Remote sensing and Earth Observations (EO) are used increasingly in the different phases of the risk management and in development cooperation, due to the challenges posed by contemporary issues such as climate change, and increasingly complex social interactions. The advent of new, more powerful sensors and more finely tuned detection algorithms provide the opportunity to assess and quantify natural hazards, their consequences, and vulnerable regions, more comprehensively than ever before.
Several agencies have now inserted permanently into their program the applications of EO data to risk management. During the preparedness and prevention phase, EO revealed, fundamental for hazard, vulnerability, and risk mapping. EO data intervenes both in the emergency forecast and early emergency response, thanks to the potential of rapid mapping. EO data is also increasingly being used for mapping useful information for planning interventions in the recovery phase, and then providing the assessment and analysis of natural hazards, from small to large regions around the globe. In this framework, Committee on Earth Observation Satellites (CEOS) has been working from several years on disasters management related to natural hazards (e.g., volcanic, seismic, landslide and flooding ones), including pilots, demonstrators, recovery observatory concepts, Geohazard Supersites, and Natural Laboratory (GSNL) initiatives and multi-hazard management projects.
In addition to the points above, UAS/drone acquisitions and processing techniques have demonsted their benefits in EO sciences and in particular to study all Geological & Geomorphological objects in terms of 2D/3D geometries (description, location, characterization, quantification, modelisation...) to better constrain Earth Sciences processes. This includes not only classical photogrammetric technics using aerial photographs but also new techniques such as UAS-Lidar acquisition, and/or new UAS-interferometric acquisitions. Many case studies can be taken into account, e.g. DTM/DSM reconstruction, analogs of sandstones or limestones reservoirs, active sedimentological processes in shoreline areas, geodetic measurements as well as natural hazards processes such as landslides, floods, seismic and tectonic studies, infrastructure damages and so on.
The session is dedicated to multidisciplinary contributions focused on the demonstration of the benefit of the use of multi-platform EO for natural hazards, risk management and geological/geomorphological studies.
The research presented might focus on:
- Addressed value of EO data in hazard/risk forecasting models
- Innovative applications of EO data for rapid hazard, vulnerability and risk mapping, the post-disaster recovery phase, and in support of disaster risk reduction strategies
- Development of tools for assessment and validation of hazard/risk models
- New methodologies and results from UAV/Drone acquisitions for geological and geomorphological analyses;
- Share UAS/drone experiences on the study of various geological, geomorphological objects and their associated Natural Hazards.
The use of different types of remote sensing data (e.g. thermal, visual, radar, laser, and/or the fusion of these) and platforms (e.g. space-borne, airborne, UAS, drone, etc.) is highly recommended, with an evaluation of their respective pros and cons focusing also on future opportunities (e.g. new sensors, new algorithms).
Early-stage researchers are strongly encouraged to present their research. Moreover, contributions from international cooperation, such as CEOS and GEO initiatives, are welcome.