Union-wide
Side Events
Disciplinary Sessions
Inter- and Transdisciplinary Sessions

Session programme

GMPV

GMPV – Geochemistry, Mineralogy, Petrology & Volcanology

Programme group chairs: Mike Burton, Marian Holness

MAL27/GMPV
Robert Wilhelm Bunsen Medal Lecture by Daniela Rubatto
Conveners: Mike Burton, Marian Holness
Programme
| Tue, 09 Apr, 11:25–12:25
 
Room D1
MAL36/GMPV ECS
GMPV Division Outstanding ECS Lecture by Evangelos Moulas
Conveners: Mike Burton, Marian Holness
Abstract
| Tue, 09 Apr, 10:55–11:25
 
Room D1
DM12/GMPV ECS
Division meeting for Geochemistry, Mineralogy, Petrology & Volcanology (GMPV)
Conveners: Mike Burton, Marian Holness
Wed, 10 Apr, 12:45–13:45
 
Room D1

GMPV1 – General Topics

GMPV1.1

This session is open to any abstract submissions in the fields of Geochemistry, Mineralogy, Petrology and Volcanology which are not addressed by the programme themes.

Share:
Convener: Mike Burton | Co-convener: Marian Holness
Orals
| Tue, 09 Apr, 10:45–12:25
 
Room D1
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X2
GMPV1.2

The microstructure of igneous and metamorphic rocks are archives preserving abundant information about rock history, such as heating and cooling rates, metasomatism and fluid infiltration, timing and location of nucleation and crystal growth, crystallisation regime, and the extent, mechanisms and timing of deformation. Microstructural features achieve even greater importance when combined with geochemical data, but their potential is commonly under-recognised.
We welcome contributions covering the entire range of igneous and metamorphic petrology, which either showcase development of new microstructural analysis techniques or new applications of well-established techniques, or illustrate how microstructural interpretation adds to our understanding of rock history. We anticipate that this broadly-conceived session will trigger exciting new synergies across a wide range of microstructural studies.

Share:
Convener: Silvio Ferrero | Co-conveners: Gautier Nicoli, Brendan Dyck, Marian Holness
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room -2.91
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2
GMPV1.3

The scientific program of this broad session is dedicated to Experimental Mineralogy, Petrology and Geochemistry. EGU offers an opportunity for the community of experimental geoscientists to discuss questions raised by the experimental approaches developed the wide range of geosciences. All aspects of experimental studies are welcome, including a wide spectrum of fields ranging from cosmochemistry to deep Earth studies; environmental geochemistry to applied mineralogy; chemical and physical properties of fluids, melts, glasses and minerals, low- and high-temperature processes, as well as new experimental developments. Results from in house laboratory studies as well as from large scale facilities like synchrotron experiments are welcome.
Max Wilker (max@geo.uni-potsdam.de) who is organizing the EMPG meeting in 2020 will also be co-convener of the session.

Share:
Co-sponsored by EAG
Convener: Jannick Ingrin | Co-conveners: Catherine McCammon, Bernard Wood
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room -2.21
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2
GMPV1.4

The quantification and understanding of diffusion rates and mechanisms in minerals and melts offers the unique capability to answer many geological questions that are otherwise inaccessible. In volcanology, diffusion chronometry can be used to determine magmatic ascent rates and timescales between magma recharge and eruption; in metamorphic petrology, diffusivities can be used to quantify cooling rates of orogens, or timescales of collision and exhumation. In geothermobarometry, it is important to understand diffusivities of the relevant elements to assess the potential for re-equilibration. Likewise, the ages obtained by radiometric dating methods may also be affected by diffusion of the parent or daughter isotopes. New developments in in-situ microanalytical techniques are expanding our ability to rapidly collect large amounts of high-quality data, continuously leading to new and exciting research directions.
This session will provide a forum for geoscientists from a wide range of disciplines to discuss and debate the most ‘timely’ topic of the earth sciences. We encourage contributions from petrologists, volcanologists, geochronologists and (geo)chemists working in any area related to diffusion, or where the potential of diffusion studies can be demonstrated. Contributions resulting from experiments, studies of natural samples, theoretical work or analytical developments are encouraged.

Share:
Convener: Michael Jollands | Co-conveners: Elias Bloch, Horst Marschall
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room -2.91
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall X2
GMPV1.5

Atomic to nanoscale structures of rocks, minerals and fluids control the physical and chemical properties of the Earth. Examples of this include: (1) the link between atomistic motion of crystallographic defects through mineral grains and rheological behaviour of the Earth’s mantle, (2) the influence of nanogranular deformation on the stability of seismically active fault zones and (3) the observations that fluids confined in tiny spaces exhibit vastly different physicochemical properties than their bulk counterparts. We are at the dawn of a technological revolution that allows us to study Earth’s materials at scales down to the sub-nanometre level. Macroscopic descriptions fail to explain the behavior of Earth materials. It is only by investigating these materials at the tiniest length scales that we can begin to unravel increasingly complex processes (e.g. dissolution-precipitation, exsolution, coherency stress, fluid-rock interaction, defect motion etc.) with geological scale implications. In this session we welcome contributions that adopt a broad variety of experimental and numerical techniques as well as methods focused on resolving submicrometric to nanometric scale processes that could not be unraveled at the macroscopic scale of observation.

Share:
Co-sponsored by EAG
Convener: Oliver Plümper | Co-convener: Matteo Alvaro
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X2
GD1.2

Processes responsible for formation and development of the early Earth (> 2500Ma) are not
well understood and strongly debated, reflecting in part the poorly preserved, altered, and
incomplete nature of the geological record from this time.
In this session we encourage the presentation of new approaches and models for the development of Earth's early crust and mantle and their methods of interaction. We encourage contributions from the study of the preserved rock archive as well as geodynamic models of crustal and mantle dynamics so as to better understand the genesis and evolution of continental crust and the stabilization of cratons.
We invite abstracts from a large range of disciplines including geodynamics, geology, geochemistry, and petrology but also studies of early atmosphere, biosphere and early life relevant to this period of Earth history.

Share:
Co-organized as AS4.61/BG5.4/CL1.01/GMPV1.6/TS1.6
Convener: Ria Fischer | Co-conveners: Peter A. Cawood, Nicholas Gardiner, Antoine Rozel, Jeroen van Hunen
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room -2.91
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2
SSP1.2

Scientific drilling through the International Ocean Discovery Program (IODP) and the International Continental Scientific Drilling Program (ICDP) continues to provide unique opportunities to investigate the workings of the interior of our planet, Earth’s cycles, natural hazards and the distribution of subsurface microbial life. The past and current scientific drilling programs have brought major advances in many multidisciplinary fields of socio-economic relevance, such as climate and ecosystem evolution, palaeoceanography, the deep biosphere, deep crustal and tectonic processes, geodynamics and geohazards. This session invites contributions that present and/or review recent scientific results from deep Earth sampling and monitoring through ocean and continental drilling projects. Furthermore, we encourage contributions that outline perspectives and visions for future drilling projects, in particular projects using a multi-platform approach.

Share:
Co-organized as CL1.32/EMRP3.11/GD2.9/GMPV1.7/NH5.12/TS1.4, co-sponsored by JpGU
Convener: Antony Morris | Co-conveners: Jorijntje Henderiks, Tanja Hörner, Thomas Wiersberg
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room 0.31
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X1
ITS1.2/GD1.5/EOS3.4/GI1.7/GM1.8/GMPV1.9/SSP1.10/TS12.3 Media|ECS

Geoscience witnessed a flurry of major breakthroughs in the 19th and 20th century, leading to major shifts in our understanding of the Earth system. Such breakthroughs included new concepts, such as plate tectonics and sequence stratigraphy, and new techniques, like radiometric dating and remote sensing. However, the pace of these discoveries has declined, raising the question of whether we have now made all of the key geoscience breakthroughs. Put another way, have we reached “Peak Geoscience” and are we now in a time of synthesis, incremental development and consolidation? Or are there new breakthroughs on the horizon? If so what will these developments be?

