumped isotopes")
- Intramolecular stable isotope distributions ("isotopomer abundances")
- Analytical, method and modelling developments
- Flux measurements
- Quantification of isotope effects
- Non-mass dependent isotopic fractionation and related isotope anomalies

Public information:
Solicited speaker:
Dr Amaëlle Landais
Laboratoire des sciences du climat et de l’environnement (LSCE)
https://www.lsce.ipsl.fr/Phocea/Pisp/index.php?nom=amaelle.landais

Share:
Co-organized by AS4
Convener: Jan Kaiser | Co-conveners: Alexander Knohl, Lisa Wingate
Displays
| Attendance Thu, 07 May, 08:30–10:15 (CEST)
BG2.2

The extraction and analysis of sedimentary ancient DNA (sedaDNA) from Pleistocene and Holocene sediments could potentially revolutionise palaeoecology and biostratigraphy over the next decade. This potential is growing because it has been shown that a) there is preservation of sedaDNA well outside the sub-Arctic and Arctic biomes, b) the costs are reducing, c) the number of laboratories has increased, and most importantly, d) the techniques, such as metabarcoding and shot gun sequencing, are becoming more robust (both in reliability and specificity) and deeper (in taxonomic coverage). At present, and probably for some considerable time to come, sedaDNA will be used alongside microscopic proxies such as pollen, diatoms, foraminifera and insects but it has the potential to be far more specific in characterising local biotic conditions, climatic reconstructions and impact of human activities. This session invites papers using sedaDNA from sediments or soils from any site from lakes to marine deposits and any time period. Methodological papers are also welcome.

Share:
Convener: Kathleen Stoof-Leichsenring | Co-conveners: Laura S. Epp, Mikkel Winther Pedersen
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)
BG2.3

Smart Farming is driving a revolution in agriculture, aiming at more productive and sustainable production through precise and resource-efficient decision making, with additional applications in forest and rangeland management. Remotely sensed Big Data from satellite, small unmanned aerial, airborne, in situ and proximal systems, brings both challenges and opportunities which requires high spatial resolution and near real-time mapping capabilities. Success in crop health monitoring, stress identification, soil mapping, fertilizer and irrigation advisories, yield prediction, ecosystem services, and more have been achieved. This session seeks contributions across government, university, private, and nonprofit organizations. It focuses on research methodologies and applications for the use of high spatial resolution or high temporal frequency remotely sensed Big Data for Smart Farming and land management applications. We invite your findings throughout the chain of data collection, storage, transfer, transformation, analytics and discuss how to achieve the goal of more productive and sustainable agriculture production

Share:
Co-organized by GI6
Convener: SANAZ SHAFIAN | Co-convener: Yun Yang
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)
BG2.5

This multidisciplinary session invites contributions on the use of methods and tools aimed to obtain reliable stable isotope data in various areas. The number of papers using stable isotopes as a tool has increased enormously in the last years. Though this become a very common technique in many science fields (biogeosciences, atmospheric, environment, ecology, forensics, etc), such datasets are difficult to compare / combine as the data quality is often unknown. Different protocols used in different labs, not optimal use of Reference Materials (RMs), isotope fractionation during sample-preparation and within TCEA peripherals, exchangeable hydrogen and oxygen, different data corrections – these are a few examples of potential pitfalls. Evaluating data quality may be especially difficult for novel methodologies such as atmospheric research (e.g. N2O), applications using matrices with exchangeable Hydrogen, CSIA (e.g. fatty acids, amino acids). The session calls for papers that try to search flaws in analytical methods, in comparison of different datasets produced in different labs/methods, creating protocols and tools for QA/QC, investigation of proper RMs to be used for the fit-for-purpose. This session is a plea for high quality stable isotope data to be applied in many sciences and produce data that can be utilized for the future (this is important considering all efforts in OA journals, datasets, etc) including creating large reference datasets as based on data produced by different labs in areas such as biological species, soils, atmospheric observations, forensics. Often such reference datasets should not be used in any case without a proper QC applied.

Share:
Co-organized by HS1.1
Convener: Sergey Assonov | Co-conveners: David Soto, Philip Dunn, Grzegorz Skrzypek
Displays
| Attendance Wed, 06 May, 16:15–18:00 (CEST)
BG2.7

A remote sensing signal acquired by a sensor system results from electromagnetic radiation (EM) interactions from incoming or emitted EM with atmospheric constituents, vegetation structures and pigments, soil surfaces or water bodies. Vegetation, soil and water bodies are functional interfaces between terrestrial ecosystems and the atmosphere. The physical types of EM used in RS has increased during the years of remote sensing development. Originally, the main focus was on optical remote sensing. Now, thermal, microwave, polarimetric, angular and quite recently also fluorescence have been added to the EM regions under study.
This has led to the definition of an increasing number of bio-geophysical variables in RS. Products include canopy structural variables (e.g. biomass, leaf area index, fAPAR, leaf area density) as well as ecosystem mass flux exchanges dominated by carbon and water exchange. Many other variables are considered as well, like chlorophyll fluorescence, soil moisture content and evapotranspiration. New modelling approaches including models with fully coupled atmosphere, vegetation and soil matrices led to improved interpretations of the spectral and spatio-temporal variability of RS signals including those of atmospheric aerosols and water vapour.
This session solicits for papers presenting methodologies and results leading to the assimilation in biogeoscience and atmospheric models of cited RS variables as well as data measured in situ for RS validation purposes. Contributions should preferably focus on topics related to climate change, food production (and hence food security), nature preservation and hence biodiversity, epidemiology, and atmospheric chemistry and pollution (stratospheric and troposphere ozone, nitrogen oxides, VOC’s, etc). It goes without saying that we also welcome papers focusing on the assimilation of remote sensing and in situ measurements in bio-geophysical and atmospheric models, as well as the RS extraction techniques themselves.
This session aims to bring together scientists developing remote sensing techniques, products and models leading to strategies with a higher (bio-geophysical) impact on the stability and sustainability of the Earth’s ecosystems.

