Union-wide
Side Events
Disciplinary Sessions
Inter- and Transdisciplinary Sessions

Session programme

ERE

ERE – Energy, Resources and the Environment

Programme group chairs: Christopher Juhlin, Michael Kühn, Viktor J. Bruckman, Maria Ask, Sonja Martens, Suzanne Hangx, Kristen Mitchell

DM6/ERE ECS
Division meeting for Energy, Resources and the Environment (ERE)
Convener: Sonja Martens
Thu, 11 Apr, 12:45–13:45
 
Room 0.94

ERE1 – Integrated studies

ERE1.1

This general session of the ERE division gives an overview of its interdisciplinarity, which is needed to tackle the challenges of the future. Beside others, this is to provide adequate and reliable supplies of affordable energy and other resources, obtained in environmentally sustainable ways, which will be essential to economic prosperity, environmental quality and political stability around the world. This session also features contribution of general interest within the ERE community which are not covered by the other sessions.

Share:
Convener: Sonja Martens | Co-conveners: Christopher Juhlin, Michael Kühn
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room 0.94
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X1
ITS3.5/PS1.6/BG1.47/CL3.11/ERE1.3/HS11.25 | PICO

The Sustainable Development Goals (SDGs) (or Global Goals for Sustainable Development) are a collection of 17 global goals set by the United Nations Development Programme.The formal name for the SDGs is: "Transforming our World: the 2030 Agenda for Sustainable Development." That has been shortened to "2030 Agenda." The goals are broad and interdependent, yet each has a separate list of targets to achieve. Achieving all 169 targets would signal accomplishing all 17 goals. The SDGs cover social and economic development issues including poverty, hunger, health, education, global warming, gender equality, water, sanitation, energy, urbanization, environment and social justice.
For this interdisciplinary session, we invite contributions discussing How Earth, Planetary and Space Scientists can address UN Sustainable Development Goals . We shall discuss the relevance of fields of research disciplines covered by EGU, and how they can inform and support society government bodies, and stakeholders for the SDGs.
The session will include invited and contributed oral papers, as well as interactive posters, and panel discussions.

Share:
Co-organized as PS1.6/BG1.47/CL3.11/ERE1.3/HS11.25
Convener: Bernard Foing | Co-convener: Germaine Van der Sanden
PICOs
| Thu, 11 Apr, 16:15–18:00
 
PICO spot 4
AS3.22

Accurate and precise atmospheric measurements of greenhouse gas (GHG) concentrations reveal the rapid and unceasing rise of global GHG concentrations due to human activity. The resulting increases in global temperatures, sea-level, glacial retreat, and other negative impacts are clear. In response to this evidence, nations, states, and cities, private enterprises and individuals have been accelerating GHG reduction efforts while meeting the needs of global development. The urgency, complexity and economic implications of GHG reductions demand strategic investment in science-based information for planning and tracking emission reduction policies and actions. In response, the World Meteorological Organization (WMO) Global Atmosphere Watch Program (GAW) and its partners have initiated the development of an Integrated Global Greenhouse Gas Information System (IG3IS). IG3IS combines atmospheric GHG concentration measurements and human-activity data in an inverse modeling framework to help decision-makers take better-informed action to reduce emissions of greenhouse gases and pollutants that reduce air quality. This service is based on existing and successful measurement and analysis methods and use-cases for which the scientific and technical skill is proven or emerging.
This session intends to gather presentations from researchers and decision-makers (user-community) on the development, implementation and use of atmospheric measurement-based “top-down” and data-driven “bottom-up” GHG emission inventory estimates, and the combination of both approaches, explicit in space and time, to deliver actionable emissions information at scales where human activity occurs and emission reduction is most effective. This session is part of the EGU General Assembly 2019 30th anniversary celebration of the WMO’s Global Atmosphere Watch Program and its commitment to science-based services.

Share:
Co-organized as BG1.67/CL3.02/ERE1.6
Convener: Phil DeCola | Co-conveners: Tomohiro Oda, Oksana Tarasova
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room 0.11
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X5
ITS4.6/CL3.09/ERE1.7/NH1.39 Media

Estimating the impact of climate change on both the natural and socio-economic environment plays an important role in informing a range of national and international policies, including energy, agriculture and health. Understanding these impacts, and those avoided, has never been more pertinent since the adoption of the 2015 Paris Agreement, which sought to hold “the increase in the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C, recognizing that this would significantly reduce the risks and impacts of climate change".

Policies may aim to mitigate (i.e. reduce emissions), counteract (i.e. negative emissions) and/or adapt to anthropogenic climate change and it is equally important to quantify the impact of implementing these options. While rapid, deep mitigation is clearly a pre-requisite to success, delays to such measures imply a greater reliance upon large scale negative emissions technologies. Those based on land are likely to face competing pressure from wide ranging economic activity, and knowledge of these interactions and synergies is limited. Similarly while adaptation options are wide ranging, the uses of nature-based solutions, which often provide mitigation co-benefits and are often highly cost effective, are under-researched and rarely integrated into overall natural hazard or climate change risk management strategies.

Furthermore, the methods used to evaluate impact in the climate context are many and varied, including empirical, econometric and process-based. These methods continue to evolve implying that the assessment of impact may depend upon the analytical approach chosen.

This inter- and transdisciplinary session aims to draw together scientists, developing climate-impact evaluation methods, evaluating the impact (or avoided impact) of anthropogenic climate change upon natural and socio-economic environments, investigating the potential for mitigation and counteraction options to reduce long term risk, and studying the value of multiple adaptation options to stakeholders when planning how to manage vulnerability.

Invited speaker: Sonia Seneviratne

Share:
Co-organized as CL3.09/ERE1.7/NH1.39
Convener: Luke Jackson | Co-conveners: Paul Hudson, Dann Mitchell, Fabian Stenzel
Orals
| Wed, 10 Apr, 14:00–18:00
 
Room L7
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X5

ERE2 – Non-carbon based energy

ERE2.1

Wind and solar power are the predominant new sources of electrical power in recent years. Solar power reached a milestone of providing 50% of demand in Germany during one hour in 2012, and wind power during one hour in 2015 exceeded 140% of demand in Denmark. By their very nature, wind and solar power, as well as hydro, tidal, wave and other renewable forms of generation are dependent on weather and climate. Modelling and measurement for resource assessment, site selection, long-term and short term variability analysis and operational forecasting for horizons ranging from minutes to decades are of paramount importance.

The success of wind power means that wind turbines are increasingly put in sites with complex terrain or forests, with towers extending beyond the strict logarithmic profile, and in offshore regions that are difficult to model and measure. Major challenges for solar power are notably accurate measurements and the short-term prediction of the spatiotemporal evolution of the effects of cloud field and aerosols.

For both solar and wind power, the integration of large amounts of renewable energy into the grid is another critical research problem due to the uncertainties linked to their forecast and to patterns of their spatio-temporal variabilities.
Of particular interest these days is the relatively new field of urban meteorology applied to the renewable energy sector. There are several “Smart Cities” and “Smart Grids” projects in Europe focusing on urban modelling and measurement development for forecasts or high resolution resource mapping.

We invite contributions on all following aspects of weather dependent renewable power generation:

• Wind conditions (both resources and loads) on short and long time scales for wind power development, especially in complex environments (e.g. mountains, forests, coastal or urban).
• Long term analysis of inter-annual variability of solar and wind resource
• Typical Meteorological Year and probability of exceedance for wind and solar power development,
• Wind and solar resource and atlases.
• Wake effect models and measurements, especially for large wind farms and offshore.
• Performance and uncertainties of forecasts of renewable power at different time horizons and in different external conditions.
• Forecast of extreme wind events and wind ramps.
• Local, regional and global impacts of renewable energy power plants or of large-scale integration.
• Dedicated wind measurement techniques (SODARS, LIDARS, UAVs etc.).
• Dedicated solar measurement techniques (pyranometric sensors, sun-photometer, ceilometer, fish-eye cameras, etc.) from ground-based and space-borne remote sensing.
• Tools for urban area renewable energy supply strategic planning and control.

Share:
Co-organized as AS1.11
Convener: Gregor Giebel | Co-conveners: Philippe Blanc, Somnath Baidya Roy, Anna Maria Sempreviva
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room 0.94
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X1
ERE2.2

Geographic information systems are well established tools for the identification of potentials and the selection of optimal locations for installing renewable energies. A high and increasing number of studies present indicators of resource availability such as the amount of available biomass, average wind speed, cumulated solar radiation and soil temperature. These studies range from the determination of merely theoretical resources potentials to combined technical, economic, environmental and social studies of the suitability of energy generation technologies (e.g. wind parks, photovoltaic installations and biogas/biomass facilities) and they have reached high spatial detail.
However, the consideration of the temporal variability of the energy demand and of highly fluctuating sources, such as wind and solar radiation, is a fundamental element that has been addressed only marginally in GIS-based approaches. The consideration of these fluctuations, however, is paramount to evaluating and designing spatially distributed energy systems with a high share of renewable sources. GIS-based models extended by the temporal dimension can be used inter alia to:
• dimension distributed renewable energy systems such as virtual power plants
• analyse interactions and proportions of renewable energy power plants in distributed renewable energy systems
• assess extreme production events and associated backup mechanisms
• calculate peak load offsetting and output variability reduction technologies for grid connected and off-grid renewable energy systems
• size and locate decentralized storage facilities
• plan multicarrier systems (heat-electricity, heat-cooling-electricity)
• assess impacts of the choice of locations on a wide set of indicators which can be linked to both system stability as well as environmental and land-use issues
The objective of the session is to provide an insight in recent advances in GIS-based modelling for addressing the above mentioned topics. The session is not limited to planning related contributions, but also welcomes papers dedicated to policy-making, forecasting and real time applications concerning distributed renewable energy systems.

Share:
Convener: Luis Ramirez Camargo | Co-conveners: Wolfgang Dorner, Johannes Schmidt
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room L2
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X1
ERE2.3

There is a global need for low carbon energy, and marine renewable energy could make a significant contribution to reducing greenhouse gas emissions and mitigation of climate change, as well as providing a high-technology industry. Marine renewable energy includes offshore wind, wave, tidal range (lagoons and barrages), and tidal-stream energy. Understanding the environment these marine renewable energy devices are likely to operate in is essential when designing efficient and resilient devices; furthermore, accurately charactering the resource, and likely impacts, is essential for the development of the marine renewable energy industry. This session is designed to share information on new research techniques and methods to better understand the resource, and interactions between energy extraction, the resource, and the environment. We welcome contributions on resource characterization, design considerations (e.g. extreme and fatigue loadings), and environmental impacts, at all timescales (ranging from turbulence to decadal) and all spatial scales (from device and array scales to shelf sea scales); including mapping tools, numerical modelling approaches, and observations. The session will also include studies of impacts, from physical and biological, to societal interactions (e.g. effects to tourism). These impacts include biological interactions with the resource and with the device. Research areas are envisaged to include but not restricted to: modelling and quantification of the interaction of the device to the marine environment (e.g. changes in hydrodynamics) as well as on the biology directly; ecological study designs and methods; new technologies for quantification; management of space; collision; noise; habitat change; community change for all trophic levels interaction.