One key remaining challenge is the management of the inherent uncertainties in geoscience. Despite the importance of understanding uncertainty, it is often neglected by interpreters, geomodellers and experimentalists. With ever-more powerful computers and the advent of big data analytics and machine learning, our ability to quantify uncertainty in geological interpretation, models and experiments will be crucial.

This session aims to bring together those with an interest in the future of geoscience. We welcome contributions from any field of geoscience which either demonstrate a new, disruptive geoscience breakthrough or provide insights into where the next breakthrough will come. We encourage contributions associated with uncertainty in geoscience models and data, machine learning or big data analytics.

Share:
Co-organized as GD1.5/EOS3.4/GI1.7/GM1.8/GMPV1.9/SSP1.10/TS12.3
Convener: Andrew Davies | Co-conveners: Juan Alcalde, Helen Cromie, Lucia Perez-Diaz
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room N1
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X2

GMPV2 – Geochemistry from mantle to surface

GMPV2.1

The nature of Earth’s lithospheric mantle is largely constrained from the petrological and geochemical studies of xenoliths. They are complemented by studies of orogenic peridotites and ophiolites, which show the space relationships among various mantle rock kinds, missing in xenoliths. Mantle xenoliths from cratonic regions are distinctly different from those occurring in younger non-cratonic areas. Percolation of melts and fluids through the lithospheric mantle significantly modifies its petrological and geochemical features, which is recorded in mantle xenoliths brought to the surface by oceanic and continental volcanism. Basalts and other mantle-derived magmas provide us another opportunity to study the chemical and physical properties the mantle. These various kinds of information, when assembled together and coupled with experiments and geophysical data, enable the understanding of upper mantle dynamics.
This session’s research focus lies on mineralogical, petrological and geochemical studies of mantle xenoliths, orogenic and ophiolitic peridotites and other mantle derived rocks. We strongly encourage the contributions on petrology and geochemistry of mantle xenoliths and other mantle rocks, experimental studies, the examples and models of mantle processes and its evolution in space and time.

Share:
Co-organized as GD3.8
Convener: Jacek Puziewicz | Co-conveners: Costanza Bonadiman, Michel Grégoire, Károly Hidas
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room -2.21
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X2
GMPV2.2 | PICO

This session addresses the fundamental role that inclusions play to constrain geological processes in Planetary Science.
Inclusions hosted in crystals are parcels of melt(s) and/or fluid(s) that have the potential to unravel the P-T-X conditions under which igneous, metamorphic and volcanic processes take place. Moreover, inclusions provide critical constraints to the timescales of geological processes, (from millions of years to a few of seconds) occurred on Earth and other planetary bodies. Therefore, the study of melt and fluid inclusions contributes to develop chemically- and physically-based models of deep and surface processes acting under equilibrium and disequilibrium conditions.
We welcome contributions based on analytical and experimental approaches, as well as thermodynamic modelling, to study melt and fluid inclusions and the extent and significance of their post-entrapment modification. We strongly encourage the submission of multidisciplinary studies focused on linking inclusion datasets to field and geophysical observations (e.g., ground deformation, seismicity, gas emission) purposes.

Share:
Co-sponsored by EAG
Convener: Andrea Di Muro | Co-conveners: Danilo Di Genova, Yann Morizet
PICOs
| Fri, 12 Apr, 08:30–10:15
 
PICO spot 3
GMPV2.4

Areas found at plate boundaries are characterized by the presence of seismic, volcanic and geothermal activity. These processes are enhanced by the circulation of hydrothermal fluids in the crust, which transport volatiles from the deep crust or mantle to the surface. Certainly not limited to plate boundaries, as magma rises from depth, decreasing pressure allows volatile species to partition to the gas phase. Bubbles form, grow, coalesce and gases start to flow through vesiculated magma. Eventually, fluids escape towards the surface using tectonic structures and are released in the atmosphere, in some cases diffused through a soil or bubbling through a water pool, in other cases forming large plumes or explosive eruption columns. Fluids play an important role in earthquake generation.
Geochemical and isotope composition of gases deriving from different settings can trace sources and chemical and physical processes, providing information about deep earth. Moreover, volatiles play a key role in magma transport and have significant impact on the style and timing of volcanic eruptions. In addition, noble gases deriving from the deep earth can provide important information about their crust or mantle origin because these gases hardly react with other materials during migration. While carbon dioxide is one of the major constituents in volcanic/geothermal areas, methane, dominating sedimentary low heat flow areas, is often linked to subsurface hydrocarbon reservoirs that due to tectonic discontinuities are released in the atmosphere. Furthermore, sulfur dioxide emissions that take place in volcanic environments can cause acid rain, influence aerosol formation and, if an eruption column reaches the stratosphere, cause global dimming and a decrease in Earth’s surface temperatures for years. Similarly, halogens can dramatically impact proximal ecosystems, influence the oxidation capacity of the troposphere and alter the stratospheric ozone layer. Gas composition and flux may change with time, reflecting variations in the system. Measuring gases therefore constitutes a powerful tool for monitoring and understanding Earth.
This session aims to merge different geo-disciplines and bring together researchers interested in the comprehension of the degassing processes that take place in various geodynamic regimes. Furthermore, identify the impact that the emissions can have on terrestrial environment, atmospheric composition, climate and human health at various temporal and spatial scales. We invite contributions discussing novel measurement techniques, field measurements, direct and remote ground- and space-based observations and modeling studies of degassing can provide new insights into volcanic, tectonic and atmospheric processes on local and global scales.

Share:
Co-organized as AS3.29, co-sponsored by EAG
Convener: Nicole Bobrowski | Co-conveners: Giovanni Chiodini, Kyriaki Daskalopoulou, Artur Ionescu, Fátima Viveiros, Carlo Cardellini, Marcello Liotta, Julia Arndt
Orals
| Tue, 09 Apr, 08:30–10:15, 14:00–18:00
 
Room D1
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X2
GD5.1 Media

Subduction drives plate tectonics, generates the major proportion of subaerial volcanism, forms continents, and entrains surface material back to the deep Earth. Therefore, it is arguably the most important geodynamical phenomenon on Earth and the major driver of global geochemical cycles. Seismological data show a fascinating range in shapes of subducting slabs. Arc volcanism illustrates the complexity of geochemical and petrological phenomena associated with subduction. Surface topography provides insight in the orogenic processes related to subduction and continental collision.

Numerical and laboratory modelling studies have successfully built our understanding of many aspects of the geodynamics of subduction zones. Detailed geochemical studies, investigating compositional variation within and between volcanic arcs, provide further insights into systematic chemical processes at the slab surface and within the mantle wedge, providing constraints on thermal structures and material transport within subduction zones. However, with different technical and methodological approaches, model set-ups, inputs and material properties, and in some cases conflicting conclusions between chemical and physical models, a consistent picture of the controlling parameters of subduction-zone processes has so far not emerged.

This session aims to follow subducting lithosphere on its journey from the surface down into the Earth's mantle, and to understand the driving processes for deformation and magmatism in the over-riding plate. We aim to address topics such as: subduction initiation and dynamics; changes in mineral breakdown processes at the slab surface; the formation and migration of fluids and melts at the slab surface; primary melt generation in the wedge; subduction-related magmatism; controls on the position and width of the volcanic arc; subduction-induced seismicity; mantle wedge processes; the fate of subducted crust, sediments and volatiles; the importance of subducting seamounts, LIPs, and ridges; links between near-surface processes and slab dynamics and with regional tectonic evolution; slab delamination and break-off; the effect of subduction on mantle flow; and imaging subduction zone processes.

With this session, we aim to form an integrated picture of the subduction process, and invite contributions from a wide range of disciplines, such as geodynamics, modelling, geochemistry, petrology, volcanology and seismology, to discuss subduction zone dynamics at all scales from the surface to the lower mantle, or in applications to natural laboratories.