Public information:
BG2.7
Remote Sensing applications in the Biogeosciences

Chairperson: Frank Veroustraete & Willem Verstraeten
10:45
Welcome
1
D530 | EGU2020-5174
10:50
Potential of LiDAR for species richness prediction at Mount Kilimanjaro
Alice Ziegler and the Research Group at the Kilimanjaro
2
D512 | EGU2020-288
10:57
Understanding wetland dynamics using geostatistics of multi-temporal Earth Observation datasets
Manudeo Narayan Singh and Rajiv Sinha
3
D515 | EGU2020-5421
11:04
Twelve years of SIFTER Sun-Induced Fluorescence retrievals from GOME-2 as an independent constraint on photosynthesis across continents and biomes
Maurits L. Kooreman, K. Folkert Boersma, Erik van Schaik, Anteneh G. Mengistu, Olaf N. E. Tuinder, Piet Stammes, Gerbrand Koren, and Wouter Peters
4
D516 | EGU2020-6674
11:11
Evaluation of understory LAI estimation methodologies over forest ecosystem ICOS sites across Europe
Jan-Peter George Jan Pisek and the Tobias Biermann (2), Arnaud Carrara (3), Edoardo Cremonese (4), Matthias Cuntz (5), Silvano Fares (6), Giacomo Gerosa (7), Thomas Grünwald (8) et al.
5
D517 | EGU2020-8263
11:18
Probing the relationship between formaldehyde column concentrations and soil moisture using mixed models and attribution analysis
Susanna Strada, Josep Penuelas, Marcos Fernández Martinez, Iolanda Filella, Ana Maria Yanez-Serrano, Andrea Pozzer, Maite Bauwens, Trissevgeni Stavrakou, and Filippo Giorgi
6
D518 | EGU2020-9071
11:25
Validation of seasonal time series of remote sensing derived LAI for hydrological modelling
Charlotte Wirion, Boud Verbeiren, and Sindy Sterckx
7
D519 | EGU2020-12000
11:32
Potassium estimation of cotton leaves based on hyperspectral reflectance
Adunias dos Santos Teixeira, Marcio Regys Rabelo Oliveira, Luis Clenio Jario Moreira, Francisca Ligia de Castro Machado, Fernando Bezerra Lopes, and Isabel Cristina da Silva Araújo
8
D528 | EGU2020-4418
11:39
Comparison of the Photochemical Reflectance Index and Solar-induced Fluorescence for Estimating Gross Primary Productivity
Qian Zhang and Jinghua Chen
9
D529 | EGU2020-4582
11:46
Weed-crop competition and the effect on spectral reflectance and physiological processes as demonstrated in maize
Inbal Ronay, Shimrit Maman, Jhonathan E. Ephrath, Hanan Eizenberg, and Dan G. Blumberg
10
D531 | EGU2020-6059
11:53
Remote sensing-aid assessment of wetlands in central Malawi
Emmanuel Ogunyomi, Byongjun Hwang, and Adrian Wood
12:00
Open discussion
12:30
End morning session

Chat time: Wednesday, 6 May 2020, 14:00–15:45
Chairperson: Willem Verstraeten Frank Veroustraete
14:00
Welcome back!
1
D534 | EGU2020-10014
14:05
On the surface apparent reflectance exploitation: Entangled Solar Induced Fluorescence emission and aerosol scattering effects at oxygen absorption regions
Neus Sabater, Pekka Kolmonen, Luis Alonso, Jorge Vicent, José Moreno, and Antti Arola
2
D536 | EGU2020-15832
14:12
Evaluating the impact of different spaceborne land cover distributions on isoprene emissions and their trends using the MEGAN model.
Beata Opacka, Jean-François Müller, Jenny Stavrakou, Maite Bauwens, and Alex B. Guenther
3
D537 | EGU2020-10633
14:19
Application of Copernicus Global Land Service vegetation parameters and ESA soil moisture data to analyze changes in vegetation with respect to the CORINE database
Hajnalka Breuer and Amanda Imola Szabó
4
D538 | EGU2020-13332
14:26
How valuable are citizen science data for a space-borne crop growth monitoring? – The reliability of self-appraisals
Sina C. Truckenbrodt, Friederike Klan, Erik Borg, Klaus-Dieter Missling, and Christiane C. Schmullius
5
D539 | EGU2020-18493
14:33
Learning main drivers of crop dynamics and production in Europe
Anna Mateo Sanchis, Maria Piles, Julia Amorós López, Jordi Muñoz Marí, and Gustau Camps Valls
6
D540 | EGU2020-19003
14:40
Modelling understory light availability in a heterogeneous landscape using drone-derived structural parameters and a 3D radiative transfer model
Dominic Fawcett, Jonathan Bennie, and Karen Anderson
7
D543 | EGU2020-5151
14:47
Global assimilation of ocean-color data of phytoplankton functional types: Impact of different datasets
Lars Nerger, Himansu Pradhan, Christoph Völker, Svetlana Losa, and Astrid Bracher
8
D544 | EGU2020-5251
14:53
PROSPECT-PRO: a leaf radiative transfer model for estimation of leaf protein content and carbon-based constituents
Jean-Baptiste Féret, Katja Berger, Florian de Boissieu, and Zbyněk Malenovský
9
D547 | EGU2020-13447
15:00
Inverting a comprehensive crop model in parsimonious data context using Sentinel 2 images and yield map to infer soil water storage capacity.
André Chanzy and Karen Lammoglia
10
D550 | EGU2020-18798
15:07
Study on The Extraction Method and Spatial-temporal Characteristics of Irrigated Land in Zhangjiakou City
Zijuan Zhu, Lijun Zuo, Zengxiang Zhang, Xiaoli Zhao, Feifei Sun, and TianShi Pan
11
D551 | EGU2020-19953
15:14
Remote sensing and GIS based ecological modelling of potential red deer habitats in the test site region DEMMIN (TERENO)
Amelie McKenna, Alfred Schultz, Erik Borg, Matthias Neumann, and Jan-Peter Mund
15:21
Open discussion
15:45
End afternoon session

Share:
Co-organized by AS5/ESSI1/HS6/NH6/OS3
Convener: Frank Veroustraete | Co-convener: Willem Verstraeten
Displays
| Attendance Wed, 06 May, 10:45–12:30 (CEST), Attendance Wed, 06 May, 14:00–15:45 (CEST)
BG2.8

This session is open to all contributions in biogeochemistry and ecology where stable isotope techniques are used as analytical tools, with a focus on stable isotopes of light elements (C, H, O, N, S, ...). We welcome studies from both terrestrial and aquatic (including marine) environments as well as methodological and experimental, theoretical and modeling studies that introduce new approaches or techniques (including natural abundance work, labeling studies, multi-isotope approaches, clumped and metal isotopes).

