Union-wide
Cross-cutting themes
Community-led
Inter- and Transdisciplinary Sessions
Disciplinary sessions

CL – Climate: Past, Present & Future

Programme Group Chair: Kerstin Treydte

MAL13-CL
Hans Oeschger Medal Lecture by Michael Sigl
Convener: Kerstin Treydte
Abstract
| Thu, 18 Apr, 19:00–20:00 (CEST)
 
Room F1
Thu, 19:00
MAL14-CL
Milutin Milankovic Medal Lecture by Peter U. Clark
Convener: Kerstin Treydte
Abstract
| Mon, 15 Apr, 16:15–17:15 (CEST)
 
Room F1
Mon, 16:15
MAL36-CL
CL Division Outstanding ECS Award Lecture by Maria A. A. Rugenstein
Convener: Kerstin Treydte
Abstract
| Thu, 18 Apr, 10:50–11:20 (CEST)
 
Room F1
Thu, 10:50
DM3
Division meeting for Climate: Past, Present & Future (CL)
Convener: Kerstin Treydte
Tue, 16 Apr, 12:45–13:45 (CEST)
 
Room F1
Tue, 12:45

CL0.1 – Inter- and Transdisciplinary Sessions

Sub-Programme Group Scientific Officers: Irka Hajdas, Kerstin Treydte

ITS2.3/CL0.1.1 EDI

High-impact climate and weather events typically result from the interaction of multiple climate and weather drivers, as well as vulnerability and exposure, across various spatial and temporal scales. Such compound events often cause more severe socio-economic impacts than single-hazard events, rendering traditional univariate extreme event analyses and risk assessment techniques insufficient. It is, therefore, crucial to develop new methodologies that account for the possible interaction of multiple physical and societal drivers when analysing high-impact events under present and future conditions. Despite the considerable attention from the scientific community and stakeholders in recent years, several challenges and topics must still be addressed comprehensively.


These include: (1) identifying the compounding drivers, including physical drivers (e.g., modes of variability) and/or drivers of vulnerability and exposure, of the most impactful events; (2) Developing methods for defining compound event boundaries, i.e. legitimate the ‘cut-offs’ in the considered number of hazard types to ultimately disentangle enough information for decision-making; (3) Understanding whether and how often novel compound events, including record-shattering events, will emerge in the future; (4) Explicitly addressing and communicating uncertainties in present-day and future assessments (e.g., via climate storylines/scenarios); (5) Disentangling the contribution of climate change in recently observed events and future projections; (6) Employing novel Single Model Initial-condition Large Ensemble simulations from climate models, which provide hundreds to thousands of years of weather, to better study compound events. (7) Developing novel statistical methods (e.g., machine learning, artificial intelligence, and climate model emulators) for compound events; (8) Assessing the weather forecast skill for compound events at different temporal scales; (9) Evaluating the performance of novel statistical methods, climate and impact models, in representing compound events and developing novel methods for reducing uncertainties (e.g., multivariate bias correction and emergent constraints); and (10) engaging with stakeholders to ensure the relevance of the aforementioned analyses.


We invite presentations considering all aspects of compound events, including but not limited to the topics and research challenges described above.

Convener: Emanuele BevacquaECSECS | Co-conveners: Zengchao Hao, Pauline RivoireECSECS, Wiebke Jäger, Seth Westra
Orals
| Fri, 19 Apr, 08:30–12:30 (CEST), 14:00–15:45 (CEST)
 
Room 2.24
Posters on site
| Attendance Fri, 19 Apr, 16:15–18:00 (CEST) | Display Fri, 19 Apr, 14:00–18:00
 
Hall X5
Posters virtual
| Fri, 19 Apr, 14:00–15:45 (CEST) | Display Fri, 19 Apr, 08:30–18:00
 
vHall X5
Orals |
Fri, 08:30
Fri, 16:15
Fri, 14:00
ITS2.1/CL0.1.2 EDI

The life evolution history on earth is closely intertwined with the multiple stressors within the ever-changing climate system. Ranging from large-timescale oscillations associated with orbital cycles and the glacial-interglacial transitions to regionalized extreme events, a wide range of climatic fluctuations in the past may have contributed to shaping the distribution and evolution of various life forms in the terrestrial environment. The recent developments in observational and coupled climate-ecological modelling approaches have provided a better understanding on the past climate impacts on the evolution of life. However, few occasions have allowed for a general bridge across these fields. Integrating multi-dimensional scientific approaches will provide us with a deeper understanding on the complex climate-ecological interactions and evolution in the past, throwing light into the potential ecological impacts of future climate change.

This session aims at bringing together multidisciplinary research addressing the climate-ecological interactions in the past, present and future, combining observational techniques/methods and ecosystem modelling. We welcome all kind of research contributions in this context and the topics of interests include,

- Past climate change and mass extinctions
- Global biodiversity patterns
- Chemical analyses on the geological materials (teeth, bone collagen, guano/feces, middens, sediment cores
- Geochemical mapping and dietary reconstructions across food webs
- DNA extraction, and taxonomic profiling of microorganisms
- Vegetation dynamics
- Climate and biome modelling
- Species adaptations and ecological strategies
- Genetic diversification and speciation
- Vulnerability and extinction risk, under anthropogenic warming and land use change.