Share:
Co-organized as GMPV2.5/SM4.14/TS9.15
Convener: Valentina Magni | Co-conveners: Taras Gerya, Oğuz H Göğüş, Wim Spakman
Orals
| Mon, 08 Apr, 10:45–12:30, 14:00–18:00
 
Room D1
Posters
| Attendance Mon, 08 Apr, 08:30–10:15
 
Hall X2
GD5.3

Subduction zones are arguably the most important geological features of our planet, where plates plunge into the deep, metamorphic reactions take place, large earthquakes happen and melting induces volcanism and creation of continental crust. None of these processes would be possible without the cycling of volatiles, and this session aims to explore their role in convergent margins. Questions to address include the following. Do Atlantic and Pacific subduction zones cycle volatiles in different ways? What dynamic or chemical roles are played by subducted fracture zones and plate bending faults? How do fluids and melts interact with the mantle wedge and overlying lithosphere? Why do some of the Earth’s largest mineral resources form in subduction settings? We aim to bring together geodynamicists, geochemists, petrologists, seismologists, mineral and rock physicists, and structural geologists to understand how plate hydration/slab dynamics/dehydration, and subsequent mantle wedge melting/fluid percolation, and ultimately melt segregation/accumulation lead to the diverse range of phenomena observed at convergence zones around the globe.

Invited speakers:
Lena Melekhova (Bristol University)
Ingo Grevemeyer (GEOMAR)

Share:
Co-organized as GMPV2.6/SM6.6/TS9.14
Convener: Jeroen van Hunen | Co-conveners: Jenny Collier, Colin Macpherson, Andreas Rietbrock, Jamie Wilkinson
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room D2
Posters
| Attendance Mon, 08 Apr, 08:30–10:15
 
Hall X2
GD3.4

Mantle upwellings are an important component of the Earth’s convective system that can cause volcanism and anomalies in surface topography. Upwellings can rise from thermal boundary layers as hot “mantle plumes”. Alternatively, they can be the response to upper-mantle convective flow, subduction, or rifting. Clearly, different mechanisms sustain mantle upwellings of various temperature, vigour and composition, causing characteristic signals that can potentially be imaged using geophysical data, as well as expressed in the geochemistry and petrology of related magmatism.

This session invites contributions that focus on mantle upwellings from geophysics, geochemistry, and modelling perspectives. Our aim is to bring together constraints from multiple disciplines to understand the origin and dynamics of mantle upwellings, as well as their potential to trigger mantle melting, create volcanism, generate ore deposits, and build dynamic topography.

Share:
Co-organized as GMPV2.8/PS1.13/SM4.12/TS9.4
Convener: Maxim Ballmer | Co-conveners: Maria Tsekhmistrenko, Catherine Chauvel, Sebastien Pilet, Catherine A. Rychert, Karin Sigloch, Bernhard Steinberger, Vincent Strak
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room -2.32
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2
GD1.1

Since the 1960’s plate tectonics has been accepted as a surface expression of the earth's convecting mantle, and yet numerous geological features of plate interiors remain unexplained within the plate tectonic paradigm, including intraplate earthquakes and large-scale vertical motions of continents as epitomized by the uplift history of Africa. Kevin Burke (1929-2018), one of the greatest geologists of our time who published original and thought-provoking contributions for six decades, was one of the most vocal scientists to assert that plate tectonics is an incomplete theory without a clear understanding of its links with deep Earth processes, including the role of mantle plumes. In this session we commemorate the pioneering work of Kevin and explore contributions from across the diverse fields that interested him, including global tectonics, the Wilson Cycle, the origin of Precambrian greenstone belts, the evolution of the Caribbean, and the uplift history of Africa and other continents. We discuss the state-of-the art of the plume mode of mantle convection, its influence on the dynamics of the asthenosphere and the lithosphere, and its expression at the earth’s surface. We seek contributions from natural case studies (tectonic evolution, sedimentology, thermochronology, geophysics, palaeoclimate) and from geodynamics or geomaterials oriented (analog and numerical) modeling, which address the interplay of deep mantle – asthenosphere – lithosphere – basin – surface processes in all plate environments. In particular, we appreciate studies that contribute to the understanding of feedback processes causing the evolution of dynamic topography and welcome contributions that examine surface and deep Earth links based on observations and numerical models (although notably the latter never seduced Kevin).

Share:
Co-organized as GMPV2.10/SM1.13/TS9.6
Convener: Mathew Domeier | Co-conveners: Lewis D. Ashwal, Prof. Dr. Ulrich Anton Glasmacher, Anke Friedrich, Barbara Romanowicz, Susan Webb, Siavash Ghelichkhan
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room -2.21
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X2
TS6.1

Continental rifting is a multi-facetted process spanning from the inception of extension to continental rupture or the formation of a failed rift. This session aims at combining new data sets, concepts and techniques elucidating the structure and dynamics of rifts and rifted margins. We invite submissions highlighting the time-dependent evolution of processes such as initiation of faults and ductile shear zones, tectono-magmatic and sedimentary history, lithospheric necking and rift strength loss, influence of the pre-rift lithospheric structure, mantle dynamics and associated effects on rifting processes, as well as continental break-up and the transition to sea-floor spreading. We encourage contributions using multi-disciplinary and innovative methods from field geology, geochronology, seismology, geodesy, marine geophysics, plate reconstruction, or modeling. Focus regions may include but are not limited to the Atlantic, Indian Ocean, Mediterranean and South China Sea (e.g. IODP 367/368 area) rifted margins, or the East African, Eger, Baikal and Gulf of California rift systems. Special emphasis will be given to presentations that provide an integrated picture by combining results from active rifts, passive margins, failed rift arms or by bridging the temporal and spatial scales associated with rifting.

Share:
Co-organized as GD5.6/GMPV2.12/SM1.24
Convener: Sascha Brune | Co-conveners: Carmen Gaina, Giacomo Corti, Nick Kusznir
Orals
| Mon, 08 Apr, 10:45–12:30, 14:00–15:45
 
Room K1
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X2

GMPV3 – Metamorphism, low-temperature processes and fluid-rock interaction

GMPV3.1

Metamorphic minerals document the dynamic evolution of our planet, from the Archean to Present and from the grain- to plate-scale. Deciphering these records requires an approach that integrates petrology, geochemistry, chronology, structural analysis and modelling. Our ability to study our dynamic lithosphere through metamorphic geology continues to improve. At the same time, new analyses and approaches reveal issues and pitfalls that inspire future development.

This session aims to highlight integrated metamorphic geology and its use in elucidating the processes that shaped cratons and mountain belts through time. We welcome contributions in petrology, geo- and thermo-chronology, trace-element and isotope geochemistry, thermodynamic modelling, and structural geology—all with a specific focus on studying metamorphosed-metasomatised rocks. Part of the session will be devoted to novel developments and applications in geochronology and micro- to nano-analytical methods.

Invited speakers:
Robert Holder (Johns Hopkins University): "Monazite Eu anomalies revisited: beyond feldspar"
Pierre Lanari (Universität Bern): "An integrated modelling framework for tracing equilibrium relationships in metamorphic rocks"

Share:
Co-organized as GD2.10/TS3.8
Convener: Matthijs Smit | Co-conveners: Daniela Rubatto, Tom Raimondo, Emilie Janots
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room D2
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2
GMPV3.2

Reactions between fluids and rocks have a fundamental impact on many of the natural and geo-engineering processes in crustal settings. Examples of such natural processes are localization of deformation, earthquake nucleation caused by high pressure fluid pulses, as well as metamorphic reactions and rheological weakening triggered by fluid flow, metasomatism and fluid-mediated mass transport. Moreover, the efficiency of many geo-engineering processes is partly dependent on fluid-rock interactions, such as hydraulic fracturing, geothermal energy recovery, CO2 storage and wastewater injection. All our observations in the rock record are the end-product of all metamorphic, metasomatic and deformation changes that occurred during the interaction with fluid. Therefore, to investigate and understand these complex and interconnected processes, it is required to merge knowledge and techniques deriving from several disciplines of the geosciences.
We invite multidisciplinary contributions that investigate fluid-rock interactions throughout the entire breadth of the topic, using fieldwork, microstructural and petrographic analyses, geochemistry, experimental rock mechanics, thermodynamic modeling and numerical modeling.