Share:
Co-organized by HS13, co-sponsored by EAG
Convener: Michael E. Böttcher | Co-conveners: Kirstin Dähnke, Gerd Gleixner, Nikolaus Gussone
Displays
| Attendance Wed, 06 May, 14:00–15:45 (CEST)
ERE5.5

Assessing and mitigating the environmental impacts of solid waste is critical to develop sustainable waste management strategies. Solid waste deposits from the extractive industry, i.e. extractive waste (EW), and municipal solid waste (MSW) landfills can be an environmental threat through groundwater or surface water contamination in addition to the human health risks they might pose. Furthermore, MSW landfills account for 5% of the anthropogenic methane production worldwide.
In line with Europe’s Circular Economy Action Plan, several strategies emerged aiming for sustainability regarding the use of natural resources, a responsible consumption/production, dynamic landfill management (DLM) and, mainly for EW, the recovery/reuse of waste produced during exploitation and processing activities. These include the reduction of emissions through control of microbial activity, sustainable mining and recovery of raw materials and energy, the rehabilitation of the occupied land among others. Yet, the controlling mechanisms of microbial activity and other degrading processes in waste are largely unknown, and traditional methods based on the analysis of samples generally lack the required resolution for an adequate characterization of biogeochemical processes. Hence, there is a big demand of innovative techniques for the characterization and monitoring of EW and MSW disposal sites. In particular, reliable information about the composition and geometry of waste depositions, as well as about their biogeochemical status is needed. Geophysical methods are well suited to fulfill these requirements as they can provide real-time information about subsurface physical properties in a non-invasive way and with high resolution in space and time.
The main topics to be discussed in this session deal with the use of innovative methods, including, but not limited to, geophysical approaches for:
- Characterization and monitoring of MSW and of EW from quarries and mines.
- Case studies for the detection and assessment of environmental pollution associated to the disposal of solid waste.
- Evaluation of the risks associated with the management of waste and integrated approaches towards sustainable mining,
- Innovative technologies to exploit EW facilities and to improve the systematic recovery of waste flows. Case studies related to the recovery of EW from quarrying and mining activities, including valorization as construction materials.

Public information:
Please, consider to attend the session ERE1.4: The Environment and Smart Circular Economy and Cities: A New Geo management Approach. During the chat time it will be possible to interact with the Coordinator of the COST Action CA17133 Circular City Implementing nature based solutions for creating a resourceful circular city.

The conveneers are arranging one or more special issue on scientific journals. you'll be alerted about the opening of the submission phase.

Share:
Co-organized by BG2
Convener: Giovanna Antonella Dino | Co-conveners: Arnaud Watlet, Alessandro Cavallo, Adrian Flores Orozco, Rory Doherty, Itzel Isunza Manrique, Sabina Dolenec, Ellen Van De Vijver
Displays
| Attendance Wed, 06 May, 14:00–15:45 (CEST)
ITS2.12/HS12.24

In an urbanizing world with major land-use changes, both human (social and economic) and natural systems and their environmental challenges and constraints need to be considered in order to achieve sustainable urban development. Nature‐based solutions (NBS) in urban areas can make anthropogenic landscapes more ecosystem-compatible, enhancing ecosystem services, preserving biodiversity, mitigating land degradation, and increasing urban resilience to environmental changes. Maintaining and restoring ecosystems and green–blue areas within urban regions is important for a) increasing the well‐being of urban populations, b) providing multifunctional services, such as storm water mitigation and local climate regulation, c) improving energy efficiency of buildings, and d) mitigating carbon emissions. Implementing NBS in urban areas is of growing importance worldwide, and particularly in the EU political agenda, as a way to attain some of the Sustainable Development Goals (e.g. Sustainable cities and communities), and to reinforce the New Urban Agenda. Implementing efficient NBS in urban landscapes requires integrated and interdisciplinary approaches.

This session aims to enhance the scientific basis for sustainable urban development and resilience and advance knowledge of innovative nature-based approaches to face environmental changes (e.g. in land use and climate) and simultaneously provide better understanding of associated social-ecological interactions. This session seeks to:

• Better understanding of advantages and disadvantages of NBS in Urban environments;
• New methods and tools to investigate the role of NBS in the context of environmental change, in particular the effectiveness of NBS in enhancing urban resilience;
• New insights and perspectives of NBS, particularly their role in providing urban ecosystem services, such as storm water regulation and reducing greenhouse gas emissions;
• Identifying opportunities for and barriers to implement NBS, driven by current regulatory frameworks and management practices - and how the former can be reaped and the latter overcome;
• Presenting overviews and case studies of NBS projects that also involve the private sector and market-based mechanisms;
• Interactions between NBS and the Sustainable Development Goals (SDGs);
• Approaches for integrating actors involved in landscape design and urban planning.

Share:
Co-organized by BG2/CL3/NH8
Convener: Zahra Kalantari | Co-conveners: Carla Ferreira, Haozhi Pan, Omid Rahmati, Johanna Sörensen
Displays
| Attendance Tue, 05 May, 08:30–12:30 (CEST)
ITS2.17/SSS12.2

Human interaction with the environment has gone through several stages of evolution. Being a product of the natural evolution of living organisms in the biosphere, Homo sapiens as a species has evolved in the geochemical conditions of the virgin biosphere. The rapid development of intellectual abilities of this genus allowed, first, to survive in adverse environmental conditions around the whole world, then, to cultivate the land, transform the entire system of biocenoses, and now to create a new habitat for man exclusively. The result was a significant geochemical transformation of the virgin biosphere, but a kind of punishment for the achieved progress was the emergence of a number of endemic diseases of a geochemical nature. Nowadays a variety of anthropogenic sources of pollution and their location in various natural geochemical conditions require not only constant monitoring of the chemical state of soil, water, air and food products, but also the development of spatially differentiated approaches to assessing the risk of provoked diseases. To solve this problem it is necessary concertedly interpreting a geochemical and medical information in order to assess the risks to human health associated with modern natural and anthropogenic geochemical features in urban and rural habitats. During session we propose to discuss:
1) global trends of health transformation in new geochemical environment of modern noosphere;
2) criteria for determining pollution level depending on environmental and geochemical constrains;
3) new approaches to assess the risk of diseases of geochemical nature in different countries;
4) the problem of mapping the risk zones, related to negative medical effects due to deficiency or excess of certain chemical elements or compounds.
Session co-sponsored by the European Association of Geochemistry.