We hope that through this session, individuals can discover new methodologies, applications and collaborations within their research areas that would help push science forward.

Convener: Thushara VenugopalECSECS | Co-conveners: Daniel ClearyECSECS, Jiaoyang Ruan, Deming Yang, Hae-Li ParkECSECS, Valentina Vanghi, Sayak BasuECSECS
Orals
| Tue, 16 Apr, 10:45–12:30 (CEST)
 
Room 2.24
Posters on site
| Attendance Tue, 16 Apr, 16:15–18:00 (CEST) | Display Tue, 16 Apr, 14:00–18:00
 
Hall X5
Posters virtual
| Tue, 16 Apr, 14:00–15:45 (CEST) | Display Tue, 16 Apr, 08:30–18:00
 
vHall X5
Orals |
Tue, 10:45
Tue, 16:15
Tue, 14:00
ITS2.12/CL0.1.4 EDI | PICO

The interconnection between climate, environment, and health is evident, with climate change posing significant threats to human welfare. As global temperature rise, extreme weather events such as heatwaves, floods, hurricanes, and droughts, directly and indirectly impact public health, alongside environmental exposures like air pollution. Climate and land use changes can influence the spread of vector-borne diseases such as malaria and increase the risk of waterborne illnesses. Additionally, climate change may result in severe wildfires and episodes of air pollution.

Addressing these complex challenges requires fostering interdisciplinary collaboration among climate researchers, epidemiologists, public health researchers, and social scientists, which is the primary focus of this session. The goal is to create a platform for presenting the latest innovations in using remote sensing and other large datasets to characterize exposures relevant to human health, especially in data-limited regions. The session encompasses various topics, including satellite data applications in human health, planetary epidemiology, risk mapping of infectious diseases, exposure mapping of heat and air pollution to quantify their impacts on human health, health co-benefits of mitigation actions, and the use of machine learning and AI for climate and health applications. The session emphasizes the examination of historical exposure-health outcome relationships, forecasts for the near future, and changes under progressive climate change.

Convener: Sourangsu ChowdhuryECSECS | Co-conveners: Irena Kaspar-Ott, Sagnik Dey, R. Sari Kovats, Claudia Di Napoli, Elke Hertig, Ricardo Trigo
PICO
| Tue, 16 Apr, 08:30–12:30 (CEST)
 
PICO spot 2
Tue, 08:30
ITS4.1/CL0.1.7 EDI

Recent assessments on the integrity of the Earth system and planetary health recognize the deteriorating resilience of the Earth system, with planetary-scale human impacts leading to increasing transgression of planetary boundaries constituting a new geological epoch: the Anthropocene (Richardson et al., Science Advances, 2023). Earth resilience, the capacity of the Earth system to resist, recover and regenerate from anthropogenic pressures, critically depends on the nonlinear interplay of positive and negative feedbacks of biophysical and increasingly also socio-economic processes and human-Earth system interactions. These include dynamics and interactions between the carbon cycle, the atmosphere, oceans, large-scale ecosystems, and the cryosphere, as well as the dynamics and perturbations associated with human activities. Studying Earth resilience requires a deeply integrated perspective on the human-Earth system in the Anthropocene and, hence, strong collaboration between diverse subdisciplines of Earth system science.

With rising anthropogenic pressures, there is an increasing risk of the human-Earth system hitting the ceiling of some of the self-regulating feedbacks of the Earth System, and of crossing tipping points in the large ice sheets, atmosphere-ocean circulation systems (e.g. the Atlantic Meridional Overturning Circulation) and biomes such as the Amazon rainforest. Transgressing these critical thresholds in human pressures such as greenhouse gas emissions and land-use changes could trigger large-scale and often abrupt and irreversible impacts on the biosphere and the livelihoods of millions of people. Potential domino effects or tipping cascades could arise due to the interactions between these tipping elements and lead to a further decline of Earth resilience. At the same time, there is growing evidence supporting the potential of positive (social) tipping points that could propel rapid decarbonization and transformative change towards global sustainability.

In this session, we invite contributions on all topics relating to Earth resilience, tipping points in the Earth system, planetary boundaries, positive (social) tipping, as well as their interactions and potential cascading domino effects. We are particularly interested in diverse methodological and quantitative approaches, from Earth system modelling to conceptual modelling and data analysis of nonlinearities, tipping points and abrupt shifts in the Earth system.

Convener: Jonathan Donges | Co-conveners: Ricarda Winkelmann, David Armstrong McKayECSECS, Marina Hirota, Lan Wang-Erlandsson, Simon Felix FahrländerECSECS, Johan Rockström
Orals
| Tue, 16 Apr, 08:30–12:15 (CEST), 14:00–15:30 (CEST)
 
Room N2
Posters on site
| Attendance Mon, 15 Apr, 16:15–18:00 (CEST) | Display Mon, 15 Apr, 14:00–18:00
 
Hall X5
Orals |
Tue, 08:30
Mon, 16:15
ITS1.10/CL0.1.9 EDI

The Coupled Model Intercomparison Project (CMIP) advances climate system understanding, but Earth System Models (ESM) exhibit disparities, particularly in responses to forcings and system coupling. As the IPCC relies on CMIP to provide information for policy decisions, a multidisciplinary approach is crucial to address uncertainties across the full CMIP production line. This session invites studies on climate forcings, climate responses, uncertainties in forcing agents, and model disparities in CMIP projections.