Share:
Co-organized as TS3.7
Convener: Francesco Giuntoli | Co-conveners: Anne Pluymakers, Oliver Plümper
Orals
| Wed, 10 Apr, 14:00–15:45
 
Room -2.91
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2
GMPV3.3 | PICO

Supergene ore deposits, like bauxites, Ni-laterites and Zn-Pb-V, Cu nonsulfides, are commonly exploited for Al, Ni, Zn, V and Cu. However, they also contain several “critical” elements (REE, Sc, Co, Ge, Ga, In), which are not recovered from these ores because their amounts and deportment are not completely known, or economically viable extraction flowsheets are not available. This session is open to contributions on mineralogy and geochemistry of supergene ores, with particular attention to studies on critical elements distribution in these deposits.

Share:
Co-organized as ERE4.3
Convener: Nicola Mondillo | Co-conveners: Maria Boni, Jens Gutzmer, Richard Herrington, Licia Santoro
PICOs
| Mon, 08 Apr, 08:30–10:15
 
PICO spot 3
GMPV3.4

Hydrothermal systems, mud volcanoes, hybrid environments such as sediment-hosted hydrothermal systems and piercement structures in general are among the most spectacular geological phenomena on Earth. Several studies demonstrated that these structures play a key role in the evolution of our planet and the cycles of life during several geological eras. Active piercements are usually characterized by deep-rooted plumbing systems and complex geochemical reactions where life can adapt to thrive in extremely harsh environments making them ideal targets for deep biosphere exploration. The geophysical signals associated to such environments are often ambiguous and difficult to interpret. The elevated pore pressures often encountered at depth and the high flow rates make these structures ideal natural laboratories to capture precursors of seismic events and dynamically triggered geological processes. Piercement structures have often been reported to respond to earthquakes and external forcing.

This session welcomes contributions from geophysical, geochemical, microbial, geological, numerical and laboratory studies to promote a better understanding of modern and palaeo piercement phenomena. In particular we call for studies related to 1) investigations controlling pre-existing geological structures; 2) the geochemical reactions occurring at depth and at the surface including microbiological studies; 3) the investigation of such systems with geophysical methods; 4) experimental and numerical studies; 5) the survey and the monitoring of these settings and environments to learn the dynamics of the extinct systems from the active ones; 6) the study of palaeo piercements as well as their effects on palaeo climate.

Share:
Co-organized as BG4.6
Convener: Matteo Lupi | Co-convener: Adriano Mazzini
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room -2.91
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2
ITS2.7/HS11.71/BG1.37/ERE6.8/GMPV3.6

Geofluids (i.e. fluids located in the subsurface) are increasingly becoming of interest due to their significant role as natural resources. These fluids span a vast range of geological environments including groundwater drinking resources, shale gas and oil, deep/shallow geothermal resources and hydrothermal mineral resources. Despite being valuable resources, geofluids are both vulnerable to contamination or may themselves represent a potential source of contamination through externally-driven mechanisms, as in the case of shale gas extraction, CO2 leaking or land use for agriculture purposes. Ont he other hand geofluids themselves can be a source of natural contamination as in the geogenic contamination of groundwater resources containing elevated levels of trace elements including arsenic (As), chromium (Cr), iron (Fe), and uranium (U), amongst others. Strategic management of geofluids and protection of geological resources related to them is indispensable for the future sustainable development of these societal and economically important resources. The characterization of geofluids and their behaviour in natural or artificial (human-driven) circumstances requires a deep understanding of complex physical, geochemical and microbiological processes. They are influenced directly by geological setting, structural evolution, and fluid flow systems.

The aim of this session is to foster scientific discussion between those with interest in a range of geofluid systems to better understand the role which these fluids have as socio-environmental and economic resources. The session emphasises the importance of lithological & mineralogical characterizationof various systems including in aquifers for a range of geogenic contaminants in groundwater, specifically addressing the source pathways and mobilisation mechanisms. The session also welcomes work including fluid flow, hydrology, geochemistry, environmental tracers, microbial investigations and both numerical and statistical modelling in support of fluid and resource management.

The session is supported by the RGFC-IAH (‘Regional Groundwater Flow Commission’ of International Association of Hydrogeologists) and the EU H2020 ENeRAG (‘Excellency Network Building for Comprehensive Research and Assessment of Geofluids’) project.

Share:
Co-organized as HS11.71/BG1.37/ERE6.8/GMPV3.6, co-sponsored by IAH-RGFC
Convener: Daniele Pedretti | Co-conveners: Alex Russell, Ádám Tóth, Frank McDermott, Marie-Amélie Petre
Orals
| Mon, 08 Apr, 10:45–12:30
 
Room L7
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall A
SSP3.3

Mineral nucleation and growth processes are well studied for material science and industry applications under controlled laboratory conditions, but our understanding of these complex multistage pathways in natural environments is still rather incomplete. Monitoring precise and quantitative environmental parameters over long time periods is often difficult, imposing great uncertainties on growth processes and physicochemical properties of minerals used to reconstruct Earth’s history, such as microbialites, speleothems, or authigenic cements. Recent findings suggest that nano-clusters, colloidal particles, organic matter or microbes may be fundamental to nucleation and growth processes, especially if kinetics are sluggish at Earth surface temperatures. Thus, it is imperative to investigate mineral formation at the nano- and micro-scale within a broad, interdisciplinary perspective.
In this session we welcome oral and poster presentations from multiple fields including sedimentology, mineralogy, geochemistry, physical chemistry, biology and engineering that contribute to a better understanding of mineral nucleation and growth processes. Contributions may include process-oriented studies in modern systems, the ancient rock record, experiments, computer simulations, and high-resolution microscopy and spectroscopy techniques. We intend to reach a wide community of researchers sharing the common goal of improving our understanding of the fundamental processes underlying mineral formation, which is essential to read our Earth’s geological archive.

Share:
Co-organized as BG4.3/GMPV3.7
Convener: Patrick Meister | Co-conveners: Cornelius Fischer, Silvia Frisia, Denis Gebauer, Dorothee Hippler
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room -2.47
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X1
TS8.1 Media

Transform faults form major active plate boundaries and are intrinsic features of plate tectonics and plate accretion. Submarine transforms are likely to be fundamental pathways for fluid circulation in depth, thus significantly contributing to the exchange between the lithosphere and the hydrosphere. This implies serpentinization and weathering that affect the mechanical properties in the deformation zone. An open question is the influence of the elemental exchange between the crust and ocean water on these processes, as well as the interactions with the biosphere, both at the surface and at depth. Continental transforms and strike-slip faults are often a site of major earthquakes, representing major hazards for the population. Here too, the role of weathering in the deformation zone is still unconstrained. Both types of faults are still poorly known in terms of structure, rheology and deformation. These features are seismically active zones, with large earthquakes often being recorded on the largest faults. Yet, little is known about the rupture process, seismic cyclicity and active deformation of transform faults. Recent works have shown that fracture zones, supposedly inactive features, can be reactivated and be the site of large earthquakes and deformation. Additional open questions are the way transform faults deform under far-field stresses, such as plate kinematic changes, and under more local stresses, what are the time constants of the processes and what are the primary controls of the tectonic and magmatic styles of the response. The tectonic and magmatic response of large offset transforms, particularly, is still largely unknown.

This session aims to present recent results on studies of these large features, especially on the rheology, deformation patterns, rupture processes, fluid circulation and physical properties of transform faults. We welcome observational studies on strike-slip and transform faults, both continental and oceanic, on fracture zones and on transform continental margins (structural geology and tectonics, geophysical imaging of the crust and lithosphere, petrology and geochemistry, seismology, fluid circulation and rock alteration, geodesy) as well as modelling studies, both analogue and numerical. Cross-disciplinary approaches are encouraged. The submission of abstracts divulging on-going international projects (drilling sites, seismic reflection imaging along strike-slip faults) are also welcome. This session is promoted by the Oceanic Transform Faults working group of InterRidge.