Public information:
Human interaction with the environment has gone through several stages of evolution. Man as a species first survived in adverse environmental conditions around the world, then he began to cultivate the land, exploit other species and develop industry, changing the structure and composition of natural ecosystems, and now creates a new habitat exclusively in accordance with his own requirements. This activity leads to significant chemical pollution of the environment at the local, and in some cases at the regional level, which leads to disruption of natural food chains. This process is followed by the negative biological reactions of living organisms, including the man himself. These reactions and, in particular, endemic diseases of a geochemical nature can be regarded as a kind of punishment for the progress made. Emerging environmental problems require not only constant monitoring of the chemical state of soil, water, air and food products and identification of anthropogenic induced negative reactions, but also the development of spatially differentiated approaches to assessing the risk of triggered negative reactions and diseases. During our session, we will discuss:
1) global trends in health status in the new geochemical environment of the modern noosphere (the anthropogenic stage of biosphere evolution);
2) methods and criteria for determining the level of environmental pollution by metals, pesticides, radionuclides and pharmaceutical substances;
3) new approaches to assessing the risk of pollution and diseases of a geochemical nature in different countries;
4) the problems of identifying and mapping risk zones.
We kindly invite all interested parties to our session.

Share:
Co-organized by EOS4/AS4/BG2/GM12/GMPV10/HS13/NH9, co-sponsored by EAG
Convener: Elena Korobova | Co-conveners: Maria Manuela Abreu, Jaume Bech, Glenda Garcia-Santos, Liudmila Kolmykova, Virginia Aparicio, Manfred Sager
Displays
| Attendance Tue, 05 May, 14:00–18:00 (CEST)
ITS4.3/AS5.2

There are many ways in which machine learning promises to provide insight into the Earth System, and this area of research is developing at a breathtaking pace. If unsupervised, supervised as well as reinforcement learning can hold this promise remains an open question, particularly for predictions. Machine learning could help extract information from numerous Earth System data, such as satellite observations, as well as improve model fidelity through novel parameterisations or speed-ups. This session invites submissions spanning modelling and observational approaches towards providing an overview of the state-of-the-art of the application of these novel methods.

Share:
Co-organized by BG2/CL5/ESSI2/NP4
Convener: Julien Brajard | Co-conveners: Peter Düben, Redouane Lguensat, Francine Schevenhoven, Maike Sonnewald
Displays
| Attendance Wed, 06 May, 14:00–18:00 (CEST)
ITS5.2/AS3.17

Accurate and precise atmospheric measurements of greenhouse gas (GHG) concentrations reveal the rapid and unceasing rise of global GHG concentrations due to human activity. The resulting increases in global temperatures, sea-level, glacial retreat, and other negative impacts are clear. In response to this evidence, nations, states, and cities, private enterprises and individuals have been accelerating GHG reduction efforts while meeting the needs of global development. The urgency, complexity and economic implications of GHG reductions demand strategic investment in science-based information for planning and tracking emission reduction policies and actions. In response, the World Meteorological Organization (WMO) Global Atmosphere Watch Program (GAW) and its partners have initiated the development of an Integrated Global Greenhouse Gas Information System (IG3IS). IG3IS combines atmospheric GHG concentration measurements and human-activity data in an inverse modeling framework to help decision-makers take better-informed action to reduce emissions of greenhouse gases and pollutants that reduce air quality. This service is based on existing and successful measurement and analysis methods and use-cases for which the scientific and technical skill is proven or emerging.

This session intends to gather presentations from researchers and decision-makers (user-community) on the development, implementation and use of atmospheric measurement-based “top-down” and data-driven “bottom-up” GHG emission inventory estimates, and the combination of both approaches, explicit in space and time, to deliver actionable emissions information at scales where human activity occurs and emission reduction is most effective. This session will also showcase the new projects and efforts to develop “good-practice” standards under the World Meteorological Organization (WMO) Integrated Global Greenhouse Gas Information System (IG3IS), which is part of WMO’s commitment to science-based services.

Share:
Co-organized by BG2/CL3/ERE1
Convener: Phil DeCola | Co-conveners: Thomas Lauvaux, Kimberly Mueller, Tomohiro Oda, Oksana Tarasova, Maša Zorana Ostrogović Sever
Displays
| Attendance Wed, 06 May, 14:00–18:00 (CEST)
HS6.4

Remote sensing techniques are widely used to monitor the relationship between the water cycle and vegetation dynamics and its impact on the carbon and energy cycles. Measurements of vegetation water content, transpiration and water stress contribute to a better global understanding of the water movement in the soil-plant system. This is critical for the detection and monitoring of droughts and their impact on biomass, productivity and feedback on water, carbon and energy cycles. With the number of applications and (planned) missions increasing, this session aims to bring researchers together to discuss the current state and novel findings in the remote observation of the interactions between vegetation and hydrology. We aim to (1) discuss novel research and findings, (2) exchange views on what should be done to push the field forward, and (3) identify current major challenges.

We encourage authors to submit presentations on:
• Remote sensing data analyses,
• Modelling studies,
• New hypothesis,
• Enlightening opinions.

Public information:
Dear colleagues,

The chat session on Remote sensing of interactions between vegetation and hydrology​ will be organized according to four topics:
Monitoring of vegetation and hydrology interactions with radar
Phenology dynamics and its relation to hydrological variables
Impact of land cover on vegetation and hydrology
The use and development of indices for monitoring vegetation and water stress

More information on the presenters and moderators per topic can be found in the session materials.
We hope to meet you all in the online chat!

Best Regards,
Tim, Julia, Brianna, Virginia and Mariette

Share:
Co-organized by BG2
Convener: Mariette Vreugdenhil | Co-conveners: Virginia Brancato, Julia K. Green, Brianna Pagán, Tim van Emmerik
Displays
| Attendance Thu, 07 May, 08:30–10:15 (CEST)
HS10.3

During the passage of precipitation through the soil-plant-atmosphere interface, water and solutes are redistributed by the plant canopy and subsurface flow and transport processes. Many of these dynamic interactions between vegetation and soil are not yet well understood. This session brings together the vibrant community addressing a better understanding of ecohydrological processes taking place between the canopy and the root zone. Innovative methods investigating throughfall, stemflow, hydraulic redistribution, and root water uptake in various environments shed light on how water and solutes are routed in the thin layer covering the terrestrial ecosystems. The session further covers open questions and new opportunities within the ecohydrological community regarding methodological developments such as the analysis of stable isotope, soil moisture, throughfall or solute dynamics.
Invited Speakers:
Christiane Werner, University of Freiburg, Germany
Alexandra Ponette-González, University of North Texas, USA

Share:
Co-organized by BG2
Convener: Natalie Orlowski | Co-conveners: Jan Friesen, Matthias Sprenger, Miriam Coenders-Gerrits, Josie Geris
Displays
| Attendance Wed, 06 May, 14:00–18:00 (CEST)
AS3.14

Methane is an important greenhouse gas that has contributed ∼25% of the radiative forcing experienced to date. Despite methane’s short atmospheric lifetime (~10 years), global methane concentrations have grown more than three times faster than carbon dioxide since the industrial revolution. This makes methane emission mitigation an effective way to reduce the short-term rate of warming. In contrast to carbon dioxide, anthropogenic methane emissions originate from a large variety and number of diffuse point sources that are mostly independent of combustion processes. As a result, systematic atmospheric measurements are needed to inform emission inventories and mitigation strategies.