Share:
Co-organized as OS2.6
Convener: Michela De Dominicis | Co-conveners: Matt Lewis, Rory O'Hara Murray
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room 0.94
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X1
ERE2.5

The outcomes of the COP21 negotiations in Paris and a range of national status reports on climate change vulnerabilities deliver a clear message. We are in need of clean and renewable sources of energy and raw materials and need to move towards a bio-economy in various sectors. This also includes concepts that combine approaches to realize net negative emissions, such as Bioenergy and Carbon Capture and Storage (BECCS). We welcome contributions introducing theoretical concepts, models or the development of methods as well as interdisciplinary and holistic approaches and case studies.
This session is open to contributions assessing aspects of biomass production and utilization with implications on different scales. We encourage abstracts with emphasis on land-use change impacts (e.g. species distribution and dynamics, invasive species, impacts on habitat quality), soils (e.g. nutrient depletion, acidification, carbon cycle), water (e.g. pollution, altering catchment water balances), and atmosphere (e.g. CO2 mitigation potentials, VOC’s emission of fast growing species, impact of urban biosphere on overall urban GHG emissions), with a holistic focus. We also welcome case studies that can provide insights for a more general application of the respective approaches.

This session is organized and planned by the Commission for Interdisciplinary Ecological Studies and Commission Climate and Air Quality of the Austrian Academy of Sciences and co-organized with the IUFRO Task-Force “Forest Biomass Network (FBN)” and its working group 7.01.03, Impacts of air pollution and climate change on forest ecosystems – Atmospheric deposition, soils and nutrient cycles.

Share:
Convener: Viktor J. Bruckman | Co-conveners: Vanessa Parravicini, Florian Kraxner, Maliwan Haruthaithanasan
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X1
ERE2.6

With an increasing demand for low-carbon energy solutions, industrial development of geothermal resources is accelerating. Current advancements target conventional hydrothermal systems, as well as the more unconventional systems (e.g., Enhanced Geothermal Systems, super-hot, pressurized and co-produced, super-critical systems). Geothermal energy can be extracted from various, often complex geological settings, both on- and offshore, such as shallow wells in magmatic systems and deep wells focusing on sedimentary basins.

Optimum efficiency requires advanced understanding of the properties of the entire geothermal system, including thermo-/petro-physical conditions, fluid composition; structural and hydrological features; and engineering challenges (e.g., those produced by hydraulic stimulation / induced seismicity or related to multiphase fluids and scaling processes). This needs to be combined with knowledge of heat sources and recharge areas, and an integral understanding on how the different elements connect within one system. In geothermal exploration and production the integration of analogue field studies with real-life production data, from industrial as well as research sites, and the combination with numerical models (both as joint and constrained inversion), are a hot topic worldwide.

With this session we aim to gather field, laboratory and numerical experts who focus their research on geothermal sites, to stimulate discussion in this multi-disciplinary environment. We seek for contributions from all disciplines, ranging from field data (e.g., production and well data) to laboratory experiments and numerical models

Share:
Co-organized as GMPV6.8/HS11.15
Convener: Anne Pluymakers | Co-conveners: Richard Bakker, Yves Géraud, Philippe Jousset
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room 0.94
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X1
ERE2.7

The “numerical modeling in geothermics” session aims to be a platform for presentations regarding all kinds of numerical modeling in geothermics. It is open for studies of deep geothermal processes and near-surface applications alike.
Models can originate from all phases of geothermal projects: prediction of geothermal potentials, optimization of borehole locations as well as the study of processes in existing geothermal installations. They can encompass all areas relevant for geothermics such as thermal, hydraulic, mechanical and chemical processes. Models about enhancement (mechanical or chemical) for Enhanced Geothermal Systems are invited as well.
Contributions can range from innovative model applications to the discussion of an improved way to integrate data as well as to the development of new numerical approaches.
This session offers the possibility to discuss advances and difficulties in modeling geothermal processes and aims to stimulate new ideas for future work.

Share:
Convener: Damien Bonté | Co-convener: Kristian Bär
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X1
HS5.3.1

Society today demands sustainable technical solutions that reconcile the needs of society with those of nature . These solutions must coordinate between different and often competing demands within a sub-system (irrigation, ecological flow, power generation) and the variety of different uses of environmental resources across systems (e.g., power from water, wind, sun, or waves). Advances in modeling, optimization, and control will play an essential role in providing these solutions.

This session is intended for contributions on the technical aspects of modelling and control of environmental systems for a future, where complex real time coordination between different sub-systems will be the rule rather than the exception.

Examples of topics suitable for this session are:

• models of both environmental systems and of management practices that can be used to study the effects of new control algorithms;
• models and algorithms for adaptive and resilient operational management of environmental systems;
• innovative solutions that exploit synergies and avoid potential conflicts for multi-resource and multi-sector systems.


The session is associated with Panta Rhei working group "Natural and man-made control systems in water resources" and welcomes contributions addressing the above mentioned points, especially in the context of hybrid power systems and water resource systems used for irrigation, drainage, water supply (potable water, industrial water, cooling water) and transport of goods.

Share:
Co-organized as ERE2.8
Convener: Ronald van Nooijen | Co-conveners: Andreas Efstratiadis, Alla Kolechkina
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall A
HS5.4.2

The transition to a low-carbon economy and programs of nuclear power phase-out will require the development of innovative methods to integrate renewable sources of energy while minimizing the additional pressure on closely connected ecosystems.

Hydropower is a mature and cost-competitive renewable energy source, which helps stabilize fluctuations between energy demand and supply. Depending on the relative capacities of the intermittent renewables and hydropower facilities, integration may require changes in the way hydropower facilities operate to provide balancing, reserves or energy storage. Moreover, non-power constraints on the hydropower system, such as irrigation water deliveries, environmental constraints, recreation, and flood control tend to reduce the ability of hydropower to integrate variable renewable. In this context, energy production relies on reliable short and long term predictions of the temporal availability and the quality of natural resources (water, wind, solar power etc).

This session solicits contributions that describe, characterize, or model distributed renewable energy sources at different spatial and temporal scales that are relevant for the electricity systems, their interactions, their planning and management. Spatial scales range from point scale (i.e. stand-alone system) to national and international scales. Temporal scales range from minutes to decades. Special attention will be devoted to the interactions between the energy-water system and the climate and hydrological variables that govern production in space and time. Of particular interest are case studies and other contributions of hydrology and power grid modernization initiatives to understand these complex interdependencies. The development of new modeling approaches to analyze interactions with climate-policy and power grid management options, socio-economic mitigation measures and land use are welcome, including experimental work to understand how energy production affects ecosystems.

We hope that the contributions to this session will highlight how hydrology and closely related methods can contribute to address urgent challenges in this field.
Questions of interest include:
- How to predict water availability for hydropower production?
- How to predict and quantify the space-time dependences and the positive/negative feedbacks between wind/solar energies, water cycle and hydropower?
- How to predict and quantify the influence of climate change on climate-related energies and the energy demand?
- How to quantify the relevant impacts on the hydropower sector?
- What energy-source transitions occur in view of climate and global change? How can they be modelled? How do energy, land use and water supply interact during transitions?
- How socio-economic aspects can be taken into account when modelling renewable energy sources?
- What policy requirements or climate strategies are needed to manage and mitigate risks in the transition?
- Quantification of energy production impacts on ecosystems such as hydropeaking effects on natural flow regimes, quantification of residual flow impacts on river ecosystems.

Share:
Co-organized as ERE2.9
Convener: Baptiste François | Co-conveners: Benoit Hingray, E. Sauquet, Casey Brown, Emmanouil Anagnostou
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room C
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall A
SSS5.9

Soil organic matter (SOM) plays a key role not only in soil fertility and quality (by providing a number of physical, chemical, and biological benefits), but also in C cycling. The decline of SOM represents one of the most serious threats facing many arable lands of the world. Beside this, there is an imperative necessity of a sustainable management for the increasing quantity of organic waste. Crop residues and animal manures have long been successfully used as soil organic amendments to preserve and enhance SOM pools. During the last decade, pyrolysis (the combustion of biomass under low or no oxygen supply) is showing a promising approach for managing carbon-rich wastes such as sewage sludge, the pulp and paper industry residues or crop residues and to create added value co-products.
Besides serving as a source of organic matter and plant nutrients, these materials may contribute to fight plant diseases and reduce soil contamination, erosion, and desertification. A safe and useful application of organic amendments requires an in-depth scientific knowledge of their nature and impacts on the soil-plant system, as well as on the surrounding environment. While the benefits biochar or fly ashes as soil ameliorants and fertilizers are very well known, the knowledge of the use of other sorts of pyrogenic organic matter as well as the effects of biochar in SOM composition at a long term are very scarce.
This interdisciplinary session will focus on the current research and recent advances on the use of organic amendments including pyrogenic organic materials such as biochar or wood ash in modern agriculture as well as for the restoration of degraded soils, covering physical, chemical, biological, biochemical, environmental and socio-economical aspects by bringing together scientists from the diverse fields of soil, applied pyrolysis, bioenergy waste management, SOM characterization, carbon dynamics and plant nutrition.

Share:
Co-organized as ERE2.10
Convener: José María De la Rosa | Co-conveners: Paloma Campos, Agustin Merino, César Plaza, Claudio Zaccone
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room -2.20
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X1

ERE3 – Carbon based energy

ERE3.1

Natural gas hydrates are solid inclusion compounds composed of water and gas. They form as methane hydrates under elevated pressure and lower temperature conditions in marine sediments along continental margins. They bind large volume of natural gas worldwide and may alter the strength of the upper sediment package along the margins based on their morphology, volume, and the stability conditions. Up to date, neither the quantification of gas hydrate resources nor the impact of gas hydrates on sediment stability or slope failures are well constrained. This is despite their importance for the usage of the continental slope and the exploration as well as exploitation of the unconventional hydrate reservoirs. Related studies are an essential component of current field studies, experimental research, modelling, and technical development.
This session aims at bringing together experts in these fields in order to exchange know-how as well as identify knowledge gaps. In this context we would like to invite contributions from studies in gas hydrate research as specified above.