Share:
Co-organized as GD5.12/GMPV3.8/SM1.26
Convener: João Duarte | Co-conveners: Marcia Maia, Mathieu Rodriguez, Daniele Brunelli, Barry Hanan
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room K2
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X2

GMPV4 – Igneous processes

GMPV4.1

With this session we offer a platform for contributions using geochronological methods for resolving processes in ancient and modern magmatic systems, from deep crust to the surface, from melt accumulation, fractional crystallisation and melting in deep-seated reservois, to melt and crystal transport into the middle and upper crust, processes at the origin of volcanic eruptions, as well as all temporal aspects of metal transport, precipitation and crystallization in ore deposits at lithosphere-scale.

Share:
Convener: Urs Schaltegger | Co-conveners: Olivier Bachmann, Ilya Bindeman, Simon Tapster
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room -2.91
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X2
GMPV4.2

Magma chemistry sampled in plutonic and volcanic rocks (including their crystal cargoes) reflects combinations of processes that operate in their sources (e.g. metasomatism and tapping of various mantle components) as well as during differentiation in the crust (e.g. fractional crystallization, crustal assimilation, mixing/mingling, replenishment of magma reservoirs and chambers, and crustal melting). The fundamental questions addressed by this session concern how igneous systems operate in different tectonic settings and the principal controls on primary, parental and derivative magma compositions. This session thus invites contributions focussing on the generation and differentiation of magmas in the mantle and the crust. We particularly encourage reports on field studies, petrology, geochemistry, experimental petrology, and thermodynamic and geochemical modelling.

Public information:
Dear colleagues,

Please observe that the talks in session GMPV4.2 begin at 09:00 (and not at 08:30 as previously advertised).

Hope to see you there!
On behalf of the convener team.

Share:
Convener: Frances Deegan | Co-conveners: Ben Ellis, Carmela Freda, Valentin Troll
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room D1
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X2
GMPV4.3

The Oman Drilling Project (OmanDP; 2016-2018) has recovered 3200 m of diamond drillcore that sample three intervals within the gabbroic lower crust, the crust-mantle transition, partially serpentinised peridotite undergoing active alteration, and the transition from the mantle into the underlying metamorphic sole of the Samail ophiolite in Oman, arguably the best-preserved ophiolite. Most of the boreholes have been geophysically logged and the cores have undergone extensive IODP standard core description onboard the DV Chikyu, supplemented with X-ray CT and high resolution infrared scanning of the entire core. These cores and boreholes can be used to investigate the full spectrum of processes operating during the formation and modification of oceanic crust and shallow mantle. These processes involve mass and energy transfer between all the major components of the Earth system (the mantle, the crust, the hydrosphere, the atmosphere and the biosphere) and occur over a broad range of temperatures, depths and tectonic settings. In this session, we invite abstracts relating to the Oman Drilling Project including core analysis, geophysical logging and microbial studies as well as studies related to the Samail ophiolite and the oceanic lithosphere in general.

Share:
Co-organized as BG1.61/TS9.13
Convener: Michelle Harris | Co-conveners: Marguerite Godard, Damon Teagle
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room -2.91
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X2

GMPV5 – Volcanic processes and volcano monitoring

GMPV5.1

The session deals with the documentation and modelling of the tectonic, deformation and geodetic features of any type of volcanic area, on Earth and in the Solar System. The focus is on advancing our understanding on any type of deformation of active and non-active volcanoes, on the associated behaviours, and the implications for hazards. We welcome contributions based on results from fieldwork, remote-sensing studies, geodetic and geophysical measurements, analytical, analogue and numerical simulations, and laboratory studies of volcanic rocks.
Studies may be focused at the regional scale, investigating the tectonic setting responsible for and controlling volcanic activity, both along divergent and convergent plate boundaries, as well in intraplate settings. At a more local scale, all types of surface deformation in volcanic areas are of interest, such as elastic inflation and deflation, or anelastic processes, including caldera and flank collapses. Deeper, sub-volcanic deformation studies, concerning the emplacement of intrusions, as sills, dikes and laccoliths, are most welcome.
We also particularly welcome geophysical data aimed at understanding magmatic processes during volcano unrest. These include geodetic studies obtained mainly through GPS and InSAR, as well as at their modelling to imagine sources.


The session includes, but is not restricted to, the following topics:
• volcanism and regional tectonics;
• formation of magma chambers, laccoliths, and other intrusions;
• dyke and sill propagation, emplacement, and arrest;
• earthquakes and eruptions;
• caldera collapse, resurgence, and unrest;
• flank collapse;
• volcano deformation monitoring;
• volcano deformation and hazard mitigation;
• volcano unrest;
• mechanical properties of rocks in volcanic areas.

Share:
Co-organized as G3.10/NH2.5/TS10.2
Convener: Valerio Acocella | Co-conveners: Agust Gudmundsson, Michael Heap, Sigurjon Jonsson, Virginie Pinel
Orals
| Wed, 10 Apr, 10:45–12:30, 14:00–18:00
 
Room D1
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X2
GMPV5.2

Over the past few years, major technological advances allowed to significantly increase both the spatial coverage and frequency bandwidth of geochemical and geophysical observations at active volcanoes. Establishment of high-rate GPS networks, continuous gravity meters, dense arrays of broad-band seismometers, and networks of instruments for the quantitative measurement of volcanic gas emissions now permits an unprecedented, multi-parameter vision of the surface manifestations of mass transport beneath volcanoes. Accompanying these progresses are new models and processing techniques leading to innovative paradigms for the interpretation and inversion of observational data. Within this context, this session aims at bringing together a multidisciplinary audience to discuss about the most recent innovations in monitoring approaches and to present observations, methods and models that increase our understanding of volcanic processes.

We welcome contribution related to (1) New instruments and techniques for the measurement of geophysical and geochemical parameters, from in-situ methods to ground-, air- and space-based remote sensing techniques; (2) Reports of significant case histories, documenting the relationships between the measured parameters and the evolving volcanic processes; (3) New modelling frameworks for the interpretation of the observed data, and their significance in terms of eruption forecasting.

The session will provide an opportunity to discuss volcanic activity from a monitoring perspective on a wide range of volcanoes. We therefore encourage submission of papers that are easily understandable to a broad, multi-disciplinary audience.

Share:
Co-organized as AS3.28/NH2.7/SM5.9
Convener: Jurgen Neuberg | Co-conveners: Evgenia Ilyinskaya, Thomas R. Walter
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room -2.21
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X2
GMPV5.3 | PICO

Remote sensing measurements, from passive optical to active radar sensors, have become classical techniques to study and monitor Earth’s active volcanoes. They are commonly used by many volcano observatories and scientists around the World as obvious monitoring tools and complements to other ground-based geophysical techniques, such as GNSS, seismic, infrasound and gravimetric monitoring networks.

Nowadays, the number of satellite images available at no charge for scientific purpose is still increasing. New low-cost approaches, such as micro-satellite constellations and Unmanned Aerial Systems (UAS), are in constant development. The spectral, spatial and temporal resolutions of sensors are continuously improved. All these types of evolution make volcano remote sensing more accurate and comprehensive than before, allowing the scientists to better decipher the volcanic activity and the associated underlying magmatic processes.

In the present session, we invite all contributions that deal with the study and monitoring of active volcanoes using recent imaging sensors on-board space-, air- or ground-based platforms. Targeted remote sensing techniques are essentially –but not restricted to– ground surface deformation, topographic changes, ash and gas emissions, thermal detection, measurements and mapping, and geological mapping. Research based on time-series datasets processing and modelling, complementary remote sensing approaches and/or the combination of remote sensing with ground-based monitoring techniques are encouraged.

Share:
Convener: Benoît Smets | Co-conveners: Nicolas d'Oreye, Gaetana Ganci, Manuel Queißer
PICOs
| Wed, 10 Apr, 08:30–10:15
 
PICO spot 3
GMPV5.5 | PICO Media

Volcanic Islands are environments created by the growth of volcanoes in the sea, modified by geologic, environmental, biological and human activity. They are highly varied in geology, terrain, environment and social makeup. They are fragile environments in that they respond rapidly to global or local changes in a way that links geology, social activity and environment. Dealing with a complex object such as volcanic island requires a multidisciplinary approach on their on-land and submarine processes that crosses scientific, social and economic boundaries. From a geological and geophysical perspective there are numerous aspects that need to be addressed to acquire a comprehensive picture of how volcanic islands are born, grow up, evolve and die. These include their geodynamic setting, magmatism, volcanism, hydrothermalism, tectonics, and erosion and material transport, as well as their associated hazards and risks, environmental change record, or energy and economic resources. With the aim at integrating all this multidisciplinary research into a single forum of discussion, we offer this scientific session on Volcanic Islands, in which any geological and geophysical research on such complex environments will be more than welcome.

Share:
Co-organized as GD6.12/NH2.12
Convener: Joan Marti | Co-conveners: Patrick Bachelery, Armann Hoskuldsson
PICOs
| Tue, 09 Apr, 08:30–10:15
 
PICO spot 3
GMPV5.6

We invite multidisciplinary contributions - both observational (seismology, geodetics, geobarometry etc.) and modelling (computational, analogue etc.) - on magma transport in the crust through dykes and sills. Understanding dykes and sills is vital as they serve both as the conduits that feed eruptions (and must be monitored to evaluate volcanic hazards), and as the bodies that build the crust. Although considerable uncertainties in our understanding of magma plumbing systems remain, recent events in Iceland (2014 Bárðarbunga-Holuhraun rifting event) have demonstrated how progress can be made by combining diverse observations from traditionally distinct disciplines.

Share:
Co-organized as SM6.8
Convener: Jennifer Woods | Co-conveners: David Neave, Robert S White
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room D2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2
GMPV5.7

Interaction between the different phases (exsolved and dissolved volatiles, liquid melt, crystals and pyroclasts) that separate during magma evolution, ascent and storage as a result of interlinked fluid, thermodynamic and chemical processes have a dramatic influence on eruption dynamics, resulting in a plethora of explosive eruptions types.
On one side, constraining volatile budget in magmas and quantifying degassing processes is a fundamental task to better understand the role of volatile elements on eruption dynamics. On the other side, the complex shallow plumbing system dynamics produces seismic and acoustic events, ground deformation and changes in the hydrothermal system often preceding or follow the explosive activity and direct field observations can constrain individual eruptive processes.
For this reason, the session aims at gathering field observation and experimental and modeling studies on eruptive processes to unlock the complex dynamics of volcanic activity. We hereby invite contributions focusing on (but not restricted to) volatiles in magmas, crystallization dynamics, effusive/explosive transition, rheology of gas-liquid-solid mixtures, fragmentation processes.
Further we like to stimulate discussion on how multidisciplinary approaches can be used to advance the interpretation of geochemical and petrological observations on magmatic products and more specifically on the quantification of disequilibria processes during volcanic eruptions.

Share:
Co-sponsored by IAVCEI-CEV
Convener: Mattia de’ Michieli Vitturi | Co-conveners: Mike Burton, Andrea Di Muro, Giuseppe La Spina, Emily Bamber
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room D2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2
GMPV5.9

Magmatic and volcanic systems involve a range of dynamic processes that govern magma generation, ascent, emplacement, and eruption. The timescales of these processes are of paramount importance to understanding the evolution of magmatic reservoirs and mush zones during crystallization, assimilation, mixing, and volatile exsolution. Depending on the ascent timescale, these processes may operate far from compositional and textural equilibrium, induced by rapidly changing environmental parameters (e.g., P, T, fO2).

Rates and mechanisms of crustal emplacement or eruption, are also crucial in characterizing volcanic hazards. We welcome analytical, numerical, experimental, geophysical, and field-based studies addressing rates and timescales of volcanic and plutonic processes. These may include radiogenic isotope dating, mineral geospeedometry, in situ X-ray microtomography experiments, crystal size distribution analysis, and fluid dynamics. Also, we welcome interdisciplinary studies probing the mechanisms and timescales of volcanic phenomena. We finally encourage studies highlighting the role of time in characterizing volcanic hazards and how improved knowledge adds societal support for fast response to rapidly evolving geological processes.

Share:
Co-sponsored by AGU
Convener: Madison Myers | Co-conveners: Fabio Arzilli, Maurizio Petrelli, Mattia Pistone
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room -2.91
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2
GMPV5.11

In active volcanic systems the seismic source mechanisms are often driven by the interactions between the circulating fluids and the surrounding solid structures. Understanding the dynamics of the processes involved in these interactions is necessary to characterize the overall behavior of a volcano and the eventual transition mechanisms among stationarity, unrest phase and eruption. The starting point in this context is to have high-quality data (seismological, geochemical, geodetic, etc.) on several parameters, acquired both over several years of monitoring activity and focused field experiments, providing the opportunities to interrogate relevant physicochemical processes at diverse spatial and temporal scale. .
This session is addressed to those contributions that shed light on solid-fluid coupling processes in active volcanic systems over different time scales, with implications for early warning and hazards. In this context, studies that concern changes in the status of volcanic activity, which are relevant for the characterization of a volcano dynamical behavior or the identification of possible eruption precursors, throughout field experiments or analytical studies, are also welcome. In particular, contributions that adopt innovative techniques or multi-disciplinary approaches involving seismological data are strongly encouraged.

Share:
Convener: Mariarosaria Falanga | Co-conveners: Paola Cusano, Enza De Lauro, Simona Petrosino, Teh-Ru Alex Song
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X2
GMPV5.12

Volcanic edifices consist of diverse suites of pyroclastic successions, originated from primary (e.g. tephra fall, lava flow) and reworking processes (e.g. alluvial activity). The volcanoclastic sediments have witnessed the magma fragmentation and subsequent transportation mechanism as flow, turbulent current or tephra fall. Such pyroclastic deposits therefore hold key evidence to understand volcano-stratigraphy, eruption re-occurrence rates, and dominant transportation modes. This session aims to discuss sedimentary and volcanological aspects of volcanoclastic deposits. We invite presentations covering (1) field-based description and interpretation of volcanoclastic sediments, (2) reconstruction of eruptive and sediment transport processes, (3) experimental and numerical simulation of volcano-related sediment transport, and (4) development of new methodologies to understand the formation of volcanoclastic sediments. These topics are critical to understand volcanic phenomena and to improve upon existing volcanic monitoring efforts, and to forecast volcanic hazards in the future.

Share:
Co-organized as NH2.9/SSP3.12, co-sponsored by IAVCEI-CVS
Convener: Gabor Kereszturi | Co-conveners: Eric Breard, Andrea Di Capua, Gonca Gençalioğlu-Kuşcu, Alison Rust
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X2
GMPV5.15

Glaciers and volcanoes interact in a number of ways, including instances where volcanic/geothermal activity alters glacier dynamics or mass balance, via subglacial eruptions or the deposition of supraglacial tephra. Glaciers can also impact volcanism, for example by directly influencing mechanisms of individual eruptions resulting in the construction of distinct edifices. Glaciers may also influence patterns of eruptive activity when mass balance changes adjust the load on volcanic systems. However, because of the remoteness of many glacio-volcanic environments, these interactions remain poorly understood.
In these complex settings, hazards associated with glacier-volcano interaction can vary from lava flows to volcanic ash, lahars, pyroclastic flows or glacial outburst floods. These can happen consecutively or simultaneously and affect not only the earth, but also glaciers, rivers and the atmosphere. As accumulating, melting, ripping or drifting glaciers generate signals as well as degassing, inflating/ deflating or erupting volcanoes, the challenge is to study, understand and ultimately discriminate these potentially coexisting signals. We wish to fully include geophysical observations of current and recent events with geological observations and interpretations of deposits of past events.
We invite contributions that deal with the mitigation of the hazards associated with ice-covered volcanoes, that improve the understanding of signals generated by ice-covered volcanoes, or studies focused on volcanic impacts on glaciers and vice versa. Research on recent activity is especially welcomed. This includes geological observations e.g. of deposits in the field or remote-sensing data, together with experimental and modelling approaches. We also invite contributions on past activity and glaciovolcanic deposits. We aim to bring together scientists from volcanology, glaciology, seismology, geodesy, hydrology, geomorphology and atmospheric science in order to enable a broad discussion and interaction.

Share:
Co-organized as CR5.9/GM9.5/NH2.11
Convener: Iestyn Barr | Co-conveners: Eva Eibl, Magnus Tumi Gudmundsson, Kelly Russell, gioachino roberti, Adelina Geyer, Brent Ward
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room -2.91
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X2
GI2.2

Environmental systems often span spatial and temporal scales covering different orders of magnitude. The session is oriented in collecting studies relevant to understand multiscale aspects of these systems and in proposing adequate multi-platform surveillance networks monitoring tools systems. It is especially aimed to emphasize the interaction between environmental processes occurring at different scales. In particular, a special attention is devoted to the studies focused on the development of new techniques and integrated instrumentation for multiscale monitoring high natural risk areas, such as: volcanic, seismic, slope instability and other environmental context.
We expect contributions derived from several disciplines, such as applied geophysics, seismology, geodesy, geochemistry, remote sensing, volcanology, geotechnical and soil science. In this context, the contributions in analytical and numerical modeling of geodynamics processes are also welcome.
Finally, a special reference is devoted to the integration through the use of GeoWeb platforms and the management of visualization and analysis of multiparametric databases acquired by different sources

Share:
Co-organized as GD7.5/GMPV5.16/NH11.2/NP4.8/SM1.17/SSS9.7
Convener: Pietro Tizzani | Co-conveners: Francesca Bianco, Antonello Bonfante, Raffaele Castaldo, Nemesio M. Pérez
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room 0.96
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X1
NH2.1 Media

More than 75% of the volcanic activity on Earth occurs underwater. Recent unrest observed at many submarine volcanoes raises serious concerns regarding the level of risk posed to local communities. Many parameters of submarine to emergent volcanic activity are under active investigation, including how explosive activity varies with water depth, magma properties and magma composition. This session brings together experts from diverse disciplines to explore hazards posed to island and coastal communities as well as mechanisms of submarine to emergent volcanic activity.

The session will include presentations that integrate innovative and emerging technologies to enable focused and multi-disciplinary studies of recent and ancient eruptions and their products, as well as breakthrough developments in understanding the impact of disastrous submarine volcanic hazards on present and past societies.

We call for abstracts in the following areas:
- Identification of submarine volcanic hazards such as explosive eruptions, volcanic earthquakes, submarine landslides, hydrothermal emissions and volcanogenic tsunamis.
- Studies of the mechanics of submarine and emergent volcanic eruptions and formation of oceanic islands.
- Investigations of optimal monitoring technologies and state of the art methods that provide new insights into explorations of submarine volcanoes, which host hydrothermal systems, mineral deposits and biomediated processes.
- Recommendations for volcanic crisis management, public awareness and preparedness through an improved understanding of the hazards and impacts of submarine volcanoes.

Share:
Co-organized as GMPV5.18
Convener: Paraskevi Nomikou | Co-conveners: Magnus Tumi Gudmundsson, Marie Dolores Jackson, Steffen Jørgensen
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room L8
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X3
SM4.5

The aims of the session are (1) to discuss methodological and instrumental advances in geophysical imaging of volcanoes and (2) to explore new knowledge provided by these studies on the internal structure and physical processes of volcanic systems. We invite contributors from all geophysical areas, such as seismology, electromagnetics/geoelectrics, gravimetry/magnetics, muon tomography, remote sensing, and other geophysical observations applied to volcanic systems ranging from near-surface hydrothermal activity to magmatic processes at depth.

This year's session is focused on the contribution of geophysical imaging to better understand volcanological processes. We particularly welcome studies where complementary imaging techniques, as well as multi-disciplinary datasets, are integrated to investigate subsurface hydrothermal and magmatic processes.

Share:
Co-organized as GD6.13/GMPV5.19
Convener: Ivan Koulakov | Co-conveners: Luca De Siena, Volker Rath, Marina Rosas-Carbajal
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room -2.91
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X2

GMPV6 – Volcanic impacts, risk mitigation and resources

NH9.1 Media

The purpose of this session is to: (1) showcase the current state-of-the-art in global and continental scale natural hazard risk science, assessment, and application; (2) foster broader exchange of knowledge, datasets, methods, models, and good practice between scientists and practitioners working on different natural hazards and across disciplines globally; and (3) collaboratively identify future research avenues.
Reducing natural hazard risk is high on the global political agenda. For example, it is at the heart of the Sendai Framework for Disaster Risk Reduction (and its predecessor the Hyogo Framework for Action) and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts. In response, the last 5 years has seen an explosion in the number of scientific datasets, methods, and models for assessing risk at the global and continental scale. More and more, these datasets, methods and models are being applied together with stakeholders in the decision decision-making process.
We invite contributions related to all aspects of natural hazard risk assessment at the continental to global scale, including contributions focusing on single hazards, multiple hazards, or a combination or cascade of hazards. We also encourage contributions examining the use of scientific methods in practice, and the appropriate use of continental to global risk assessment data in efforts to reduce risks. Furthermore, we encourage contributions focusing on globally applicable methods, such as novel methods for using globally available datasets and models to force more local models or inform more local risk assessment.

Share:
Co-organized as GMPV6.2/HS11.47/SSS13.18
Convener: Hessel Winsemius | Co-conveners: Hannah Cloke, James Daniell, Melanie J. Duncan
Orals
| Tue, 09 Apr, 10:45–12:30, 14:00–18:00
 
Room L6
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X3
NH9.11 ECS

In recent years an increasing number of research projects focused on natural hazards (NH) and climate change impacts, providing a variety of information to end user or to scientists working on related topics.

The session aims at promoting new and innovative studies, experiences and models to improve risk management and communication about natural hazards to different end users.

End users such as decision and policy makers or the general public, need information to be easy and quickly interpretable, properly contextualized, and therefore specifically tailored to their needs. On the other hand, scientists coming from different disciplines related to natural hazards and climate change (e.g., economists, sociologists), need more complete dataset to be integrated in their analysis. By facilitating data access and evaluation, as well as promoting open access to create a level playing field for non-funded scientists, data can be more readily used for scientific discovery and societal benefits. However, the new scientific advancements are not only represented by big/comprehensive dataset, geo-information and earth-observation architectures and services or new IT communication technologies (location-based tools, games, virtual and augmented reality technologies, and so on), but also by methods in order to communicate risk uncertainty as well as associated spatio-temporal dynamic and involve stakeholders in risk management processes.

However, data and approaches are often fragmented across literature and among geospatial/natural hazard communities, with an evident lack of coherence. Furthermore, there is not a unique approach of communicating information to the different audiences. Rather, several interdisciplinary techniques and efforts can be applied in order to simplify access, evaluation, and exploration to data.

This session encourages critical reflection on natural risk mitigation and communication practices and provides an opportunity for geoscience communicators to share best methods and tools in this field. Contributions – especially from Early Career Scientists – are solicited that address these issues, and which have a clear objective and research methodology. Case studies, and other experiences are also welcome as long as they are rigorously presented and evaluated.

New and innovative abstract contributions are particularly welcomed and their authors will be invited to submit the full paper on a special issue on an related-topics Journal.

In cooperation with NhET (Natural hazard Early career scientists Team).

Share:
Co-organized as ESSI1.8/GI1.11/GMPV6.3/HS11.44/SM3.7/SSS13.19
Convener: Raffaele Albano | Co-conveners: Valeria Cigala, Jonathan Rizzi
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room L1
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X3
ITS5.4/GI2.7/AS4.43/BG1.39/ERE5.6/GMPV6.4/HS11.65/NH8.7/OS4.33/SSS8.7

The session gathers geoscientific aspects such as dynamics, reactions, and environmental/health consequences of radioactive materials that are massively released accidentally (e.g., Fukushima and Chernobyl nuclear power plant accidents, wide fires, etc.) and by other human activities (e.g., nuclear tests).

The radioactive materials are known as polluting materials that are hazardous for human society, but are also ideal markers in understanding dynamics and chemical/biological/electrical reactions chains in the environment. Thus, the radioactive contamination problem is multi-disciplinary. In fact this topic involves regional and global transport and local reactions of radioactive materials through atmosphere, soil and water system, ocean, and organic and ecosystem, and its relation with human and non-human biota. The topic also involves hazard prediction and nowcast technology.

By combining >30 year (halftime of Cesium 137) monitoring data after the Chernobyl Accident in 1986, >5 year dense measurement data by the most advanced instrumentation after the Fukushima Accident in 2011, and other events, we can improve our knowledgebase on the environmental behavior of radioactive materials and its environmental/biological impact. This should lead to improved monitoring systems in the future including emergency response systems, acute sampling/measurement methodology, and remediation schemes for any future nuclear accidents.

The following specific topics have traditionally been discussed:
(a) Atmospheric Science (emissions, transport, deposition, pollution);
(b) Hydrology (transport in surface and ground water system, soil-water interactions);
(c) Oceanology (transport, bio-system interaction);
(d) Soil System (transport, chemical interaction, transfer to organic system);
(e) Forestry;
(f) Natural Hazards (warning systems, health risk assessments, geophysical variability);
(g) Measurement Techniques (instrumentation, multipoint data measurements);
(h) Ecosystems (migration/decay of radionuclides).

The session consists of updated observations, new theoretical developments including simulations, and improved methods or tools which could improve observation and prediction capabilities during eventual future nuclear emergencies. New evaluations of existing tools, past nuclear contamination events and other data sets also welcome.

Public information:
The release of radioactive materials by human activity (such as nuclear accidents) are both severe hazard problem as well as ideal markers in understanding geoscience at all level of the Earth because it cycles through atmosphere, soil, plant, water system, ocean, and lives. Therefore, we must gather knowledge from all geoscience field for comprehensive understanding.

Share:
Co-organized as GI2.7/AS4.43/BG1.39/ERE5.6/GMPV6.4/HS11.65/NH8.7/OS4.33/SSS8.7
Convener: Masatoshi Yamauchi | Co-conveners: Nikolaos Evangeliou, Yasunori Igarashi, Liudmila Kolmykova, Daisuke Tsumune
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room N1
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X1
NH9.2 | PICO

Climate change, globalization, urbanization, and increased interconnectedness between
physical, human, and technological systems pose major challenges to disaster risk reduction
(DRR). Subsequently, economic losses caused by natural hazards are increasing in many regions of the world, which call for novel scientific approaches and new types of data collection to integrate the study of the natural processes triggering hazards, with the study of socioeconomic, political and technical factors that shape exposure and vulnerability.

This session aims to gather contributions on research, empirical studies, and observations that are useful for understanding and unravel the nexus between physical, human, and technological systems in DRR. We have identified a few examples of empirical puzzles where knowledge that is more fundamental is needed, thus contributions on the following topics are particularly welcome (but not limited to):

- Failure is a potential source of lesson-drawing, but history also offers success stories where disasters were avoided that deserve more rigorous assessment – What can we learn from comparative studies?

- Why do some societies that experience frequent natural hazards increase their resilience, while others become more vulnerable?

- Why do lowering hazard levels sometimes paradoxically lead to increased risks in some places?

- Why – despite major progress in understanding drivers of risk and developing enhanced methodologies and tools for assessing it – do we still see an increase in impacts associated with natural hazards?

Share:
Co-organized as GI1.10/GMPV6.6/HS11.40
Convener: Johanna Mård | Co-conveners: Korbinian Breinl, Steffi Burchardt, Giuliano Di Baldassarre, Michael Hagenlocher
PICOs
| Thu, 11 Apr, 08:30–10:15
 
PICO spot 1
ERE2.6

With an increasing demand for low-carbon energy solutions, industrial development of geothermal resources is accelerating. Current advancements target conventional hydrothermal systems, as well as the more unconventional systems (e.g., Enhanced Geothermal Systems, super-hot, pressurized and co-produced, super-critical systems). Geothermal energy can be extracted from various, often complex geological settings, both on- and offshore, such as shallow wells in magmatic systems and deep wells focusing on sedimentary basins.

Optimum efficiency requires advanced understanding of the properties of the entire geothermal system, including thermo-/petro-physical conditions, fluid composition; structural and hydrological features; and engineering challenges (e.g., those produced by hydraulic stimulation / induced seismicity or related to multiphase fluids and scaling processes). This needs to be combined with knowledge of heat sources and recharge areas, and an integral understanding on how the different elements connect within one system. In geothermal exploration and production the integration of analogue field studies with real-life production data, from industrial as well as research sites, and the combination with numerical models (both as joint and constrained inversion), are a hot topic worldwide.

With this session we aim to gather field, laboratory and numerical experts who focus their research on geothermal sites, to stimulate discussion in this multi-disciplinary environment. We seek for contributions from all disciplines, ranging from field data (e.g., production and well data) to laboratory experiments and numerical models

Share:
Co-organized as GMPV6.8/HS11.15
Convener: Anne Pluymakers | Co-conveners: Richard Bakker, Yves Géraud, Philippe Jousset
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room 0.94
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X1
SSP2.4

The session investigate how massive volcanism and meteorite impacts may have caused mass extinctions and global environmental crises. We hope to bring together researchers across the geological, geophysical, and biological disciplines to present new and exciting researches. The session will focus on the six major Phanerozoic mass extinctions (end Ordovician, end Devonian, end-Permian, end-Triassic, end-Cretaceous), but contributions from theoretical studies or from other environmental crises (e.g. PETM) are also welcome.

Share:
Co-organized as GMPV6.9
Convener: Eric Font | Co-conveners: Sofie Lindström, Thierry Adatte, David Bond, Sverre Planke, Kasia K. Sliwinska, Margret Steinthorsdottir, Martin Schobben
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room G2
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall X1

GMPV7 – Advances in Multidisciplinary Science and Regional Studies

GM1.4

Seismic techniques are becoming widely used to detect and quantitatively characterise a wide variety of natural processes occurring at the Earth’s surface. These processes include mass movements such as landslides, rock falls, debris flows and lahars; glacial phenomena such as icequakes, glacier calving/serac falls, glacier melt and supra- to sub-glacial hydrology; snow avalanches; water storage and water dynamics phenomena such as water table changes, river flow turbulence and fluvial sediment transport. Where other methods often provide limited spatial and temporal coverage, seismic observations allow recovering sequences of events with high temporal resolution and over large areas. These observational capabilities allow establishing connections with meteorological drivers, and give unprecedented insights on the underlying physics of the various Earth’s surface processes as well as on their interactions (chains of events). These capabilities are also of first interest for real time hazards monitoring and early warning purposes. In particular, seismic monitoring techniques can provide relevant information on the dynamics of flows and unstable slopes, and thus allow for the identification of precursory patterns of hazardous events and timely warning.

This session aims at bringing together scientists who use seismic methods to study Earth surface dynamics. We invite contributions from the field of geomorphology, cryospheric sciences, seismology, natural hazards, volcanology, soil system sciences and hydrology. Theoretical, field based and experimental approaches are highly welcome.

Share:
Co-organized as CR2.9/GI4.12/GMPV7.1/HS11.55/NH4.6/SM1.4/SSS12.13
Convener: Florent Gimbert