This session will highlight research that focuses on methane emissions from human activities (e.g., fossil fuel infrastructure, fire, rice production, ruminants, landfills and waste). Particular emphasis is on studies collecting atmospheric observations at different spatio-temporal scales with the aim to (1) reduce the uncertainty in the measured magnitude of emissions, (2) identify source-specific emission patterns and mitigation opportunities, and (3) inform stakeholders, such as regulators and industry representatives, on mitigation pathways.

Share:
Co-organized by BG2
Convener: Stefan Schwietzke | Co-conveners: Andreea Calcan, Bryce F.J. Kelly, Christopher Konek
Displays
| Attendance Wed, 06 May, 14:00–15:45 (CEST)
BG2.22

Mercury (Hg) is a toxic global pollutant of great environmental concern. The UNEP Minamata convention on mercury, a legally-binding international treaty aiming to reduce negative impacts of Hg on the environment, has entered into force in 2017. Anthropogenic activities have altered the global Hg cycle to a great extent and many ecosystems are threatened by exposure to elevated levels of Hg and its different species. For instance, neurotoxic and bioaccumulating methyl-Hg is formed under the influence of anaerobic microorganisms in a variety of natural systems but the controls on this key process are still far from being understood. Further active Hg research areas include exchange processes at the atmosphere-soil-plant interface and their importance for understanding atmospheric Hg deposition, the behavior and long-term fate of Hg at contaminated sites, as well as global cycling models assessing the evolution of historic Hg fluxes from different natural and anthropogenic sources. In the past few years, a number of novel research tools based on microbiological, spectroscopic, isotopic, and modelling techniques have been developed to improve our understanding of Hg cycling in the environment. This session presents new contributions on present-day Hg cycling in the environment using field-based, experimental, and/or modelling approaches on local to global scales, as well as contributions focusing on long- and short-term reconstruction of Hg as a pollutant over time using natural archives such as ice-cores, tree-rings, lake sediments and peat bogs. We particularly welcome research addressing the effects of the implementation of the Minamata convention on mercury levels in the environment and new approaches to assess its effectiveness.

Share:
Convener: Jan G. Wiederhold | Co-conveners: Sofi Jonsson, Martin Jiskra, Sophia Hansson
Displays
| Attendance Fri, 08 May, 08:30–10:15 (CEST)
BG2.23

The development and functions of ecosystems and their responses to environmental drivers are inherently long-term processes that need to be studied along gradients in time and space. Global anthropogenic drivers of change interact with natural processes, causing uncertainties, tipping points and potential crises in system behaviour. Further, most ecosystem services are strongly interlinked and require a multi- and transdisciplinary approach that allows for the simultaneous analysis of multiple processes and feedbacks. The environmental drivers affecting one domain are also easily reflected in other domains. Considering the current extensive land use changes and climate change, integrated studies where aquatic and terrestrial ecosystems are studied in combination are urgently required. The sites and platforms of the long-term ecosystem, critical zone and socio-ecological research networks and research infrastructures (ILTER, eLTER) distributed around the globe offer a unique tool for this, while coupled ecosystem-scale experimentation (AQUACOSM) can further strengthen the hypothesis testing.

This session focuses on research performed at sites and platforms implementing a whole system approach, also cross the terrestrial and aquatic domains. Emphasis will be on results presenting long-term changes and responses of ecosystem and socio-ecological processes to environmental drivers, as well as ecosystem-scale experiments (mesocosms) and observations scaling up from sites to larger regions up to the continental level.

We welcome studies linking biodiversity loss, climate change, and other anthropogenic pressures to ecosystems. We encourage contributions using interdisciplinary and multidisciplinary approaches, addressing relationships among different ecosystem compartments (vegetation, soils, waters etc.) or between ecological and social systems, as well as transdisciplinary studies that incorporate diverse forms of knowledge beyond the scientific community.

Share:
Co-sponsored by eLTER and ILTER
Convener: Michael Mirtl | Co-conveners: Jaana Bäck, Giorgio Matteucci, Daniel Orenstein
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)
ITS2.15/BG2.25

This session is linked to the Pan-Eurasian EXperiment (PEEX; www.atm.helsinki.fi/peex), a multi-disciplinary, -scale and -component climate change, air quality, environment and research infrastructure and capacity building programme. It is aimed at resolving major uncertainties in Earth system science and global sustainability issues concerning the Arctic, Northern Eurasia and China regions. This session aims to bring together researchers interested in (i) understanding environmental changes effecting in pristine and industrialized Pan-Eurasian environments (system understanding); (ii) determining relevant environmental, climatic, and other processes in Arctic-boreal regions (process understanding); (iii) the further development of the long-term, continuous and comprehensive ground-based, air/seaborne research infrastructures together with satellite data (observation component); (iv) to develop new datasets and archives of the continuous, comprehensive data flows in a joint manner (data component); (v) to implement validated and harmonized data products in models of appropriate spatio-temporal scales and topical focus (modeling component); (vi) to evaluate impact on society though assessment, scenarios, services, innovations and new technologies (society component).
List of topics:
• Ground-based and satellite observations and datasets for atmospheric composition in Northern Eurasia and China
• Impacts on environment, ecosystems, human health due to atmospheric transport, dispersion, deposition and chemical transformations of air pollutants in Arctic-boreal regions
• New approaches and methods on measurements and modelling in Arctic conditions;
• Improvements in natural and anthropogenic emission inventories for Arctic-boreal regions
• Physical, chemical and biological processes in a northern context
• Aerosol formation-growth, aerosol-cloud-climate interactions, radiative forcing, feedbacks in Arctic, Siberia, China;
• Short lived pollutants and climate forcers, permafrost, forest fires effects
• Carbon dioxide and methane, ecosystem carbon cycle
• Socio-economical changes in Northern Eurasia and China regions.
PEEX session is co-organized with the Digital Belt and Road Program (DBAR), abstracts welcome on topics:
• Big Earth Data approaches on facilitating synergy between DBAR activities & PEEX multi-disciplinary regime
• Understanding and remote connection of last decades changes of environment over High Asia and Arctic regions, both land and ocean.