Share:
Co-organized as NH5.10/OS2.7
Convener: Katja Heeschen | Co-conveners: Matthias Haeckel, Judith M. Schicks
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X1
ERE3.2

Recent decreases in the world oil/gas reserves imply that energy producers and consumers are facing a major challenge. Therefore, a thorough exploration and production strategy needs to be carried out to sustain the world energy production level. This session is devoted to present the newest advances in oil and gas exploration and production technologies as well as well as their associated environmental risks and economic benefits. It will be regarded new geophysical monitoring methods for intensify the oil exploration. They will be supported by new results in modelling and inverse problem solutions in a frame of block layer structures with hierarchic inclusions of different anomaly parameters features.

Share:
Convener: Said GACI | Co-conveners: Mohammed FARFOUR, Olga Hachay
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room 0.94
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X1
ERE3.3

Unconventional hydrocarbon resources such as Shale Gas, Tight Sands, and Gas Hydrates are becoming an important source of energy with increasing demand for them in the last years. The session is devoted to advances in technologies and case studies relevant to the to exploitation and exploration for unconventional hydrocarbon resources. Submitted abstracts may be related to the the following topics:
1-Shale Gas, Tight Sands, and Gas Hydrate exploration.
2-Fractured unconventional reservoirs.
3-Unconventional resources and the environment.
4-Shale Gas and Tight Sands drilling.
5-Exploitation of hydrocarbons from
unconventional resources.

Share:
Convener: Sid-Ali Ouadfeul | Co-convener: Leila Aliouane
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room 0.96
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X1

ERE4 – Mineral resources

ITS2.2/ERE4.4

Most of the world-class ore discoveries have been made close to the surface. Many of these large-tonnage deposits are mined out or are largely decreasing in production. Mineral exploration at depth is becoming one of the fundamental challenges for the exploration industry in this century. The sharp increase in demand for commodities driven by a growing population and technology-based society is coupled with the decrease in world-class ore deposit discoveries in the last three decades. This is setting the stage for an unprecedented scenario, that is, ensuring that the market supply for critical metals (Ni, Co, Au, PGE, etc.) is satisfied. This situation is becoming the driving force for a restructuring of mineral exploration paradigms. New technologies and methodologies are being developed; and, as a consequence, regions that were considered to be unfavourable for ore deposit exploration are now being reconsidered.

In this session, we invite research contributions show case or assist elucidating a better understanding of novel and innovative approaches to the search of mineral deposits for the future in new environments (e.g., at depth, bottom of the oceans, frontier regions, regolith-dominated terrains…), spanning from economic, environmental and technical challenges to greenfields or browndfields technologies and methodologies.

Share:
Co-organized as ERE4.4
Convener: Ignacio Gonzalez-Alvarez | Co-conveners: Mário Gonçalves, Ana P. Jesus, Janina Wiszniewska
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room L7
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X1

ERE5 – Geo-storage for a sustainable future

ERE5.1

Within the last decades, not only the technology of salt production and the range of its uses have largely developed ‒ also the technical options of experimental and field investigations have improved intensely. This calls for a joint focus: both, salt industry and research are needed to capture and discuss new challenges to the usage of salt deposits.
Depending on the application, the unique characteristics of salt deposits ‒ low permeability, mainly high water solubility and the visco-plastic behavior ‒ can be either an advantage or a challenge. The high water solubility of salt rock offers the option to construct salt solution caverns, the impermeability allows for the temporary storage of various energy-rich fluids – a concept that contributes to a stable energy supply in the course of fluctuating availabilities from renewables. Waste disposal in salt benefits from impermeability to assure a safe long term storage. On the other hand, the occurrence of pressurized gas and migrating waters present potential risks for mining activities.
The session welcomes contributions presenting studies and applications of the numerous aspects related to subsurface reservoir exploitation, solution mining, cavern operation and waste disposal in salt deposits – from “still under debate” to “tested and practiced”. This includes geophysical, geomechanical, hydrological, and geochemical investigations as well as modelling approaches and geotechnical advances in the broad context of process understanding and monitoring which contribute to an increasing environmental and work safety and a sustainable utilization of salt deposits.

Share:
Convener: Bettina Strauch | Co-conveners: Dieter Brückner, Veerle Vandeginste
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X1
ERE5.2

A number of pilot, demonstration and full scale projects, have demonstrated the geological storage of CO2, as the last link in the CCS (Carbon Capture and Storage) chain over the past two decades. Natural analogues have provided additional evidence of the feasibility of long-term containment of carbon dioxide in geological formations. Various nations are currently preparing for the implementation of CCS as one measure to reduce greenhouse gas emissions, supported by research programmes focussing on the transfer of experiences from pilot or demonstration projects to full scale. In addition to CCS as a part of the portfolio of measures to reduce greenhouse gas emissions, bio-energy with CCS (BECCS) offers the potential of negative emissions.
This session addresses CO2 storage field projects at all scales, from small field tests to full scale storage projects. Initiatives and active projects integrating all elements of the CCS chain are invited as well as field projects focused on the geological storage.
Individual studies on testing methods, analysis of field data and natural analogues of CO2 storage, site characterization and monitoring of CO2 storage sites are welcome along with reviews of large integrated projects.

Relevant topics include but are not limited to:
• Regional and local characterization of storage formations and their behaviour during CO2 injection and storage, including long-term behaviour.
• Identification and determination of key site parameters for CO2 storage, such as parameters for trapping.
• Characterization of the cap-rock and its properties.

Suitable contributions can address, but are not limited to:
• Field testing and experimental approaches aimed at characterizing the site, its key characteristics and the behaviour of the injected CO2.
• Modelling studies for test design and analyses and integrating field data.
• Studies of natural analogue sites and lessons learnt from them for site characterisation and monitoring techniques.

Share:
Convener: Stefan Lüth | Co-conveners: Sonja Martens, Johannes Miocic, Auli Niemi
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X1
HS8.2.3

Thermal and mechanical processes in aquifers are of increasing interest for hydrogeological analysis for development of innovative field and laboratory experiments. Both in research and in practice, accurate characterization of subsurface flow and heat transport, observations of induced or natural variations of the thermal regime. The seasonal and long-term development of thermal and mechanical conditions in aquifers, and heat transfer across aquifer boundaries are focus points. This also includes the role of groundwater in the context of geothermal energy use for predicting the long-term performance of geothermal systems (storage and production of heat), and integration in urban planning. There are many ongoing research projects studying heat as a natural or anthropogenic tracer, and which try to improve thermal response testing in aquifers. Such techniques are of great potential for characterizing aquifers, flow conditions, and crucial transport processes, such as mechanical dispersion. Understanding the interaction of hydraulic, thermal and mechanical processes is a major challenge in modern hydrogeology. Deep underground constructions, tunnels, CO2 storage, hydro- and enhanced geothermal applications are prominent subjects. We invite contributions that deliver new insight into advances in experimental design, reports from new field observations, as well as demonstration of sequential or coupled modeling concepts. The session aims to provide an overview of the current and future research in the field, covering any temporal or spatial scale, and seeks to address both separate and coupled processes.

Share:
Co-organized as ERE5.3
Convener: Martin Bloemendal | Co-conveners: Peter Bayer, Olivier Bour, Kathrin Menberg
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room 2.25
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall A
ERE5.4

"Assessment of barrier integrity in geological repositories for nuclear waste disposal and contaminant isolation":

Barrier integrity is a crucial aspect for the assessment of subsurface technologies. For the storage of thermal energy and other energy carriers, or the deposition of high-level nuclear or chemotoxic waste, different repository concepts in diverse geological candidate formations such as rock salt, clay stone and crystalline rock are being discussed. Computational methods and numerical simulations, in conjunction with experimental studies across scales from micro-scale to field scale, are an integral part of safety and environmental-impact assessment concepts involving barrier integrity as a key component. Reliable comparative analyses of potential technological options require coupled physical (thermo-hydro-mechanical chemical) models capturing the individual particularities of each rock type and associated geotechnical repository and barrier concept to a comparable level of sophistication. Structural as well as process complexity and large computational domains combine to render a reliable and efficient analysis a major challenge. This complexity is often met by data scarcity and variability, necessitating the theoretical and computational treatment of uncertainties and variability at different scales involved in numerical analyses at different levels.

This session provides a platform for the exchange of geophysical, geochemical, geotechnical knowledge for assessing the integrity of barriers and multi-barrier systems considering equally conceptual, theoretical, computational and experimental aspects.

"Towards a safe nuclear waste repository – geoscientific, technological, social and regulatory challenges and approaches":

The successful implementation of safe, deep geological disposal of spent fuel, high-level waste and other long-lived radioactive waste is one of the currently most pressing and important environmental challenges in several countries in Europe and worldwide. Site exploration and assessment are primarily geoscientific tasks that require interdisciplinary collaboration of different geoscientific disciplines, like geophysics, geochemistry, mineralogy, geomechanics, and geological as well as THMC modelling. Successful and socially accepted site selection and implementation, however, not only depend on geoscientific state-of-the-art results and R&D programs but to a large extend on targeted, adequate and well-designed public outreach and public involvement/participation activities as well as on suitable regulatory frameworks. Both, geoscientific and technological as well as social and regulatory aspects complement each other and need to be addressed.
This session therefore welcomes contributions from research organizations, NGOs, waste management organizations, and regulatory bodies. Topics may include, but are not limited to, advances in exploration and modelling tools and approaches, safety assessment strategies, disposal concepts, national and transnational public outreach and public involvement programs, national regulatory frameworks. Preference will be given to contributions that highlight the interdisciplinary and especially transdisciplinary character of deep geological disposal research

Share:
Convener: Thomas Nagel | Co-conveners: Jobst Maßmann, Klaus-Jürgen Röhlig, Darius Seyedi, Axel Liebscher, Claudia Schulz
Orals
| Mon, 08 Apr, 08:30–12:30, 14:00–15:45
 
Room 0.94
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X1
ITS5.4/GI2.7/AS4.43/BG1.39/ERE5.6/GMPV6.4/HS11.65/NH8.7/OS4.33/SSS8.7

The session gathers geoscientific aspects such as dynamics, reactions, and environmental/health consequences of radioactive materials that are massively released accidentally (e.g., Fukushima and Chernobyl nuclear power plant accidents, wide fires, etc.) and by other human activities (e.g., nuclear tests).

The radioactive materials are known as polluting materials that are hazardous for human society, but are also ideal markers in understanding dynamics and chemical/biological/electrical reactions chains in the environment. Thus, the radioactive contamination problem is multi-disciplinary. In fact this topic involves regional and global transport and local reactions of radioactive materials through atmosphere, soil and water system, ocean, and organic and ecosystem, and its relation with human and non-human biota. The topic also involves hazard prediction and nowcast technology.

By combining >30 year (halftime of Cesium 137) monitoring data after the Chernobyl Accident in 1986, >5 year dense measurement data by the most advanced instrumentation after the Fukushima Accident in 2011, and other events, we can improve our knowledgebase on the environmental behavior of radioactive materials and its environmental/biological impact. This should lead to improved monitoring systems in the future including emergency response systems, acute sampling/measurement methodology, and remediation schemes for any future nuclear accidents.

The following specific topics have traditionally been discussed:
(a) Atmospheric Science (emissions, transport, deposition, pollution);
(b) Hydrology (transport in surface and ground water system, soil-water interactions);
(c) Oceanology (transport, bio-system interaction);
(d) Soil System (transport, chemical interaction, transfer to organic system);
(e) Forestry;
(f) Natural Hazards (warning systems, health risk assessments, geophysical variability);
(g) Measurement Techniques (instrumentation, multipoint data measurements);
(h) Ecosystems (migration/decay of radionuclides).

The session consists of updated observations, new theoretical developments including simulations, and improved methods or tools which could improve observation and prediction capabilities during eventual future nuclear emergencies. New evaluations of existing tools, past nuclear contamination events and other data sets also welcome.

Public information:
The release of radioactive materials by human activity (such as nuclear accidents) are both severe hazard problem as well as ideal markers in understanding geoscience at all level of the Earth because it cycles through atmosphere, soil, plant, water system, ocean, and lives. Therefore, we must gather knowledge from all geoscience field for comprehensive understanding.

Share:
Co-organized as GI2.7/AS4.43/BG1.39/ERE5.6/GMPV6.4/HS11.65/NH8.7/OS4.33/SSS8.7
Convener: Masatoshi Yamauchi | Co-conveners: Nikolaos Evangeliou, Yasunori Igarashi, Liudmila Kolmykova, Daisuke Tsumune
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room N1
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X1

ERE6 – Thermal-hydro-mechanical and/or chemical processes related to geoenergy applications

ERE6.1

Decarbonisation of the energy sector not only relies on subsurface CO2 storage, but also on maximisation of the use of unconventional and renewable energy resources, such as geothermal energy and energy storage. However, many uncertainties exist regarding aspects such as the efficiency and potential of these resources and associated risks like induced seismicity. With this session, we aim to provide an overview of such aspects, highlighting recent advances in our understanding. We welcome contributions describing lab, field and modelling studies relevant for all aspects of geo-energy, including CO2 storage.

Furthermore, this session focuses on modelling of processes associated with geological subsurface utilization, where we have in mind applications related to chemical or thermal energy storage, hydrocarbon production and storage, storage of carbon dioxide etc, all in the context of ensuring a safe and sustainable energy supply.
Such utilization of the geological subsurface, usually related with fluid flow due to injection or production, may induce changes in the recent hydraulic, thermal, mechanical and chemical regimes. Our session aims at the integration of experimental and numerical modelling methods for quantification and prediction of the potential impacts resulting from geological subsurface utilization including:

• Site characterization and determination of site-specific geological and process data.

• Development of static geological models.

• Integration of experimental data into static and dynamic models as well as application of numerical models for experimental design and interpretation.

• Development and benchmarking of modelling tools.

• Model and parameter upscaling techniques.

• Model coupling addressing the interaction of thermal, multi-phase flow, geochemical and geomechanical processes in the fluid-rock system.

• Application of modelling tools for site characterization and prediction of potential impacts.

• Methods for risk assessment and efficient site operation.

Share:
Convener: Holger Class | Co-conveners: Sebastian Bauer, Jesús Carrera, Sabine den Hartog, Thomas Kempka, Andreas Busch, Florian Amann, Sarah Eileen Gasda
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room 0.94
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X1
ERE6.2

Thermal, hydraulic, mechanical and chemical (THMC) processes in geological settings are of increasing interest in different geo-scientific fields. This is especially the case within current research applied to exploration and usage of natural and mineral resources from the underground. This session is intended as a scientific platform to present and discuss studies focused on various kinds of processes relevant for geo-energy related applications. These comprise, but are not limited to, enhanced oil recovery, aquifer storage, and hydro- and enhanced geothermal applications. Therefore, we invite contributions ranging from innovative laboratory experiments, analytical solutions and mathematical model applications to the discussion of an improved way to understand the history, current state as well as future performance of reservoirs.
More specifically, we welcome contributions dealing with analysis and quantification of: (i) fluid flow, permeability, fluid conductivity; (ii) electrical properties, conductivity, resistivity and permittivity in both real and complex domains; (iii) heat flow, geothermal states, thermal conductivity and diffusivity; (iv) transport of energy by elastic waves, their velocities and the dispersion of compression, shear and other types of elastic waves; and (v) mechanical properties of fractured and intact rock materials. Contributions on coupling mechanisms of THMC-processes in fractured and intact reservoir rocks are of special interest.
This session is intended to provide an overview of current research activities in this field. By discussing advances and challenges in quantifying coupled physical processes in geological settings and their implications it aims to stimulate new ideas for future work.

Share:
Co-organized as EMRP1.41
Convener: Guido Blöcher | Co-conveners: Ludovic Bodet, Mauro Cacace, Damien Jougnot, Harald Milsch
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room 0.94
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X1
ERE6.4

The presence of fractures, whether natural or induced, has become increasingly important in recent years in the exploitation of Earth’s natural resources. Especially in rocks that have a low matrix permeability, the presence of fractures is critical for reaching flow rates sufficient for economic hydrocarbon production and heat extraction for geothermal reservoirs. Better prediction of subsurface fracture arrangements and their mechanical and flow response have become an increasingly relevant field of research.
We propose here a multi-disciplinary session on the arrangement and mechanical evolution of natural and induced fracture networks and their response to fluid flow in low-permeability rocks on a multitude of scales (from pore-scale to basin-scale). We encourage submissions from experimental, numerical and field studies on fracture network formation and control on fluid flow of naturally and hydraulically fractured systems. Also studies that address the role of fractures on both shale gas and tight geothermal reservoir application cases are welcomed. We especially encourage early-career scientists to present their work in this session.

Share:
Co-organized as EMRP1.71/TS2.5
Convener: Richard Bakker | Co-conveners: Auke Barnhoorn, Jan Borgomano, Ismay Vénice Akker
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X1
ERE6.5

Numerous cases of induced/triggered seismicity have been reported in the last decades as a result of the increasing interest in fluid injection/extraction projects related to geo-resources exploration. When such seismicity is felt by the population, it can negatively affect public perception of geo-energies and may lead to the cancellation of important projects. Furthermore, large earthquakes may jeopardize wellbore stability and damage surface infrastructure. Thus, a key issue is to better understand how to monitor and model the processes leading to seismicity, in order to facilitate the development of effective and reliable forecasting methodologies during deep underground exploitation.
Given the complexity of induced seismicity processes and their interdisciplinary nature, understanding the triggering mechanisms implies to take into account coupled thermo-hydro-mechanical-chemical processes.
In this session, we invite contributions from research aimed at understanding such processes during exploitation of deep underground resources, including hydrocarbon
extraction, wastewater disposal, geothermal
energy exploitation, hydraulic fracturing, gas storage and production, mining, and reservoir impoundment for hydro-energy.
We particularly encourage novel contributions based on laboratory and underground near-fault experiments, numerical modelling, spatio-temporal variations of physical parameters and seismicity, and fieldwork, covering both theoretical and experimental aspects of induced and triggered seismicity at multiple spatial and temporal scales.

Share:
Co-organized as EMRP1.82/SM6.5
Convener: Antonio Pio Rinaldi | Co-conveners: Luisa Valoroso, Victor Vilarrasa, Marie Violay
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room L2
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X1
ERE6.6

Hydraulic stimulation is a well-operation that aims at enhancing fluid flow at depth. It is applied to exploit unconventional hydrocarbon reservoirs with low permeability and deep geothermal resources. Induced earthquakes frequently accompany the injection of fluids into boreholes potentially leading to damage to infrastructure at the surface and thus generally raising public concern. Damage caused by such events have already terminated Enhanced Geothermal Energy projects in South Korea and Switzerland. Hence, finding safe stimulation methods is critical for future use and public acceptance of geothermal energy projects and potential other forms of energy extraction from the underground. A range of stimulation techniques have been developed to increase the permeability of low-permeable reservoirs, however, our understanding of the processes involved in the formation of hydrofracs and hydroshears and the effectiveness of these operations regarding flow enhancement are still rather limited. A series of successful mine-back experiments have been performed in a range of underground laboratories in Europe. For this session, we invite presentations covering the full range of rock mechanics experiments, underground laboratory testing, and field-scale operations aiming at improving the fundamental understanding of stimulation operations.

Share:
Co-organized as EMRP1.91/NH4.7/SM6.4
Convener: Georg Dresen | Co-conveners: Grzegorz Kwiatek, Joerg Renner
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room L2
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X1
SM6.1

Induced and triggered seismicity are common phenomena associated with sub-surface exploration and remote seismic events, respectively, and have been related to hydrocarbon extraction, hydraulic fracturing, geothermal exploitation, open-pit crater formation and underground mining operations, CO2 sequestration, and filling of new water reservoirs. Public awareness and concern of induced seismicity has become ubiquitous in locations where subsurface exploration and storage is carried out in close proximity to communities. Of particular concerns are massive fluid injections for hydro-fracturing to increase subsurface permeability as well as long-term injection in disposal wells. These concerns have led to regulations to passively monitor induced seismicity and consequently to a wealth of continuous seismic data. In contrast to the increase in data volume, our understanding of the relationship between exploitation techniques and induced seismicity as well as earthquake-earthquake interactions is still limited. New processing methods to analyze data and quantitative models to improve our understanding of the causal relationship between exploitation and seismicity have been developped. The current session is intended to provide a platform to present the latest research, field studies, theoretical and modelling aspects as well as methods for seismic hazard analysis related to induced and triggered seismicity. Topics to be presented include spatio-temporal variations of physical parameters in reservoirs and natural environments including stress and pressure changes, spatial-temporal patterns of seismicity, source mechanisms of micro- or larger-scale seismicity, mechanisms for induced events and seismic interaction, as well as, fracture-induced anisotropy. Contributions are sought from fundamental and applied research covering the fields of oil and gas operations including hydro-fracturing, geothermal exploitation particularly related to enhanced geothermal systems, open pit and underground mining, CO2 storage, and other fields such as volcano-seismology where induced and triggered seismic activity is observed.

Share:
Co-organized as ERE6.7/NH4.14
Convener: Philippe Jousset | Co-conveners: Roland Gritto, Luke Griffiths
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X2
ITS2.7/HS11.71/BG1.37/ERE6.8/GMPV3.6

Geofluids (i.e. fluids located in the subsurface) are increasingly becoming of interest due to their significant role as natural resources. These fluids span a vast range of geological environments including groundwater drinking resources, shale gas and oil, deep/shallow geothermal resources and hydrothermal mineral resources. Despite being valuable resources, geofluids are both vulnerable to contamination or may themselves represent a potential source of contamination through externally-driven mechanisms, as in the case of shale gas extraction, CO2 leaking or land use for agriculture purposes. Ont he other hand geofluids themselves can be a source of natural contamination as in the geogenic contamination of groundwater resources containing elevated levels of trace elements including arsenic (As), chromium (Cr), iron (Fe), and uranium (U), amongst others. Strategic management of geofluids and protection of geological resources related to them is indispensable for the future sustainable development of these societal and economically important resources. The characterization of geofluids and their behaviour in natural or artificial (human-driven) circumstances requires a deep understanding of complex physical, geochemical and microbiological processes. They are influenced directly by geological setting, structural evolution, and fluid flow systems.

The aim of this session is to foster scientific discussion between those with interest in a range of geofluid systems to better understand the role which these fluids have as socio-environmental and economic resources. The session emphasises the importance of lithological & mineralogical characterizationof various systems including in aquifers for a range of geogenic contaminants in groundwater, specifically addressing the source pathways and mobilisation mechanisms. The session also welcomes work including fluid flow, hydrology, geochemistry, environmental tracers, microbial investigations and both numerical and statistical modelling in support of fluid and resource management.

The session is supported by the RGFC-IAH (‘Regional Groundwater Flow Commission’ of International Association of Hydrogeologists) and the EU H2020 ENeRAG (‘Excellency Network Building for Comprehensive Research and Assessment of Geofluids’) project.

Share:
Co-organized as HS11.71/BG1.37/ERE6.8/GMPV3.6, co-sponsored by IAH-RGFC
Convener: Daniele Pedretti | Co-conveners: Alex Russell, Ádám Tóth, Frank McDermott, Marie-Amélie Petre
Orals
| Mon, 08 Apr, 10:45–12:30
 
Room L7
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall A

ERE7 – Geo-materials from natural resources

ERE7.1

Construction materials (natural stone, aggregates, bricks, cement, lime, clay, etc.) form a wide and heterogeneous group (both from the genetic and technological point of view), which deserves attention from the scientific community due to their long-term use, importance for the society and sensitivity to the environment. Most of the geomaterials have been also used in important monuments of the World Cultural Heritage. However, our knowledge of many aspects of these materials is still rather limited. This session would like to focus on thorough discussions of the following topics:
• characterisation of traditional raw materials and their products, such as natural stone, crushed stone, sands and gravels, clay, inorganic binders (lime, natural cements, hydraulic lime, and gypsum), earth and adobe;
• recovery of traditional and historic knowledge of their processing and use;
• assessment of stability (durability) problems associated to long-term exposure of these materials to the anthroposphere;
• optimization of traditional construction materials (surface treatments, use of organic or inorganic additives, etc.);
• study of interactions and compatibility between traditional construction materials and modern restoration products
• availability of traditional materials in modern society, including comparative studies between small-scale production of materials (e.g. natural cement) and large-scale industrial processing;
• use of local materials as a part of cultural and technological heritage;
• technological properties and their testing (including relevance of individual tests, limits of methodologies, development of new methods);
• on site and laboratory standardized (ASTM, EN, etc.) and non-standardized testing techniques and their limitations for material characterization;
• monitoring and characterization of weathering features;
• monitoring of temperatures, moisture and salts, particularly under the viewpoint of climate change;
• geological evaluation of geomaterials deposits, i.e. different prospecting and exploration approaches applied to specific features of these materials in different geoenvironments, such as geostatistical evaluation, relevance of reserves and resources classification schemes;
• compositional (mineralogical, chemical, etc.) and genetic aspects that influence processing and final use of geomaterials and their quality;
• alternative use for waste materials from the exploitation and processing of geomaterials;
• durability of geomaterials once being placed in buildings or other structures.

Share:
Co-organized as GI4.9
Convener: Richard Prikryl | Co-conveners: Magdalini Theodoridou, Ákos Török
Orals
| Wed, 10 Apr, 08:30–12:30, 14:00–15:45
 
Room 0.94
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X1
ERE7.2

Natural stones are the main material used in architectonic heritage. Our session deals with those natural stone types that have achieved important use and significant recognition in human culture. Their recognition will promote public and policy-maker interest in stone built heritage, encourage the use of local natural stone and ensure the availability of the natural stone required for the maintenance of the built heritage and the quality of new buildings. This session is promoted by the Heritage Stones Subcommision, an IUGS subcommission within the Geoheritage Commission. It encourages contributions for the proposed thematic issue: natural stones and heritage and its potential application and information on possible stones from all over the world. We will as well accept contributions on issues related to the importance of using original natural stones in the restoration and conservation of historical buildings, and other issues associated with Geoheritage such as historical quarries and quarry landscape. This session will also emphasize the importance of Heritage Stones in the preservation of World Heritage sites.

Contributions from previous EGU editions are now published in highly rated journals; Geological Society of London Special Publications (SP407: Global Heritage Stone: Towards International Recognition of Building and Ornamental Stones), Episodes Special Issue on Heritage Stones (volume 38-2, June 2015), Geoscience Canada (volume 43(1), March 2016), Geoheritage (2018). Selected contributions to this EGU 2019 will be considered for publication in another Special Issue for a well rated journal.

Partial funding is available for registration and travelling expenses, through the UNESCO IGCP-637 "HERITAGE STONE DESIGNATION". Please contact convener for further details or visit our web site for details on eligibility: http://globalheritagestone.com/igcp-637/

Share:
Co-organized as EOS11.2
Convener: Dolores Pereira | Co-conveners: Gurmeet Kaur, Maria Heloisa Frasca
Orals
| Thu, 11 Apr, 14:00–17:55
 
Room 0.94
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X1
BG1.68

The European countries are often recognised as the cradle of some of the world’s most important cultural heritage in stone. The cultural, artistic and social importance of stone monuments and lithic works of art evidences the general need to safeguard our praiseworthy cultural heritage. Unfortunately, we are confronted with some problems concerning their conservation, such as the increase of atmospheric contamination, the complex interactions between physical, chemical and biological factors, vandalism, lack of maintenance, and inefficient conservation treatments. This session will focus on the novel approaches that have been recently developed in the field of stone cultural heritage. The new emerging technologies, together with the variety of strategies, methodologies and biotechnological approaches available today show the wide range of possibilities that can be applied to stone heritage conservation. We invite studies devoted to: (i) novel tools for the identification of microorganisms and metabolites responsible for stone biodeterioration; (ii) biomaterials used for the preservation of granite and limestone materials; (iii) natural products from plants or microorganisms as innovative bioactive compounds for controlling biodeterioration; (iv) biotechnological approaches for the preservation of stone-built heritage and removal of sulphates, nitrates or organic substances from stone walls; (v) bioremediation strategies for building restoration. Experimental design setups, laboratory-based assays and field tests are also welcomed.

Share:
Co-organized as ERE7.3/NH2.4
Convener: Patricia Sanmartín | Co-conveners: Ana Z. Miller, Domenico Pangallo, Guadalupe Piñar Larrubia
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall A
ITS3.9/GM6.1/ERE7.4/GMPV7.15/SSS13.29

Geodiversity is an interest for all geosciences, where the natural environment for our science is recorded and assessed. Geoheritage is the appreciation, valuation, and sustainable exploitation of part of this geodiversity for the good of the environment, for society and for science. Geodiversity and geoheritage provide essential links to other disciplines in the natural and social sciences, and they give geosciences a voice to the greater public and to local to global governance.
The EGU geodiversity and geoheritage session has been a large and vibrant meeting spot for a large diverse assemblage of geoscientists and stakeholders for over 5 years, growing with the increasing appreciation of the central role these topics have.
This EGU 2019 session aims to highlight the hottest issues and challenges pending or emerging, as well as inviting a broad range of topics, to engage in a far reaching discussion. As in previous years, we will hold a Splinter Meeting to further discuss hot topics, and will animate the poster session with a special picnic session.

Five main themes to tackle have been identified for 2019:

1) Society, climate change and geodiversity: the problems related to economic and environmental dynamics affecting geodiversity under changing climate and global development conditions. This topic has implications for and links to the IUGS RFG (Resourcing Future Generations) initiative and is a central theme for UNESCO Global Geoparks and World Heritage, and concerns also the management of all types of natural risk.

2) Geo- to ecosystem services and geoheritage: this follows from the first theme in exploring the possibility of developing a holistic and integrated approach to geodiversity, by considering geosystem services, in a perspective of sustainable management of geoheritage to the benefit of the whole environment.

3) Geodiversity, geosites and geoheritage assessments at multiple spatial scales: integrating data from global to local: the present lack of integration between global, regional and local geological and geomorphological data can limit the validity of geodiversity assessment and prevent its applicability for enhancement and protection of geoheritage. This subject relates to practical issues on different spatial scales for geodiversity immediately applicable to the protection of geodiversity, geoheritage and has links with the problems raised in the first two themes.

4) Virtual and Augmented Reality and Geoheritage: the strong innovation potential for this research field due to enhanced application of geoinformation technologies (GIS and Semantic Web). This use of global platforms, such as Google Earth, to outcrops scale augmented reality is a powerful research and educational tool that is developing fast. This theme will draw together demonstrations of the ongoing development of such techniques and their practical implementation into geodiversity and geoheritage sites.

5) Towards a fruitful integration/collaboration of international designations; this is a topic that we invite discussion about, and which is being hotly discussed between the major geoscience unions, associations, programmes and global instances like the UNESCO’s International Geoscience and Geoparks Programme and Convention Concerning the Protection of the World Cultural and Natural Heritage, the IUGS International Geoheritage Commission and the International Union for the Conservation of Nature, especially through the Geoheritage Specialist Group/WCPA. It will form a subject of the Splinter Meeting, where these major unions will be open to discuss the theme.

Geodiversity and Geoheritage attract a broad range of people from all sides of geosciences and therefore we invite all this diversity to participate in the session.

The session is co-sponsored by the Working Group on Geomorphosites and the Working Group on Landform Assessment for Geodiversity of the International Association of Geomorphologists; ProGEO, the European Association for the Conservation of the Geological Heritage; the IUGS International Commission on Geoheritage; the Geoheritage Specialist Group of the World Commission on Protected Areas of the International Union of Conservation of Nature, the International Lithosphere Program, and the IAVCEI Commission on Volcanic Geoheritage and Protected Volcanic Landscape.
The session is closely linked to the those of Geoheritage Stones, and to Volcano Resources.

Share:
Co-organized as GM6.1/ERE7.4/GMPV7.15/SSS13.29
Convener: Marco Giardino | Co-conveners: Paola Coratza, Alicja Najwer, Karoly Nemeth, Benjamin van Wyk de Vries
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room N1
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X2

ERE8 – Further interdisciplinary sessions and short courses related to ERE

ITS4.5/AS4.33/ERE8.1

International failure in curbing the global greenhouse gas emissions has sparked studies on diverse and largely hypothetical methods, known collectively as geoengineering, to intentionally mitigate climate change. At the same time, operational activities to modify weather, especially in terms of snow and rain enhancement, are taking place in more than 50 countries. Although these two topics are typically discussed separately, they are in many ways interlinked. Importantly, successful long-term weather modification and geoengineering would alter climatic conditions and the water cycle on local to regional scales.
In this session, the nexus between regional geoengineering and weather modification is discussed and analyzed. The importance of regional-scale modeling and experimental studies is specifically highlighted. All contributions are welcome, which investigate the various geoengineering and weather modification options from the local to the regional scale. Particularly encouraged are studies, which consider potential interlinkages between geoengineering and rain enhancement.

Share:
Co-organized as AS4.33/ERE8.1
Convener: Hannele Korhonen | Co-conveners: Volker Wulfmeyer, Lulin Xue
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room L7
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X5
HS5.4.3

Developing a sustainable future requires the optimal integration and synergising of energy, agriculture and water sectors. As developing economies grow with rapid urbanisation, access to modern energy and water services should grow sustainably. Quantitative tools for planning and assessing national and basin scale infrastructure planning are essential for this. Issues of access and the challenges of biophysical and socioeconomic dynamics involved therein are often poorly reflected in plans. Integrated Assessment Modeling (IAMs) can allow for studying interactions between the economy, water use, energy use, and the environment. IAMs enable investigating long-term transition pathways in the context of climate change and shared socioeconomic pathways.

Most IAMs, however, are mainly global and at best regional, and as such do not adequately represent socio-hydrological mechanisms at smaller scale. On the other hand, basin scale studies often poorly reflect national and regional drivers. One of the main bottlenecks is the intrinsic difficulty in bridging the high-level system-oriented approach of IAMs with the strong dependency of the efficacy of plans on local socioeconomic and hydrological drivers. We invite contributions connecting fundamental and applied research for policy making, concepts and case studies to better understand how IAMs can be better utilised in infrastructure decisions at regional, country or basin scales.

Keys: Integrated Assessment Modelling, Water-Energy-Food Nexus, Infrastructure Decisions, Urbanization, Climate Change

Share:
Co-organized as ERE8.2
Convener: Edo Abraham | Co-conveners: Saket Pande, Zarrar Khan
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room 2.25
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall A
ITS2.5/HS5.5.2/ERE8.3/GM8.6

Synergistic approaches to respond to water, food and energy increasing needs, incorporating the need to hinder impacts on the environmental (land) and socio-economic realities, are essential to attain the UN Sustainable Development Goals 2, 6, 7 and 15. Such nexus approach is highly challenging given the substantial and highly contextual interdependencies between sectors. It becomes more daunting if we consider the need to adapt to climate change.

In response to this global development challenge, this session brings together the community of engineers, scholars, scientists and decision makers, with a common interest on novel frameworks and methodologies for an integrated water resources management taking into account its connections to energy production, land use and impacts and societal implications in a context of climate change adaptation. We discuss improved approaches for water related nexus, which not only considers the effects in the geophysical system (water, sediment, landscape) but also further implications related to socio-economic and ecological spheres. The works presented contain conceptual and applied models with references to energy production, engineering response, management, nature protection, agriculture and society. New approaches to analyse and manage superficial water storage, essential to sustain and stabilize water supply, food and energy production, reduce hydro-climatological hazards, and adapt to climate change, are discussed as well.

More generally, the session presents integrated models for assessment and optimization which identify co-benefits and trade-offs between different Sustainable Development Goals at several spatial and temporal scales: global, regional and basin; and short, middle and long- term perspectives, respectively. Contributions integrate the impacts of climate change into long-term planning, dynamic adaptation or simulation models.

Share:
Co-organized as HS5.5.2/ERE8.3/GM8.6
Convener: Mário J Franca | Co-conveners: Edward A. Byers, Andrey V. Mitusov, Gretchen Gettel, Germán Santos, Francesco Gardumi, Michelle van Vliet
Orals
| Mon, 08 Apr, 14:00–18:00
 
Room L7
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall A
CL4.35.2

Water and energy are essential to human society, and their supplies are vulnerable to climate change. For example, climate change will have impacts on the quantity and quality water resources, which may affect water availability for cooling at power plants, and on the yield of clean energy such as hydropower, wind power and solar energies. Considering increasing intensity and frequency of climate extremes in a warming world, understanding and quantifying the interdependence and challenges among climate, water and the energy system is critical. Considerable research is being conducted on some aspects of the climate-water-energy nexus, but this nexus is regionally diverse and has many unexplored facets. We aim to bring together researches focusing on the climate-water-energy nexus to both share current research and identify knowledge gaps.
To assess the integrative impacts of climate and climate change on water and energy systems and advance our understanding of the climate-water-energy nexus, we welcome contributions that focus on water and energy issues under a warming climate, including, but not limited to:
• climate modelling and future climate simulation with a focus on water availability
• Regional analyses of precipitation and water availability
• impacts of climate change on water resources
• impacts of climate change on clean energy yield, operation and management
• impacts of climate extremes on traditional energy production and delivery

Share:
Co-organized as ERE8.6/HS11.30
Convener: Chan Xiao | Co-conveners: Alan Di Vittorio, Hongmei Xu, Weihua Yuan
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room 0.14
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X5
HS7.3 | PICO

Hydroclimatic conditions and the availability of water resources in space and time constitute important factors for maintaining an adequate food supply, the quality of the environment, and the welfare of inhabitants, in the context of sustainable growth and economic development. This session is designed to explore the impacts of hydroclimatic variability, climate change, and the temporal and spatial availability of water resources on: food production, population health, the quality of the environment, and the welfare of local ecosystems. We particularly welcome submissions on the following topics:

Complex inter-linkages between hydroclimatic conditions, food production, and population health, including: extreme weather events, surface and subsurface water resources, surface temperatures, and their impacts on food security, livelihoods, and water- and food-borne illnesses in urban and rural environments.

Quantitative assessment of surface-water and groundwater resources, and their contribution to agricultural system and ecosystem statuses.

Spatiotemporal modeling of the availability of water resources, flooding, droughts, and climate change, in the context of water quality and usage for food production, agricultural irrigation, and health impacts over a wide range of spatiotemporal scales

Intelligent infrastructure for water usage, irrigation, environmental and ecological health monitoring, such as development of advanced sensors, remote sensing, data collection, and associated modeling approaches.

Modelling tools for organizing integrated solutions for water, precision agriculture, ecosystem health monitoring, and characterization of environmental conditions.

Water re-allocation and treatment for agricultural, environmental, and health related purposes.

Impact assessment of water-related natural disasters, and anthropogenic forcings (e.g. inappropriate agricultural practices, and land usage) on the natural environment; e.g. health impacts from water and air, fragmentation of habitats, etc.

Share:
Co-organized as CL4.41/ERE8.7/NH1.21/NP9.5
Convener: George Christakos | Co-conveners: Alin Andrei Carsteanu, Andreas Langousis, Hwa-Lung Yu
PICOs
| Mon, 08 Apr, 14:00–18:00
 
PICO spot 5b
ITS5.6/GM6.2/BG1.46/CL2.28/ERE8.8/GI1.9/NH9.28/SSS13.27

The originality of the session is to emphasize on the central position of human activities in environmental research (both terrestrial and atmospheric), as a driving factor and/or a response, by combining different spatio-temporal scales.
Continental environments (under various climatic conditions) experience profound societal and physical changes, which prompt scientists to investigate the complex interactions between environmental functioning and human activities.
The complexity originates from the multiplicity of factors involved and resulting spatial and temporal variabilities, of their multiple origins in time (historical integration) and/or legacy.
As a consequence, causal links in this societal-environmental relationship are difficult to establish but, it is fundamental to understand these causal links to adapt, conserve, protect, preserve and restore the functioning of the environment as well as human activities. From this point of view, the geographical approach highlights the relationships (or their absence) through the expression of the spatial and temporal trajectories of the processes studied by clarifying the observation of signals.
The ensuing issues on the relevance of indicators used in different supports of nowadays research (imagery, archives, models ...) are raised as a methodological open up.
In this context, oral and poster presentations dealing with any studies related to the following issue(s) are welcome:
- human forcing on the environments and environmental resilience
- response of socio-systems to environmental changes
- scenarios, prospective and retrospective models of the evolution of environments and human activities
- management modes (adaptive management) of anthropised continental environments, reciprocity, mutual benefits (ecosystem services), positive feedback

The session may include the following methodological aspects:
- in situ metrology,
- statistical and numerical modeling,
- spatio-temporal analysis,
- remote Sensing,
- surveys,
- landscape analysis,
- paleoenvironmental approach,
at various scales:
- spatial scales, from the station and site through watershed,
- time scales from the event to the Holocene.

Share:
Co-organized as GM6.2/BG1.46/CL2.28/ERE8.8/GI1.9/NH9.28/SSS13.27
Convener: Armelle Decaulne | Co-conveners: Anne-Julia Rollet, Olivier Planchon, Þorsteinn Sæmundsson, Etienne Cossart
Orals
| Wed, 10 Apr, 10:45–12:30
 
Room N1
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X2
SC1.35 ECS

Machine learning (ML) is a well-established approach to complex data analysis and modelling in different scientific fields and in many practical applications. Nowadays, ML algorithms are widely used as efficient tools in GI Sciences, remote sensing, environmental monitoring and space-time forecasting. The short course gives an overview of ML algorithms widely applied in data exploration and modelling of high dimensional and multivariate geoscientific data. The main topics of the course, presented within the framework of a generic data-driven methodology of modelling, include detection of patterns and predictability, feature selection, unsupervised, supervised and active learning, visual analytics. Real case studies consider environmental pollution, natural hazards and renewable energy resources assessments.

Share:
Co-organized as ERE8.9/NH10.6/NP10.5
Convener: Mikhail Kanevski | Co-conveners: Vasily Demyanov, Fabian Guignard
Wed, 10 Apr, 14:00–15:45
 
Room -2.31

PGM – Programme group meetings (by invitation only)

PGM7
Sub-programme groups meeting ERE (by invitation only)
Convener: Sonja Martens
Wed, 10 Apr, 10:45–12:30
 
Room 3.17

Union sessions of interest

US2

This year marks the 250th anniversary of the birth of Alexander von Humboldt (1769-1859), the intrepid explorer of the Andes and other regions in the world, and the most famous scientist of his time. Alexander von Humboldt is perhaps best known for his radical new vision of nature as a complex and interconnected global force, thereby becoming the founder of the field of biogeography and laying the ground for modern Earth-System Science approaches. It seems fitting to pay tribute to Alexander von Humboldt’s legacy by reviewing the state of the art in studies of the coupled lithosphere – atmosphere – hydrosphere – biosphere system with a focus on the Andean mountain belt. The Andes have become one of the main natural laboratories in the world to explore these questions and many recent studies have addressed its tectonic and geodynamic evolution, but also the two-way couplings between surface uplift, climatic evolution and biodiversity in the Andes and its foreland. This Union Session will bring together world-leading specialists on these questions with the aim to shed light on both suspected and unexpected couplings in the system.

Share:
Convener: Peter van der Beek | Co-conveners: Mike Burton, Giuliana Panieri, Lily Pereg (deceased)(deceased)
Orals
| Fri, 12 Apr, 08:30–12:15
 
Room E1
US3 Media|ECS

Over the whole Earth history, the climate has encountered tipping points, shifting from one regulated system to the other. This tilting motion affects both climate and the carbon cycle and has played a major role in the evolution of the Earth climate, at all timescales. Earth History has been ponctuated by large climate changes and carbon cycle reorganizations, from large climate variations occurring in deep times (snowball events, terrestrialisation, Mesozoic and early Cenozoic warm episodes, quaternary glacial cycles…) to past and on-going abrupt events. Many potential triggers of those climate and carbon cycle shifts have been proposed and tested through modeling studies, and against field data, such as those directly or indirectly linked with tectonics (plate motion, orogenesis, opening/closing of seaways, weathering…) and orbital forcing. Given that the Earth climate is currently experiencing an unprecedented transition under anthropogenic pressure, understanding the mechanisms behind the scene is crucial.

Our aim is to point out the most recent results concerning how a complex system as the climate of the Earth has undergone many tipping points and what is the specificity of the future climate changes. Therefore, within this session, we would like to encourage talks discussing advances in our record and modeling of the forces triggering and amplifying the changes of Earth climate and carbon cycle across spatial and temporal scales.

Share:
Convener: Gilles Ramstein | Co-conveners: Ayako Abe-Ouchi, Richard Betts, Robert DeConto
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room E1
US4 ECS

In today’s changing world we need to tap the potential of every talented mind to develop solutions for a sustainable future. The existence of under-representation of different groups (cultural, national and gender) remains a reality across the fields of science, technology, engineering, and mathematics (STEM fields) around the world, including the geosciences. This Union Symposium will focus on remaining obstacles that contribute to these imbalances, with the goal of identifying best practices and innovative ideas to overcome obstacles.

EGU is welcoming six high-level speakers from the funding agencies and research centres on both sides of the Atlantic related to geosciences to present efforts and discuss initiatives to tackle both implicit and explicit biases. Speakers are:

Jill Karsten, AGU Diversity and Inclusion Task Force (confirmed)
Erika Marín-Spiotta, University of Wisconsin - Madison (confirmed)
Daniel Conley, Lund University (confirmed)
Giulio di Toro, University of Padua (confirmed)
Liviu Matenco, Utrecht University (confirmed)
Barbara Romanowicz, European Research Council (confirmed)

Share:
Co-sponsored by AGU and JpGU
Convener: Claudia Jesus-Rydin | Co-conveners: Alberto Montanari, Robin Bell, Chiaki Oguchi, Lily Pereg (deceased)(deceased)
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room E1
US5

Atmospheric composition matters to climate, weather forecasting, human health, terrestrial and aquatic ecosystems, agricultural productivity, aeronautical operations, renewable energy production, and more. Hence research in atmospheric composition is becoming increasingly cross-cutting and linked to many disciplines including climate, biogeosciences, hydrology, natural hazards, computer and data sciences, socio-economic studies and many others. There is a growing need for atmospheric composition information and an improved understanding of the processes that drive changes in the composition and resulting impacts. While atmospheric composition research is advancing rapidly, there is a need to pay more attention to the translation of this research to support societal needs. Although translational research is a major focus of the health sciences and meteorology, it is in a relatively early stage in atmospheric composition. In this Union Symposium, we plan to highlight the need for, and to illustrate exciting advances in the translation of atmospheric composition research to support services. We will build upon work within the World Meteorological Organization and other communities related to the closer linkages of weather, atmospheric composition, and climate research and related services. We will also articulate the needs for advances in observing systems, models and a better understanding of fundamental processes. This session will also serve as a celebration of the 30 year anniversary of the WMO Global Atmosphere Watch programme and an opportunity for the broader community to envision partnerships needed to facilitate the effective translation of atmospheric composition research.

Share:
Convener: Oksana Tarasova | Co-conveners: Marcos Andrade, Claudia Volosciuk
Orals
| Tue, 09 Apr, 10:45–12:15, 14:00–15:30
 
Room E1
GDB1 Media

In October 2018, the IPCC published its special report on impacts of global warming of 1.5 deg C. Another recent, highly publicised study suggests that the planet could pass an irreversible threshold into a so called “Hothouse Earth” state for a temperature increase of as low as 2 degrees C above pre-industrial temperatures, while other studies and commentaries have emphasised the urgency on climate action, arguing that 2020 must be a turning point for global fossil fuel emissions, to increase the chance of maintaining a safe operating space for the humans on the planet. In 2018, the IPCC celebrated its 30th anniversary. The importance of taking action on human-induced climate change has been emphasised with governments around the world since the 1990s yet CO2 concentrations continue to rise and international initiatives have, to date, had limited and insufficient impact to avert some of the most serious consequences of climate change.
How close are we to one or more critical thresholds (cliff edge)? Is there time to avert passing one or more of these thresholds? What can the geoscience community do to reduce the risks? How important is bottom up versus top down action to ensuring the least worst outcome? These are some of the questions we will debate with world experts in their field and authors of the thought papers on these topics.

Public information:
In October 2018, the IPCC published its special report on impacts of global warming of 1.5 deg C. Another recent, highly publicised study suggests that the planet could pass an irreversible threshold into a so called “Hothouse Earth” state for a temperature increase of as low as 2 degrees C above pre-industrial temperatures.

In 2018, the IPCC celebrated its 30th anniversary. The importance of taking action on human-induced climate change has been emphasised with governments around the world since the 1990s yet CO2 concentrations continue to rise and international initiatives have, to date, had limited and insufficient impact to avert some of the most serious consequences of climate change that may pose an existential threat to modern civilisation.

How close are we to one or more critical thresholds? Is there time to avert passing one or more of them? What can the geoscience community do to reduce the risks? How important is bottom up versus top down action to ensuring the least worst outcome? These are some of the questions we will debate with world experts in their field and authors of the thought papers on these topics.

The Great Debate panellists are:
Prof. Myles Allen is Professor of Geosystem Science in the Environmental Change Institute, University of Oxford. His research focuses on how human and natural influences on climate contribute to observed climate change and risks of extreme weather and in quantifying their implications for long-range climate forecasts. He was a Coordinating Lead Author on the Intergovernmental Panel on Climate Change Special Report on 1.5 degrees, having served on the IPCC’s 3rd, 4th and 5th Assessments, including the Synthesis Report Core Writing Team in 2014.

Prof. Sabine Fuss, Mercator Research Institute on Global Commons and Climate Change (MCC), Berlin. Sabine is an economist, currently leading a working group at the MCC. She holds a professorship on Sustainable Resource Management and Global Change at Humboldt University of Berlin. Her research interests are in sustainable development, land use change and climate change mitigation. She has been an IPCC Lead Author for the Special Report on 1.5°C global warming, serves on the steering committee of the Global Carbon Project and is a guest scholar at the International Institute for Applied Systems Analysis.

Erica Hope leads the cross-sectoral ‘2050 Task Force’ and governance programme of the European Climate Foundation (ECF) in Brussels, which seeks to build knowledge, political strategies and coalitions to drive the transition to a zero emissions society by mid-century. Erica has previously worked for the energy efficiency and UK programmes of the ECF, and before that led the policy and advocacy activities of NGO network Climate Action Network Europe on energy efficiency. From 2005-2009 she was researcher to Green MEP Caroline Lucas, and has also worked at the Institute for Public Policy Research in London.

Prof. Linda Steg is professor of environmental psychology at the University of Groningen. She studies factors influencing sustainable behaviour, the effects and acceptability of strategies aimed at promoting sustainable behaviour, and public perceptions of technology and system changes. She is member of Member of the Royal Netherlands Academy of Sciences (KNAW), and lead author of the IPCC special report on 1.5°C and AR6. She works on various interdisciplinary and international research programmes, and collaborates with practitioners working in industry, governments and NGOs.

Share:
Convener: Jonathan Bamber | Co-conveners: Alberto Montanari, Didier Roche
Thu, 11 Apr, 10:45–12:30
 
Room E1
GDB2 ECS

The geosciences are currently used by policymakers in a wide variety of areas to help guide the decision-making process and ensure that the best possible outcome is achieved. While the importance of scientific advice and the use of evidence in the policymaking process is generally acknowledged by both policymakers and scientists, how scientific advice is integrated and who is responsible is still unclear.

EU Policymakers frequently highlight institutionalised processes for integrating scientific advice into policy such as European Commission's Group of Chief Scientific Advisors (SAM) and the EU Commission’s Register of Expert Groups. But how efficient and accessible are these mechanisms really?

Some emphasise the need for scientists to have their own policy networks in place so that they can share their research outcomes with policymakers who can then use it directly or pass it on to those responsible for relevant legislation. But from funding applications to teaching and even outreach activities – scientists are often already overloaded with additional tasks on top of their own research. Can they really be held responsible for keeping up with the latest policy news and maintaining a constantly changing network of policymakers as well?

This debate will feature a mixed panel of policymakers and geoscientists who have previously given scientific advice. Some key questions that the panel will debate include:
• How can the accessibility of current EU science-advisory mechanisms be improved?
• Are scientists doing enough to share their research?
• And who is responsible for ensuring that quality scientific evidence is used in policymaking?

Speakers will be encouraged to explain any science advisory mechanism that they highlight (e.g. SAM) to ensure that the debate is understood by all those in attendance.

While the panel and subsequent debate will have an EU focus, it is likely that many of the issues discussed will be applicable to countries around the world.

Public information:
David Mair: Head of Unit, Knowledge for Policy: Concepts & Methods, Joint Research Centre
Paul Watkinson: Chair of SBSTA (Subsidiary Body for Scientific and Technological Advice)
Kasey White: Director for Geoscience Policy, Geological Society of America
Günter Blöschl: Head of Institute of Hydraulic Engineering and Engineering Hydrology, Vienna University of Technology
Detlef van Vuuren: Professor in Integrated Assessment of Global Environmental Change at the Faculty of Geosciences, Utrecht University

Share:
Convener: Chloe Hill | Co-conveners: Sarah Connors, Hazel Gibson
Mon, 08 Apr, 10:45–12:30
 
Room E1
GDB3 ECS

The ever more challenging work environments and increasing pressures on Early Career Scientists e.g. publish or perish, securing grant proposals, developing transferable skills and many more – and all while having a lack of job security. This puts a big strain on Early Career Scientists and this can lead to neglected mental well-being which in turn increases the risk of developing anxiety, depression or other mental health issues. The graduate survey from 2017 (https://www.nature.com/nature/journal/v550/n7677/full/nj7677-549a.html) shows that 12% of respondents had sought help or advice for anxiety or depression during their PhD.

In this debate we want to discuss: Is there a problem? How ECS can take control of their mental wellbeing and prioritise this in the current research environment? And what support would ECS like to see from organisations like EGU or their employers?

Share:
Convener: Stephanie Zihms | Co-conveners: Raffaele Albano, Anita Di Chiara, Hazel Gibson, Mathew Stiller-Reeve
Thu, 11 Apr, 19:00–20:30
 
Room E1
GDB4 ECS

"What counts may not be countable and what is countable may not count". Assessments of scientists and their institutions tend to focus on easy-to-measure metrics related to research outputs such as publications, citations, and grants. However, society is increasingly dependent on Earth science research and data for immediate decisions and long-term planning. There is a growing need for scientists to communicate, engage, and work directly with the public and policy makers, and practice open scholarship, especially regarding data and software. Improving the reward and recognition structure to encourage broader participation of scientists in these activities must involve societies, institutions, and funders. EGU, AGU, and JPGU have all taken steps to improve this recognition, from developing new awards to starting journals around the topic of engaging the public to implementing FAIR data practices in the Earth, environmental, and space sciences, but far more is needed for a broad cultural change. How can we fairly value and credit harder-to-measure, these less tangible contributions, compared to the favoured metrics? And how can we shift the emphasis away from the "audit culture" towards measuring performance and excellence? This session will present a distinguished panel of stakeholders discussing how to implement and institutionalize these changes.

Public information:
Moderator:
Robin Bell - AGU President

Co-Moderator:
Helen M. Glaves - President of the EGU ESSI Division

Panelists:

Liz Allen – Director of Strategic Initiatives at F1000
Visiting Senior Research Fellow, Policy Institute, King's College London

Stephen Curry – Professor and Assistant Provost, Imperial College London
Chair, Declaration on Research Assessment (DORA)

Demetris Koutsoyiannis – Professor and former Dean, Faculty of Engineering, Technical University of
Athens, Past Editor in Chief of the Hydrological Sciences Journal of IAHS

Share:
Co-sponsored by AGU and JpGU
Convener: Alberto Montanari | Co-conveners: Jonathan Bamber, Robin Bell, Hiroshi Kitazato, Lily Pereg (deceased)(deceased)
Wed, 10 Apr, 10:45–12:30
 
Room E1
GDB5 Media

Public information:
Plan S, devised by a coalition of research funders with support from the European Commission and European Research Council, demands that by January 1, 2020 research supported by participating funders must be published in Open Access journals. Representatives from subscription-based and Open Access publishers, architects of Plan S, and researchers affected by it will debate questions surrounding the implementation of the plan and its consequences.

The panelists are David Sweeney, Heike Langenberg, Marc Schiltz and Brooks Hanson. They will present the case for and against mandatory OA followed by an open debate with questions and comments from the audience.

David Sweeney is Executive Chair of Research England, the biggest research funder in the UK. He has been invited to visit many countries to advise on research assessment and funding, particularly with respect to research impact. He is also co-chair of the Implementation Task Force for Plan S, the international initiative on full and immediate open access to research publications.

Heike Langenberg is the Chief Editor of Nature Geoscience. She started her editorial career in 1999 as an Associate, then Senior Editor at Nature handling manuscripts in the broad area of climate sciences. In 2007 she moved to Nature Geoscience to launch the journal in January 2008. A graduate in mathematics of the Philipps-Universität Marburg, Germany, she ventured into oceanography for her PhD at the University of Hamburg. Her postdoctoral research at various research institutes in Hamburg was focused on numerical simulations of the ocean and atmosphere at a regional scale.

Marc Schiltz is president of Science Europe, the European association of all major national public research funding and research performing organisations. In this role, he has contributed to setting the European agenda to foster Open Science and is one of the architects of Plan S. He is also leading the Luxembourg National Research Fund. He is a relentless advocate of science and research, serving on a number of external boards and committees, both at the national and international level. Having received a PhD in Crystallography from the University of Paris-Sud and an executive MBA from INSEAD, Marc has been active in research and higher education for more than 25 years and held research and faculty positions in several European countries.

Brooks Hanson is the Executive Vice President for Science for the American Geophysical Union (AGU), responsible for AGU’s publications, meetings, ethics and data programs, and Thriving Earth Exchange. He previously acted as Sr. Vice President for Publications at AGU, where he was responsible for AGU's portfolio of books and 21 journals and served as Deputy Editor for Physical Sciences at Science. Brooks received a Ph.D. in Geology from UCLA and held a post-doctoral appointment at the Department of Mineral Sciences at the Smithsonian Institution.

Share:
Convener: Katja Fennel | Co-convener: Jonathan Bamber
Tue, 09 Apr, 16:15–18:00
 
Room E1
SCS1 Media|ECS

Wed, 10 Apr, 12:45-14:00 / Room E1

Public information:
The dialogue between scientists, institutions, policymakers and the general public is widely recognised as an essential step towards a fair and sustainable society. Nowadays, more than ever in human history, international cooperation is an essential requirement for protecting the planet, advancing science and ensuring an equitable development of the global economy.
Despite its importance, the above dialogue can be a challenge for scientists, who often cannot find a productive connection with governments and politicians. Scientific associations are a key link between researchers and policy makers, as they have the potential to establish a durable and profitable connection with institutions.
The EGU elected the dialogue with society as one of its priority missions. At its General Assembly, the EGU is launching an innovative symposium format, Science and Society (SCS), to host scientific forums specifically dedicated to connecting with high-level institutions and engaging the public and policymakers.
The conversation with Ilaria Capua and Mario Monti will focus on science and politics with a global perspective, and the impact of populism on European integrity and therefore scientific research. The discussion will elaborate on optimal strategies to deliver topical and clear scientific messages to key institutions.
Ilaria Capua is a virologist best known for her research on influenza viruses and her efforts promoting open access to genetic information on emerging viruses. In 2006, Science reported on Capua’s effort towards open access science, stating that she had “renewed the debate about how to balance global health against scientists’ needs to publish and countries’ demands for secrecy". She has been a member of the Italian parliament from 2013 to 2016 and a fake news victim. She is currently a full professor at the University of Florida in Gainesville, Florida, US, and director of the UF One Health Center of Excellence.
Mario Monti served as a European Commissioner from 1995 to 2004, with responsibility for the internal market, services, customs, taxation and competition. He was Prime Minister of Italy from 2011 to 2013, leading a government of national unity to cope with the Italian debt crisis. Monti has also been Rector and is currently President of Bocconi University in Milan. His publications deal mainly with monetary and financial economics, public finance, European integration, competition policy. He is currently lifetime member of the Italian Senate.
During the conversation, Ilaria Capua and Mario Monti will present their vision with two 15-minute talks that will be followed by 20 minutes dedicated to questions from the audience and answers.

Share:
Conveners: Alberto Montanari, Jonathan Bamber
Wed, 10 Apr, 12:45–14:00
 
Room E1
SCS2 Media|ECS

Plastic pollution is recognized as one of the most serious and urgent problems facing our planet. Rates of manufacture, use and ultimately disposal of plastics continue to soar, posing an enormous threat to the planet’s oceans and rivers and the flora and fauna they support. There is an urgent need for global action, backed by sound scientific understanding, to tackle this problem.

This Union Symposium will address the problems posed to our planet by plastic pollution, and examine options for dealing with the threat.

Share:
Convener: Jessica Hickie | Co-conveners: Bruce Newport, Christopher Hackney, David Todd, Tim van Emmerik
Orals
| Mon, 08 Apr, 14:00–17:45
 
Room E1
SCA1 ECS

The Games Night is a space to gather, socialise, and play some games. The catch is that all the games are based on Geoscience! Bring along your own games or try one of the others in the session and meet the people who created them. This will also be your chance to try games featured in the Games for Geoscience session.

Public information:
Confirmed games include -
Breath of the Wild, HEAT, Flash Flood! Vol. 2, Resilience, Druids & Defences, Wanted: Head of the Centre for Flood Forecasts (IMPREX serious game), Rivers Top Trumps.

Share:
Convener: Christopher Skinner | Co-conveners: Rolf Hut, Sam Illingworth, Elizabeth Lewis, Jazmin Scarlett
Programme
| Wed, 10 Apr, 18:00–20:00
 
Foyer D
SCA2 ECS

Join us to help put some of the world's most vulnerable places on the map. A mapathon is a mapping marathon, where we get together to contribute to OpenStreetMap - the world's free map.
No experience is necessary - just bring your laptop and we will provide the training. Learn more about crowdsourcing, open data and humanitarian response - we will also provide some tips for how to host a mapathon at your home institution.

Share:
Convener: Faith Taylor | Co-conveners: Hessel Winsemius, Joanne Wood, chen zhong
Thu, 11 Apr, 19:00–20:30
 
Room L4/5
SCA3

Plastic Oceans UK have been experts on plastic pollution for nearly a decade - solving the plastic crisis through their science, sustainability and education programmes. This all began with the award-winning documentary A Plastic Ocean, now available for streaming on Netflix.

Through changing attitudes, behaviours and practices on the use and value of plastics, we can stop plastic pollution reaching the ocean within a generation.

Come along to the screening of A Plastic Ocean to understand the impacts of plastic pollution around the world, what action we can take to stop plastics entering our natural world and pose your questions to the film's producer, Jo Ruxton, at the end of film.

http://plasticoceans.uk/

Public information:
Plastic Oceans UK have been experts on plastic pollution for nearly a decade - solving the plastic crisis through their science, sustainability and education programmes. This all began with the award-winning documentary A Plastic Ocean, now available for streaming on Netflix.

Through changing attitudes, behaviours and practices on the use and value of plastics, we can stop plastic pollution reaching the ocean within a generation.

Come along to the screening of A Plastic Ocean to understand the impacts of plastic pollution around the world, what action we can take to stop plastics entering our natural world and pose your questions to the film's producer, Jo Ruxton, at the end of film.

http://plasticoceans.uk/

Share:
Convener: Fiona Tovey | Co-convener: Jessica Hickie
Tue, 09 Apr, 19:00–21:00
 
Room E2