We welcome diverse climate-forcing research, including historical and future, anthropogenic and natural forcing development, idealized Earth System Model studies, observational evaluations, and works spanning all climate system components. Topics may include identifying disparities in CMIP ESMs, quantifying uncertainties, and addressing key scientific priorities for future model development. Contributions on opportunities, challenges, and constraints in using CMIP output for impact research, especially at regional scales, are encouraged.
This session ultimately aims at fostering collaboration among climate scientists, observationalists and modelers to address climate change challenges. Convened by WCRP CMIP Forcing Task Team and Fresh Eyes on CMIP, it aims to enhance understanding of CMIP uncertainties and prepare for CMIP6Plus and CMIP7 climate-forcing datasets.

AGU and WMO
Convener: Lina TeckentrupECSECS | Co-conveners: Thomas AubryECSECS, Michaela I. Hegglin, Yiwen LiECSECS, Camilla MathisonECSECS, Julia MindlinECSECS, Alexander J. WinklerECSECS
Orals
| Wed, 17 Apr, 14:00–18:00 (CEST)
 
Room N2
Posters on site
| Attendance Wed, 17 Apr, 10:45–12:30 (CEST) | Display Wed, 17 Apr, 08:30–12:30
 
Hall X5
Orals |
Wed, 14:00
Wed, 10:45
ITS2.9/CL0.1.10 EDI

Climate change may regionally intensify the threat posed by future floods to societies. The space-time dynamics of floods are controlled by atmospheric, catchment, riverine and anthropogenic processes, and their interactions. From a global change perspective, Holocene and historical floods and their spatial and temporal patterns are of particular interest because they can be linked to former climate patterns, a proxy for future climate predictions. Millennial and centennial time series include the very rare extreme events, which are often considered by society as 'unprecedented'. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regimes and human activities, we can overcome our lack of information and disentangle the so-called “unknown unknowns”. The reconstruction and modelling of space-time flood patterns, related atmospheric variability and flood propagation in river basins under different environmental settings are the foci of this session supported by the PAGES Floods Working Group. Flood-prone areas are, in many regions, hotspots of economic, social, and cultural development. Hence, the historical role of human action in altering flood frequencies, hydro-sedimentary, and environmental processes is a priority topic. The session will further stimulate scientific discussion on detection and attribution of flood risk change.
We welcome interdisciplinary contributions using natural and documentary archives, instrumental data, and model reconstructions, which:
i) provide knowledge from short-term to long-term development of cultural river-landscapes and human-environmental interaction,
ii) reconstruct and model temporal and spatial flood patterns related to climate variability and change, including long-term changes in rainfall patterns,
iii) analyse the role of catchment conditions in shaping flood patterns,
iv) develop (supra-) regional historical maps of extreme floods (MEF),
v) highlight historical risk mitigation strategies of local communities and assess the flood risk of cultural heritage sites,
vi) collect evidence of the Anthropocene in floodplains and wetlands,
vii) detect changes in flood exposure and vulnerability.
The interdisciplinary integration of information is critical for the provision of robust data sets and baseline information for future flood risk scenarios, impacts, adaptation and mitigation strategies, and integrated river management.

Co-organized by HS12
Convener: Lothar Schulte | Co-conveners: Dominik PaprotnyECSECS, Thomas RoggenkampECSECS, Daniela Kroehling, Juan Antonio Ballesteros-Canovas, Miriam BertolaECSECS, Larisa Tarasova
Orals
| Tue, 16 Apr, 16:15–18:00 (CEST)
 
Room 2.24
Posters on site
| Attendance Tue, 16 Apr, 10:45–12:30 (CEST) | Display Tue, 16 Apr, 08:30–12:30
 
Hall X5
Posters virtual
| Tue, 16 Apr, 14:00–15:45 (CEST) | Display Tue, 16 Apr, 08:30–18:00
 
vHall X5
Orals |
Tue, 16:15
Tue, 10:45
Tue, 14:00
ITS5.12/CL0.1.11 EDI

Coastal zones are of high ecological and recreational value. At the same time, they are heavily impacted by a combination of natural and anthropogenic drivers of change, such as drainage, nutrient pollution, land use and fishing. This interdisciplinary session combines studies of the interrelationship of climate and other drivers of change on coastal processes (former ITS5.12), including biogeochemical cycling (former BG4.3), and nature-based solutions to manage these coastal socio-ecological systems (former ITS4.7).