Share:
Co-organized by AS4/CL2/CR7/GI6
Convener: Markku Kulmala | Co-conveners: Alexander Baklanov, Hanna Lappalainen, Sergej Zilitinkevich (deceased)(deceased)
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST), Attendance Fri, 08 May, 14:00–15:45 (CEST)
HS2.2.2

Earth Systems Models aim at describing the full water- and energy cycles, i.e. from the deep ocean or groundwater across the sea or land surface to the top of the atmosphere. The objective of the session is to create a valuable opportunity for interdisciplinary exchange of ideas and experiences among members of the Earth System modeling community and especially atmospheric-hydrological modelers.
Contributions are invited dealing with approaches how to capture the complex fluxes and interactions between surface water, groundwater, land surface processes, oceans and regional climate. This includes the development and application of one-way or fully-coupled hydrometeorological prediction systems for e.g. floods, droughts and water resources at various scales. We are interested in model systems that make use of innovative upscaling and downscaling schemes for predictions across various spatial- and temporal scales. Contributions on novel one-way and fully-coupled modeling systems and combined dynamical-statistical approaches are encouraged. A particular focus of the session is on weakly and strongly coupled data assimilation across the different compartments of the Earth system for the improved prediction of states and fluxes of water and energy. Merging of different observation types and observations at different length scales is addressed as well as different data assimilation approaches for the atmosphere-land system, the land surface-subsurface system and the atmosphere-ocean system. The value of different measurement types for the predictions of states and fluxes, and the additional value of measurements to update states across compartments is of high interest to the session. We also encourage contributions on use of field experiments and testbeds equipped with complex sensors and measurement systems allowing compartment-crossing and multi-variable validation of Earth System Models.

Share:
Co-organized by AS2/BG2/NH1/NP5/OS4
Convener: Harald Kunstmann | Co-conveners: Harrie-Jan Hendricks Franssen, Alfonso Senatore, Gabriëlle De Lannoy, Martin Drews, Lars Nerger, Stefan Kollet, Insa Neuweiler
Displays
| Attendance Tue, 05 May, 10:45–12:30 (CEST)

BG3 – Terrestrial Biogeosciences

Programme group scientific officer: Cornelia Rumpel

BG3.2

Since the launch of the first Earth Resources Technology Satellite 1 in 1972, land imaging technology has evolved rapidly and transformed science research innovation. The U.S. Geological Survey (USGS) is partnering with U.S. Federal agencies, incorporating input from state/local, academic, industry, and international communities, to document current usage and benefits, and improvement needs for future land imaging observation data and products. The European Commission in collaboration with the European Space Agency is also engaged in a continuous collection of user needs to drive the implementation of its programme. This includes feedback from users but also considering emerging needs from changes in society, policies and technologies.

These activities promote a needs-driven, prioritized investment decision process for land imaging systems, products, and services to better serve the broad land imaging community. This session will provide an overview of the current landscape of land imaging capabilities, applications, user needs for future systems, and the future landscape of land imaging including the rapidly expanding commercial sector.

This session will highlight activities within U.S. Federal agencies, academic, state/local, and international communities, and within the European Union institutions, agencies, including the European Space Agency and EU Member States.
We also invite submissions showcasing new and emerging multi-disciplinary land imaging applications, technology trends, and future needs and opportunities.

Share:
Convener: Zhuoting Wu | Co-conveners: Simon L. G. Jutz, Michel Massart
Displays
| Attendance Tue, 05 May, 10:45–12:30 (CEST)
BG3.3

Terrestrial (semi-)natural and managed ecosystems like forests, grasslands, croplands and wetlands are important sources and/or sinks for greenhouse gases (GHGs: CO2, CH4, N2O) as well as for other trace gases (VOCs, NH3, NO, HONO, Rn, He, etc.). Soils sustain complex patterns of life and act as biogeochemical reactors. Production and consumption of gases and their transport in the soil result in typical patterns of gas concentrations that play a fundamental role affecting many soil functions, such as root and plant growth, microbial activity, and stabilization of soil organic carbon. Plants can contribute to ecosystem exchange by uptake and transport of soil-produced gases to the atmosphere, in-situ production and consumption of gases in plant tissues, and alternation of carbon- and nitrogen-turn-over in adjacent soil. However, the contribution of these individual processes to the net ecosystem GHGs exchange is still unclear and seems to depend on many aspects as plant/tree species, ecosystem type, soil type and conditions, environmental parameters and seasonal dynamics.
Due to the simultaneous influence of various environmental drivers and in case of managed land also management activities, the flux patterns in soil-plant-atmosphere systems are often complex and difficult to attribute to individual drivers. However, it is clear that Interactions between soil, vegetation and the atmosphere exert a crucial role controlling the global budget of these gases and need to be well understood to make any predictions for future.
The session addresses experimentalists and modellers working on trace gas fluxes and their dynamics, production and consumption processes, transport mechanisms and interactions in terrestrial ecosystems at any relevant scale, and from the full climatic and hydrological ecosystem range. We welcome also contributions presenting methodological aspects, development and application of new devices and methods, and modelling studies that seek to integrate our understanding of trace gas exchange in terrestrial ecosystems.

Public information:
EGU this year is different than it used to be. We will be able to use the “Sharing Geoscience Online” platform to present and exchange about our research data and results.
But EGU is not only sharing scientific content, but it is also meeting people. We always had session dinners in our session, where people could meet, have a drink, and exchange ideas about science and life in general.

We want to continue this tradition.
We will have a “Session-Dinner”-at-home online on Thursday, May 7, 19:00 (Vienna Time)

If you are interested in joinnig us, you are welcome - please let me know, and I ll share the link:

Martin.Maier@bodenkunde.uni-freiburg.de

Kind regards

Martin

Share:
Co-organized by SSS9
Convener: Katerina Machacova | Co-conveners: Christof Ammann, Bernard Longdoz, Martin Maier, Jukka Pumpanen, Kaido Soosaar, Barbara Kitzler, Nicholas Nickerson
Displays
| Attendance Fri, 08 May, 08:30–12:30 (CEST)
BG3.5

From pole to pole, peatlands contain up to 30% of the world’s soil carbon pool, illustrating their important role in regulating the global carbon cycle. Currently, peatlands are under various pressures such as a changing climate or nutrient loading with unknown consequences for their functioning as carbon sinks and stores, including the uptake or release of the greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O).

However, it is not clear how the carbon reservoir will react to these pressures and how vulnerable or resilient these ecosystems are. Tipping points, thresholds, and system state changes are often referred to in the literature, but how much do we really know about these in a peatland context? This session will focus on the observed or predicted changes on the biogeochemistry of natural peatlands, caused by external pressures such as climate change, fire or nutrient loading.

We invite studies concentrating, for example, on the effects of climate change, nutrient loading or fire on GHG or nutrient dynamics, peatland vegetation, atmosphere-biosphere interactions or carbon stock changes. Field observations, experimental, and modelling studies of both high- and low-latitude peatlands are welcomed.

Share:
Convener: Annalea Lohila | Co-conveners: Gareth Clay, Maxim Dorodnikov, Mats Nilsson, Frans-Jan W. Parmentier
Displays
| Attendance Mon, 04 May, 14:00–18:00 (CEST)
BG3.6

Plant traits extend the range of earth observations to the level of individual organisms, providing a link to ecosystem function and modeling in the context of rapid global changes. However, overcoming the differences in temporal and spatial scales between plant trait data and biogeochemical cycles remains a challenge.

This session will address the role of plant species traits, biodiversity, acclimation, and adaptation in the biogeochemical cycles of water, carbon, nitrogen, and phosphorus. We welcome conceptual, observational, experimental and modeling approaches, and studies from the local to the global scale, including in-situ or remote sensing observations.

Share:
Convener: Jens Kattge | Co-conveners: Michael Bahn, Oskar Franklin, Han Wang
Displays
| Attendance Mon, 04 May, 08:30–12:30 (CEST)
BG3.7

Shorter return period of climate and hydrological extremes has been observed in the changing climate, which affects the distribution and vitality of ecosystems. In many regions, available water is a crucial point of survival. Risk can be enhanced by the exposure and/or by the vulnerability of the affected ecosystem as well as by land use/land cover change.
The session should provide a multidisciplinary platform for sharing experiences and discussing results of local and catchment scale case studies from a wider range of relevant fields such as
• observed impacts and damage chains in natural and agricultural ecosystems induced by droughts and intense rainfall events;
• correlation between the underlying environmental factors (e.g. climate, water storage capacity of soil) and the distribution/vitality of ecosystems;
• integrated application or comparison of databases and methods for the identification and complex assessment of ecosystem responses to abiotic stress factors;
• expected tendencies of abiotic risk factors affecting and limiting the survival of the vulnerable species.
Contributions are encouraged from international experiences, ongoing research activities as well as national, regional and local initiatives.

Share:
Co-organized by HS10/NH8
Convener: Péter Kalicz | Co-conveners: Zoltán Gribovszki, Borbála Gálos, Karol Mrozik, Jan Szolgay
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)
BG3.8

Observations and simulations of the terrestrial carbon and water budget are fundamental to understanding biosphere-atmosphere interactions under a changing climate. A wide range of processes, covering various spatial and temporal scales, influence the response of terrestrial carbon fluxes (NEE, GPP, TER, fires, methane, lateral export) to changes in land and atmospheric moisture availability. The vegetation and soils also contribute to regulating land-atmosphere moisture fluxes (evapotranspiration, precipitation), which in turn feeds back to the water cycle and the climate system. Observations or modeling assumptions made at different spatial and temporal resolutions also pose new challenges in terms of scaling and uncertainty quantification.

This session aims to synthesize our current understanding and identify knowledge gaps and transferability across scales, We encourage contributions exploring carbon-water interactions from multiple perspectives (remote-sensing, experimental, modelling) and covering all types of biomes (boreal, temperate and tropical forests, grasslands, wetlands, …). Contributions might include for example: 1) disentangling the impact of co-varying drought-driven changes to soil moisture, vapour pressure deficit, or temperature on land carbon fluxes, 2) using in-situ or satellite observations to evaluate or improve the representation of water-carbon interactions and biological processes in models, 3) developing and implementing new representations of plant and ecosystem responses to land and atmospheric moisture stress (e.g. through plant hydraulics, optimality approaches, etc.) and 4) scaling carbon- water interactions from the leaf-level to the global scale and bridging the gap between data streams taken at different temporal and spatial scales (e.g. using modeling, theoretical or statistical approaches).

Solicited speaker: Alexandra Konings, Stanford University

Public information:
Observations and simulations of the terrestrial carbon and water budget are fundamental to understanding biosphere-atmosphere interactions under a changing climate. A wide range of processes, covering various spatial and temporal scales, influence the response of terrestrial carbon fluxes (NEE, GPP, TER, fires, methane, lateral export) to changes in land and atmospheric moisture availability. The vegetation and soils also contribute to regulating land-atmosphere moisture fluxes (evapotranspiration, precipitation), which in turn feeds back to the water cycle and the climate system. Observations or modeling assumptions made at different spatial and temporal resolutions also pose new challenges in terms of scaling and uncertainty quantification.

This session aims to synthesize our current understanding and identify knowledge gaps and transferability across scales, We encourage contributions exploring carbon-water interactions from multiple perspectives (remote-sensing, experimental, modelling) and covering all types of biomes (boreal, temperate and tropical forests, grasslands, wetlands, …). Contributions might include for example: 1) disentangling the impact of co-varying drought-driven changes to soil moisture, vapour pressure deficit, or temperature on land carbon fluxes, 2) using in-situ or satellite observations to evaluate or improve the representation of water-carbon interactions and biological processes in models, 3) developing and implementing new representations of plant and ecosystem responses to land and atmospheric moisture stress (e.g. through plant hydraulics, optimality approaches, etc.) and 4) scaling carbon- water interactions from the leaf-level to the global scale and bridging the gap between data streams taken at different temporal and spatial scales (e.g. using modeling, theoretical or statistical approaches).

Solicited speaker: Alexandra Konings, Stanford University

Share:
Co-organized by CL2/HS13
Convener: Vincent Humphrey | Co-conveners: Mana Gharun, Ana Bastos, Kim Novick, Markus Reichstein
Displays
| Attendance Tue, 05 May, 16:15–18:00 (CEST)
BG3.9

In this session we focus on GHG emissions and an understanding of how management activities and different land use combinations modify the GHG exchanges of different landscape mosaics. A particular emphasis will be placed on how to parcel different management practices and land uses together to provide an optimum configuration that minimizes GHG emissions. We also welcome contributions that report on the GHG mitigation potential of different management practices or land uses. Given the potential role of forests in GHG offsetting this session also seeks to bring together scientists working on the exchange of CO2, CH4 and N2O in forest ecosystems. We also welcome contributions from conventional flux measurements on cropland, grazing systems, and forests, as well as innovative approaches for gas sampling and small scale/on-farm micrometeorological measurements, together with satellite and modelling studies that seek to integrate our understanding of landscape GHG exchanges. We further invite contributions that aim at combining measurements with modelling approaches, and/or those that are trying to disentangle how management practices modify the processes responsible for GHG production and consumption at the farm or ecosystem level. This session also will benefit from contributions from FACCE ERA-GAS programme.