Convener: Maren Voss | Co-conveners: Marcus Reckermann, Timothy Stojanovic, Eleonora GioiaECSECS, Fereidoun Rezanezhad, Sara E. Anthony, Eva EhrnstenECSECS
Orals
| Wed, 17 Apr, 16:15–18:00 (CEST)
 
Room 2.24
Posters on site
| Attendance Wed, 17 Apr, 10:45–12:30 (CEST) | Display Wed, 17 Apr, 08:30–12:30
 
Hall X5
Posters virtual
| Wed, 17 Apr, 14:00–15:45 (CEST) | Display Wed, 17 Apr, 08:30–18:00
 
vHall X5
Orals |
Wed, 16:15
Wed, 10:45
Wed, 14:00
ITS4.18/CL0.1.12 EDI | PICO

Water and climate-related risks, including changing rainfall patterns and an increase in extreme events such as floods, droughts, heatwaves, and fires, pose significant challenges to various sectors of society. In order to mitigate these risks and support adaptive planning and management, the development and provision of hydroclimatic information services play a crucial role. Water and climate information services (WCISs) have potential to reduce the impacts of water and climate-related risks by providing timely and accurate information in advance. As a result, substantial resources and research efforts have been dedicated to the development of global and regional WCISs. These services encompass a wide range of initiatives, from the establishment of natural hazard early warning systems (EWSs) to the creation of platforms and dashboards that support decision-making in sectors such as agriculture, tourism, and transportation.
The session aims to provide a platform for showcasing the current developments in WCIS for adaptation planning and management. The session will cover various topics with diverse applications, including the development of natural hazard EWSs, the creation of tools and dashboards for forecasting extreme weather events, and the facilitation of WCIS for sector-specific decision-making processes. Contributions related to co-designing of WCIS, the involvement of stakeholders in the development of WCIS, and innovative applications of WCIS for adaptation planning and management are also encouraged. This session will facilitate the exchange of knowledge and expertise among scientists, practitioners, and users of WCISs.

Public information:

This session consists of diverse climate information services (CIS) that have been developed worldwide. The themes include training and co-develop CIS and developing CIS for agriculture, water resources, and extreme events. 

Convener: Samuel Jonson Sutanto | Co-conveners: Biljana Basarin, Spyros PaparrizosECSECS, Gordana Kranjac-Berisavljevic, Moriom Akter MousumiECSECS
PICO
| Thu, 18 Apr, 16:15–18:00 (CEST)
 
PICO spot 1
Thu, 16:15
ITS3.11/CL0.1.13 EDI

Environmental issues are not only ecological but also social and cultural. To address them effectively, we need to understand how human societies interact with the environment. This session highlights the importance of social science in environmental research and vice versa, and invites contributions that explore how interdisciplinary collaboration can lead to innovative and sustainable solutions. We welcome researchers from various disciplines, such as environmental science, social science, data analysis, data providers and metadata specialists, to share their insights, case studies, and challenges. We aim to foster meaningful discussions and exchange of ideas across different perspectives and domains. By integrating the expertise of social scientists with environmental research and vice versa, we can develop a more comprehensive and holistic understanding of environmental problems and their solutions. Let's work together to contribute to a more sustainable relationship between humanity and the environment.
Topics may include, but are not limited to, the following:

– Air quality and climate indicator’s effects on urban citizens’s attitudes
– Climate action plans and solutions for green and sustainable cities
– Cultural heritage and environmental sustainability
– Environmental policy and governance
– Sustainable agriculture and land use
– Biodiversity conservation and ecosystem services
– Climate adaptation and resilience
– Citizen science and public engagement
– Project reports or infrastructure requirements related to multiiciplinary usecases

Convener: Hilde Orten | Co-conveners: Angeliki AdamakiECSECS, Hannah Clark, Claudio D'Onofrio
Orals
| Fri, 19 Apr, 14:00–15:45 (CEST), 16:15–18:00 (CEST)
 
Room N2
Posters on site
| Attendance Fri, 19 Apr, 10:45–12:30 (CEST) | Display Fri, 19 Apr, 08:30–12:30
 
Hall X5
Posters virtual
| Fri, 19 Apr, 14:00–15:45 (CEST) | Display Fri, 19 Apr, 08:30–18:00
 
vHall X5
Orals |
Fri, 14:00
Fri, 10:45
Fri, 14:00
ITS4.8/CL0.1.16 EDI

Climate change and environmental degradation constitute a growing threat to the stability of societal and economical systems. The observed increase in the frequency and intensity of extreme weather events combined with the projected long-term shifts in climate patterns and consequential impacts on biodiversity, have the potential to significantly affect the global economy. Consequently, the financial and insurance sectors could face substantial risks from these climate events unless effectively managed. This requires an accurate estimate of future climate risks, while understanding their complex and non-linear characteristics, and translating these impacts to a scale that is relevant and meaningful for society.

In recognition of this challenge climate risk assessments have experienced amplified attention in both the academic and private spheres, leading to initiatives such as the ‘Network for Greening the Financial Sector’ (NGFS) and the ‘Task Force on Climate-Related Financial Disclosure’ (TCFD). These initiatives aim at providing comprehensive climate impact information for the private sector and financial institutions which providing actionable information for understanding and managing climate risk.

Nevertheless, criticisms have emerged regarding the models' inadequacies in representing extreme events, the intricate nature of climate extremes characterized by their compounding and cascading effects, and the oversight of non-linearities associated with tipping elements in the climate system. These shortcomings suggest that current risk assessments may be overly conservative, missing the most impactful events.

Therefore, providing a platform to foster interactions between scientists, economists and financial experts is urgently needed. With the goal of facilitating such dialogue, this session aims at providing a platform for actors from academia and the private sector to exchange information on strategies for assessing climate risk. In particular, we are interested in submissions that focus on:

-Innovative climate risk modeling for
-Chronic and Acute Climate Risks
-Compound Events and Cascading Impacts
-Model Evaluation of Extreme weather events
-Bias adjustment Methods
-Downscaling Methods
-Construction of novel Climate Hazard Indicators and their projections for specific sectors (Food, Energy, Real Estate,...)
-Supply chains
-Impact Data Collection and Empirical Assessments
-Construction Derivation Damage functions
-Climate – Nature nexus

Convener: Kai KornhuberECSECS | Co-conveners: Andrej Ceglar, Nicola Ranger, Alessio CiulloECSECS, Maximilian KotzECSECS
Orals
| Wed, 17 Apr, 08:30–12:30 (CEST)
 
Room 2.17
Posters on site
| Attendance Wed, 17 Apr, 16:15–18:00 (CEST) | Display Wed, 17 Apr, 14:00–18:00
 
Hall X5
Orals |
Wed, 08:30
Wed, 16:15
ITS1.1/CL0.1.17 EDI

Machine learning (ML) is transforming data analysis and modelling of the Earth system. While statistical and data-driven models have been used for a long time, recent advances in ML and deep learning now allow for encoding non-linear, spatio-temporal relationships robustly without sacrificing interpretability. This has the potential to accelerate climate science through new approaches for modelling and understanding the climate system. For example, ML is now used in the detection and attribution of climate signals, to merge theory and Earth observations in innovative ways, and to directly learn predictive models from observations. The limitations of machine learning methods also need to be considered, such as requiring, in general, rather large training datasets, data leakage, and/or poor generalisation abilities so that methods are applied where they are fit for purpose and add value.

This session aims to provide a venue to present the latest progress in the use of ML applied to all aspects of climate science, and we welcome abstracts focussed on, but not limited to:

More accurate, robust and accountable ML models:
- Hybrid models (physically informed ML, parameterizations, emulation, data-model integration)
- Novel detection and attribution approaches
- Probabilistic modelling and uncertainty quantification
- Uncertainty quantification and propagation
- Distributional robustness, transfer learning and/or out-of-distribution generalisation tasks in climate science
- Green AI

Improved understanding through data-driven approaches:
- Causal discovery and inference: causal impact assessment, interventions, counterfactual analysis
- Learning (causal) process and feature representations in observations or across models and observations
- Explainable AI applications
- Discover governing equations from climate data with symbolic regression approaches

Enhanced interaction:
- The human in the loop - active learning & reinforcement learning for improved emulation and simulations
- Large language models and AI agents - exploration and decision making, modeling regional decision-making
- Human interaction within digital twins

Convener: Duncan Watson-Parris | Co-conveners: Marlene KretschmerECSECS, Gustau Camps-Valls, Peer NowackECSECS, Sebastian Sippel
Orals
| Tue, 16 Apr, 08:30–12:25 (CEST), 14:00–15:40 (CEST)
 
Room C
Posters on site
| Attendance Wed, 17 Apr, 10:45–12:30 (CEST) | Display Wed, 17 Apr, 08:30–12:30
 
Hall X5
Posters virtual
| Wed, 17 Apr, 14:00–15:45 (CEST) | Display Wed, 17 Apr, 08:30–18:00
 
vHall X5
Orals |
Tue, 08:30
Wed, 10:45
Wed, 14:00
ITS1.3/CL0.1.18 EDI

Machine learning (ML) is being used throughout the geophysical sciences with a wide variety of applications.
Advances in big data, deep learning, and other areas of artificial intelligence (AI) have opened up a number of new approaches.

Many fields (climate, ocean, NWP, space weather etc.) make use of large numerical models and are now seeking to enhance these by combining them with scientific ML/AI.
Examples include ML emulation of computationally intensive processes, training on high resolution models or data-driven parameterisations for sub-grid processes, and Bayesian optimisation of model parameters and ensembles amongst several others.

Doing this brings a number of unique challenges, however, including but not limited to:
- enforcing physical compatibility and conservation laws, and incorporating physical intuition into ML models,
- ensuring numerical stability,
- coupling of numerical models to ML frameworks and language interoperation,
- handling computer architectures and data transfer,
- adaptation/generalisation to different models/resolutions/climatologies,
- explaining, understanding, and evaluating model performance and biases.

Addressing these requires knowledge of several areas and builds on advances already made in domain science, numerical simulation, machine learning, high performance computing, data assimilation etc.

We solicit talks that address any topics relating to the above.
Anyone working to combine machine learning techniques with numerical modelling is encouraged to participate in this session.

Convener: Jack AtkinsonECSECS | Co-conveners: Julien Le Sommer, Alessandro Rigazzi, Filippo GattiECSECS, Will ChapmanECSECS, Nishtha SrivastavaECSECS, Emily Shuckburgh
Orals
| Fri, 19 Apr, 08:30–10:15 (CEST)
 
Room N2
Posters on site
| Attendance Fri, 19 Apr, 10:45–12:30 (CEST) | Display Fri, 19 Apr, 08:30–12:30
 
Hall X5
Posters virtual
| Fri, 19 Apr, 14:00–15:45 (CEST) | Display Fri, 19 Apr, 08:30–18:00
 
vHall X5
Orals |
Fri, 08:30
Fri, 10:45
Fri, 14:00

CL1.1 – Past Climate - Deep Time

Sub-Programme Group Scientific Officer: Jan-Berend Stuut

CL1.1.1 EDI

The geological record provides insight into how climate processes operate and evolve in response to different than modern boundary conditions and forcings. Understanding deep-time climate evolution is paramount to progressing on understanding fundamental questions of Earth System feedbacks and sensitivity to perturbations, such as the behaviour of the climate system and carbon cycle under elevated atmospheric CO2 levels—relative to the Quaternary—, or the existence of climatic tipping points and thresholds. In recent years, geochemical techniques and Earth System Models complexity have been greatly improved and several international projects on deep-time climates (DeepMIP, MioMIP, PlioMIP) have been initiated, helping to bridge the gap between palaeoclimate modelling and data community. This session invites work on deep-time climate and Earth System model simulations and proxy-based reconstructions from the Cambrian to the Pliocene. We especially encourage submissions featuring palaeoenvironmental reconstructions, palaeoclimate and carbon cycle modelling, and the integration of proxies and models of any complexity.

Convener: Yonggang Liu | Co-conveners: Jean-Baptiste LadantECSECS, Yannick Donnadieu, Ran FengECSECS, Pam VervoortECSECS, Hana JurikovaECSECS
Orals
| Mon, 15 Apr, 08:30–12:15 (CEST)
 
Room 0.31/32
Posters on site
| Attendance Mon, 15 Apr, 16:15–18:00 (CEST) | Display Mon, 15 Apr, 14:00–18:00
 
Hall X5
Orals |
Mon, 08:30
Mon, 16:15
CL1.1.2 EDI

The pacing of the global climate system by orbital variations is clearly demonstrated in the timing of e.g. glacial-interglacial cycles. The mechanisms that translate this forcing in nonlinear ways into geoarchives and climate changes continue to be debated.
In this regard, paleoclimate signals from Iberian margin sediment cores are exceptional, because these can be correlated precisely to polar ice cores from both hemispheres and with European terrestrial records, providing a rare opportunity to study ocean-ice-land interactions. Moreover, the Iberian continental slope provides a bathymetric gradient that intersects each of the major subsurface water masses of the North Atlantic, which is ideal for reconstructing past changes in Atlantic thermohaline circulation and ventilation. Given the seminal importance of the Iberian margin for marine-ice-terrestrial correlations, it has been a prime target for the recovery of sediment cores.
We invite submissions that explore the climate system response to orbital forcing, and that test the stability of these relationships under different climate regimes or across evolving climate states (e.g. mid Pleistocene transition, Pliocene-Pleistocene transition, Miocene vs Pliocene, and especially older climate transitions). Further, we deliberatiely focus on contributions that bring together recent research using the Iberian margin sediment archive to reconstruct climate variability on millennial-to-orbital timescales and integrate marine, atmospheric (ice core), and terrestrial signals to understand causal mechanisms of global climate change. Submissions exploring proxy data and/or modelling work are welcomed, as this session aims to bring together proxy-based, theoretical and/or modelling studies focused on global and regional climate responses to astronomical forcing at different time scales in the Phanerozoic.
David De Vleeschouwer will give an invited presentation on 'Pre-Cenozoic cyclostratigraphy and paleoclimate responses to astronomical forcing'.

Co-organized by SSP2
Convener: Christian Zeeden | Co-conveners: Stefanie Kaboth-Bahr, Huai-Hsuan May HuangECSECS, Xiaolei PangECSECS, Marion PeralECSECS, David Hodell, Fatima Abrantes
Orals
| Tue, 16 Apr, 14:00–15:45 (CEST), 16:15–17:45 (CEST)
 
Room 0.49/50
Posters on site
| Attendance Mon, 15 Apr, 16:15–18:00 (CEST) | Display Mon, 15 Apr, 14:00–18:00
 
Hall X5
Posters virtual
| Mon, 15 Apr, 14:00–15:45 (CEST) | Display Mon, 15 Apr, 08:30–18:00
 
vHall X5
Orals |
Tue, 14:00
Mon, 16:15
Mon, 14:00
CL1.1.4 EDI

The planet is warming due to human-made greenhouse gas emissions, which have increased drastically since the industrial revolution. To grasp potential pathways for future climate, we need to understand what the impacts of elevated greenhouse gas emissions are on the global heat budget and how the climate system functions in conditions warmer than today. Geological archives and model simulations of past climate states are the key to better understanding climate dynamics in different, warmer-than-today climate conditions. Past warm climates also help to benchmark climate model simulations used to predict future climate and have contributed increasingly to successive IPCC reports.

In this session, we welcome contributions ranging from proxy data to model results aimed at reconstructing and understanding Earth’s climate state and its dynamics over the past 100 million years. We welcome submissions across a wide range of time scales, including those investigating long-term change, Milankovitch cyclicity and/or short-lived events, from the Cretaceous to the Present. Submissions working on chronological or stratigraphic fundamentals underpinning this interval are also encouraged. We invite contributions seeking to better assess Earth system sensitivity in past climate states by reconstructing atmospheric CO2 concentrations and global or regional temperatures. As analogues of biodiversity in a warmer world can only be found in the past, we encourage submissions on marine and terrestrial ecosystem dynamics and disruptions in warmer worlds.

The session intends to bring together the diverse community studying the nature of the warm climate states found in the Cretaceous and Cenozoic. This session also aims to bring together the paleoclimate data and modelling communities to evaluate lessons learned from the Deep-time Model Intercomparison Project (https://www.deepmip.org/) and explore future directions moving forward. We consciously welcome a broad range of approaches to facilitate synergies to learn from past warm climate conditions to navigate into the future warmer world.

Co-organized by BG5/SSP4
Convener: Thomas Westerhold | Co-conveners: Anna Nele Meckler, Dan Lunt, Gordon InglisECSECS, Eleni Anagnostou, Anna Joy Drury, Victoria TaylorECSECS
Orals
| Thu, 18 Apr, 08:30–12:30 (CEST), 14:00–15:45 (CEST)
 
Room 0.14
Posters on site
| Attendance Fri, 19 Apr, 10:45–12:30 (CEST) | Display Fri, 19 Apr, 08:30–12:30
 
Hall X5
Orals |
Thu, 08:30
Fri, 10:45
CL1.1.5 EDI

Joint topics
Topic 1. Stable and radiogenic isotopic records have been successfully used for
investigating various settings, such as palaeosols, lacustrine, loess, caves, peatlands, bogs, arid, evaporative and marine environments. We are
looking for contributions using isotopes along with mineralogical, sedimentological, biological, paleontological and chemical records in
order to unravel the past and present climate and environmental changes.
The session invites contributions presenting an applied as well as a
theoretical approach. We welcome papers related to both reconstructions
(at various timescales) as well as on fractionation factors, measurement, methods, proxy calibration, and verification.

Topic 2
Sedimentary records preserve information on their environments at the time of deposition. Such information can be accessed using a growing number of isotopic proxies. Modern sediments are crucial to calibrate such proxies and allow the sedimentary rock record to be deciphered, providing important clues to better understand the future response of the Earth system under climate change.

The sediments deposited along the transitional zone (fluvial system, continental shelf, and continental slope) to the final sink in the deep-marine basin accumulate chemical information on changes in the atmosphere, on land, and in the oceans. Specifically, changes in climate and environmental conditions, such as weathering, oxygenation, bio-productivity, and ocean circulation, can lead to variable element accumulation, isotope mixing, and isotopic fractionation.

We welcome contributions that reconstruct changes in climate and environmental conditions using sediments and sedimentary rocks from the recent to the ancient past (e.g., Last Glacial Maximum, Paleocene Eocene Thermal Maximum, Great Oxidation Event), using traditional, non-traditional, stable, and radiogenic isotope systems (e.g., Li, Mg, Cr, Fe, Sr, Mo, Nd, Pb, U). To account for the diversity of sedimentary archives, contributions on all types of archives are welcome, from carbonates to siliciclastic muds, and from biogenic to abiotic. We also encourage submissions relating to field or laboratory calibrations of these isotopic proxies.

Co-organized by BG2/SSP4
Convener: Ana-Voica Bojar | Co-conveners: Christophe Lecuyer, Andrzej Pelc, Octavian G. Duliu, Rocio Jaimes-GutierrezECSECS, Sylvie BruggmannECSECS, Michael E. Böttcher
Orals
| Thu, 18 Apr, 14:00–15:45 (CEST)
 
Room 0.31/32
Posters on site
| Attendance Wed, 17 Apr, 16:15–18:00 (CEST) | Display Wed, 17 Apr, 14:00–18:00
 
Hall X5
Posters virtual
| Wed, 17 Apr, 14:00–15:45 (CEST) | Display Wed, 17 Apr, 08:30–18:00
 
vHall X5
Orals |
Thu, 14:00
Wed, 16:15
Wed, 14:00
BG5.3 EDI

This session aims to bring together a diverse group of scientists who are interested in how life and planetary processes have co-evolved over geological time. This includes studies of how paleoenvironments have contributed to biological evolution and vice-versa, linking fossil records to paleo-Earth processes and the influence of tectonic and magmatic processes on the evolution of life. As an inherently multi-disciplinary subject, we aspire to better understand the complex coupling of biogeochemical cycles and life, the links between mass extinctions and their causal geological events and how fossil records shed light on ecosystem drivers over deep time. We aim to understand our planet and its biosphere through both observation- and modelling-based studies.

Co-organized by CL1.1/GD3/SSP4
Convener: Khushboo GurungECSECS | Co-conveners: Julian Rogger, Emily Mitchell, Attila Balázs, Svetlana Botsyun, William MatthaeusECSECS, Katarzyna Marcisz
Orals
| Fri, 19 Apr, 08:30–12:25 (CEST)
 
Room 2.95
Posters on site
| Attendance Fri, 19 Apr, 16:15–18:00 (CEST) | Display Fri, 19 Apr, 14:00–18:00
 
Hall X1
Posters virtual
| Fri, 19 Apr, 14:00–15:45 (CEST) | Display Fri, 19 Apr, 08:30–18:00
 
vHall X1
Orals |
Fri, 08:30
Fri, 16:15
Fri, 14:00
GD3.1 EDI

The first half of Earth’s history (Hadean to Paleoproterozoic) laid the foundations for the planet we know today. But how and why it differed and how and why it evolved remain enduring questions.
In this session, we encourage the presentation of new approaches that improve our understanding on the formation, structure, and evolution of the early Earth ranging from the mantle and lithosphere to the atmosphere, oceans and biosphere, and interactions between these reservoirs.
This session aims to bring together scientists from a large range of disciplines to provide an interdisciplinary and comprehensive overview of the field. This includes, but is not limited to, fields such as early mantle dynamics, the formation, evolution and destruction of the early crust and lithosphere, early surface environments and the evolution of the early biosphere, mineral deposits, and how possible tectonic regimes impacted across the early Earth system.

Co-organized by BG7/CL1.1/GMPV10/TS8
Convener: Ria Fischer | Co-conveners: Peter Cawood, Jeroen van Hunen, Bing Xia, Desiree Roerdink
Orals
| Wed, 17 Apr, 08:30–12:30 (CEST), 14:00–15:45 (CEST)
 
Room -2.21
Posters on site
| Attendance Thu, 18 Apr, 16:15–18:00 (CEST) | Display Thu, 18 Apr, 14:00–18:00
 
Hall X2
Orals |
Wed, 08:30
Thu, 16:15

CL1.2 – Past Climate - Last ~2.6 Ma

Sub-Programme Group Scientific Officers: Jan-Berend Stuut, Carole Nehme

CL1.2.1 EDI

This session aims to place recently observed climate change in a long-term perspective by highlighting the importance of paleoclimate research spanning the past 2000 years. We invite presentations that provide insights into past climate variability, over decadal to millennial timescales, from different paleoclimate archives (ice cores, marine sediments, terrestrial records, historical archives and more). In particular, we are focussing on quantitative temperature and hydroclimate reconstructions, and reconstructions of large-scale modes of climate variability from local to global scales. This session also encourages presentations on the attribution of past climate variability to external drivers or internal climate processes, data syntheses, model-data comparison exercises, proxy system modelling, and novel approaches to producing multi-proxy climate field reconstructions such as data assimilation or machine learning.

Co-sponsored by PAGES 2k
Convener: Andrea Seim | Co-conveners: Hugo Beltrami, Daniel BoatengECSECS, Stefan Bronnimann, Jun Hu
Orals
| Wed, 17 Apr, 08:30–12:25 (CEST)
 
Room 0.14
Posters on site
| Attendance Wed, 17 Apr, 16:15–18:00 (CEST) | Display Wed, 17 Apr, 14:00–18:00
 
Hall X5
Posters virtual
| Wed, 17 Apr, 14:00–15:45 (CEST) | Display Wed, 17 Apr, 08:30–18:00
 
vHall X5
Orals |
Wed, 08:30
Wed, 16:15
Wed, 14:00
CL1.2.2 EDI

Tree rings are one of nature’s most versatile archives, providing insight into past environmental conditions at annual and intra-annual resolution and from local to global scales. Besides being valued proxies for historical climate, tree rings are also important indicators of plant physiological responses to changing environments and of long-term ecological processes. In this broad context we welcome contributions using one or more of the following approaches to either study the impact of environmental change on the growth and physiology of trees and forest ecosystems, or to assess and reconstruct past environmental change: (i) dendrochronological methods including studies based on tree-ring width, MXD or Blue Intensity, (ii) stable isotopes in tree rings and related plant compounds, (iii) dendrochemistry, (iv) quantitative wood anatomy, (v) ecophysiological data analyses, and (vi) mechanistic modeling, all across temporal and spatial scales.

Co-organized by BG3
Convener: Elisabet Martinez-SanchoECSECS | Co-conveners: Kerstin Treydte, Flurin Babst, Jernej JevšenakECSECS, Pieter Zuidema
Orals
| Tue, 16 Apr, 14:00–15:45 (CEST)
 
Room 0.31/32
Posters on site
| Attendance Mon, 15 Apr, 16:15–18:00 (CEST) | Display Mon, 15 Apr, 14:00–18:00
 
Hall X5
Orals |
Tue, 14:00
Mon, 16:15</