Public information:
This session is focused on land use mosaics and greenhouse gas emissions.

We have a varied programme, including methane uptake by forest soils, re-wetting effects on nitrous oxide emissions, solar panel forests and hedgerow carbon sequestration, so there is something for everyone!

I would encourage you to look at the abstracts and presentations for this session so that we can have an informed and lively discussion.

Please join us on Thursday 7 May, from 1400-15.45

Bruce Osborne

Share:
Convener: Bruce Osborne | Co-conveners: Syed Faiz-ul Islam, Mohammad I. Khalil, Katja Klumpp, Anna Walkiewicz
Displays
| Attendance Thu, 07 May, 14:00–15:45 (CEST)
BG3.10

The assessment of forest vulnerability and resilience in the sight of global ecological, social and economic changes is a relevant issue. In recent decades, forest vulnerability is rapidly increasing worldwide and forecasting changes in tree health is becoming a challenge. Forest dieback episodes have been recorded in all biomes affecting different tree and shrub species. These dieback cases are revealing the high vulnerability of some species, particularly conifers, manifested as a loss in tree vigour, growth decline and sometimes tree death. Tree mortality commonly involves multiple, interacting factors, ranging from drought to insect pests and diseases, often making the determination of a single cause unrealistic. The need of understanding and predicting changes in tree mortality, growth and recruitment in response to dieback is essential to improve vegetation and C cycle models.
There is a common agreement on the key role of interdisciplinary research and the combined use of complementary tools to improve the monitoring and projection of forest vulnerability and dieback.
This session focuses on efforts to improve our understanding on: i) causes and mechanisms related to forest vulnerability and dieback; ii) potential changes in tree species composition, forest structure and extent of dieback under current and future climate change scenarios; iii) evaluation of which functional anatomical and hydraulic traits make some tree species or stands and tree populations more prone to environmental-induced dieback and decline IV) assessment of the role and interaction of insect disease and other abiotic factors on mortality; V) possible contribution of novel methods and approaches in quantitative wood anatomy to evaluate plant adaptive capability and identify early-stress indicators; VI) how trees die from drought and how to quantitatively assess tree mortality rates and the magnitude of tree mortality episodes associated to climate change events.
Contributions will focus on an integrated multi-scale (from cells to plant communities, ecosystems and global approaches), multi-temporal (from tree-ring series analysis to xylogenesis and long-term forecasting) and interdisciplinary (microscopy and individual plant physiology to remote sensing) frameworks.

Share:
Convener: Francesco Ripullone | Co-conveners: Giovanna Battipaglia, Jesus Julio Camarero, Veronica De Micco, Angelo Rita
Displays
| Attendance Tue, 05 May, 14:00–15:45 (CEST)
BG3.11

Land use and land cover change (LULCC), including land management, has the capacity to alter the climate by disrupting land-atmosphere fluxes of carbon, water and energy. Thus, there is a particular interest in understanding the role of LULCC as it relates to climate mitigation and adaptation strategies. Much attention has been devoted to the biogeochemical impacts of LULCC, yet there is an increasing awareness that the biogeophysical mechanisms (e.g. changes in surface properties such as albedo, roughness and evapotranspiration) should also be considered in climate change assessments of LULCC impacts on weather and climate. However, characterizing biogeophysical land-climate interactions remains challenging due to their complexity. If a cooling or a warming signal emerges depends on which of the biogeophysical processes dominates and on the size and pattern of the LULCC perturbation. Recent advances exploiting Earth system modelling and Earth observation tools are opening new possibilities to better describe LULCC and its effects at multiple temporal and spatial scales. This session invites studies that improve our general understanding of climate perturbations connected to LULCC from both biogeophysical and biogeochemical standpoints, and particularly those focusing on their intersection. This includes studies focusing on LULCC that can inform land-based climate mitigation and adaptation policies. Both observation-based and model-based analyses at local to global scales are welcome.

Share:
Co-organized by CL3
Convener: Gregory Duveiller | Co-conveners: Ryan Bright, Edouard Davin, Alan Di Vittorio, Julia Pongratz
Displays
| Attendance Thu, 07 May, 10:45–12:30 (CEST)
BG3.12

Carbon allocation is a key process in ecosystems: it is coupled with plant growth, fuels metabolism and plays a crucial role for carbon sequestration in standing biomass and soil organic matter. While the importance of carbon allocation for plant and ecosystem functioning and the carbon balance is widely recognized, we still lack a comprehensive understanding of the underlying mechanisms, responses to global changes and wider biogeochemical implications. Open questions include: 1) what drives carbon allocation in plants and ecosystems?; 2) what is the fate of newly assimilated carbon?; 3) what determines the allocation of nonstructural carbon to growth, metabolism and storage?, 4) how does carbon allocation affect nutrient and water relations in plants and ecosystems?; and 5) how do allocation patterns change under changing environmental conditions and what are the consequences for biogeochemical cycles? This session invites contributions from observational, experimental and modelling studies.

Share:
Convener: Michael Bahn | Co-conveners: Andrew Richardson, Mariah S Carbone, Daniel Epron, Henrik Hartmann
Displays
| Attendance Thu, 07 May, 08:30–10:15 (CEST)
BG3.13

The need to predict ecosystem responses to anthropogenic change, including but not limited to changes in climate and increased atmospheric CO2 concentrations, is more pressing than ever. Global change is inherently multi-factorial and as the terrestrial biosphere moves into states without a present climate analogue, mechanistic understanding of ecosystem processes and their linkages with ecosystem function is vital to enable predictive capacity in our forecast tools.

This PICO session aims to bring together scientists interested in advancing our fundamental understanding of vegetation and whole-ecosystem processes. We are interested in contributions focused on advancing process- and hypothesis-driven understanding of plant ecophysiology, biodiversity and ecosystem function. We welcome studies on a range of scales from greenhouse and mesocosm experiments to large field manipulative experiments and process-based modelling. We encourage contributions of novel ideas and hypotheses in particular those from early stage researchers and hope the session can create an environment where such ideas can be discussed freely.

Share: