Union-wide
Side Events
Disciplinary Sessions
Inter- and Transdisciplinary Sessions

Session programme

SM

SM – Seismology

Programme group chairs: Heiner Igel, P. Martin Mai, Damiano Pesaresi, Philippe Jousset, Aldo Zollo, Henriette Sudhaus, Cedric Schmelzbach, Lapo Boschi, Fabrice Cotton

MAL9/SM
Beno Gutenberg Medal Lecture by Annie Souriau
Conveners: P. Martin Mai, Philippe Jousset
Abstract
| Thu, 11 Apr, 19:00–20:00
 
Room D1
MAL41/SM ECS
SM Division Outstanding ECS Lecture by Piero Poli
Conveners: P. Martin Mai, Philippe Jousset
Abstract
| Wed, 10 Apr, 10:45–11:15
 
Room D2
DM18/SM ECS
Division meeting for Seismology (SM)
Conveners: P. Martin Mai, Philippe Jousset
Wed, 10 Apr, 12:45–13:45
 
Room D2
SAL1

Public information:
During the sixties, the new Plate Tectonics paradigm was established. At a recent international meeting (Collège de France, Paris, 2018), discussions arose on whether for the first time it would be possible to relate without ambiguity plate tectonics and mantle dynamics.
In this presentation, the author shares this point of view and explains why he does so.

Share:
Co-organized as BG/GD/SM/TS
Convener: Carlo Laj | Co-convener: Chris King (deceased)(deceased)
Tue, 09 Apr, 19:00–20:00
 
Room E1

SM1 – General seismology sessions

SM1.1

The session General Contributions on Earthquakes, Earth Structure, Seismology features a wide range of presentations on recent earthquakes and earthquake sequences of local, regional, and global significance, as well as recent advances in characterization of Earth structure using a variety of methods.

The session is also dedicated to the Beno Gutenberg medal and the award lecture of the medalist.

Share:
Convener: P. Martin Mai | Co-convener: Philippe Jousset
Orals
| Wed, 10 Apr, 08:30–12:30, 14:00–15:45
 
Room D2
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X2
SM1.3

Recent advances in rotational seismology have led to new applications in various geophysical disciplines such as earthquake physics, broadband seismology, seismic exploration, strong ground motion, and earthquake engineering. The progress is mainly driven by the development of new, sensitive rotational sensors that, when combined with classical seismometers and strain sensors, enable the complete observation of seismic ground motion.

The instrumental development overlap with considerable improvements in optical and atom interferometry for inertial rotation and gravity sensing which has led to a variety of improved sensor concepts over the last two decades. Thus, advanced instrumentation enables applications in seismology, geodesy, and fundamental physics.

We invite all contributions on theoretical advances to the seismic wavefield gradient, on novel measurement techniques, and on all aspects of applications in seismic, seismology, geodesy, and fundamental physics.

Share:
Co-organized as G6.2
Convener: Stefanie Donner | Co-conveners: André Gebauer, Christian Schubert, David Sollberger
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room D2
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2
GM1.4

Seismic techniques are becoming widely used to detect and quantitatively characterise a wide variety of natural processes occurring at the Earth’s surface. These processes include mass movements such as landslides, rock falls, debris flows and lahars; glacial phenomena such as icequakes, glacier calving/serac falls, glacier melt and supra- to sub-glacial hydrology; snow avalanches; water storage and water dynamics phenomena such as water table changes, river flow turbulence and fluvial sediment transport. Where other methods often provide limited spatial and temporal coverage, seismic observations allow recovering sequences of events with high temporal resolution and over large areas. These observational capabilities allow establishing connections with meteorological drivers, and give unprecedented insights on the underlying physics of the various Earth’s surface processes as well as on their interactions (chains of events). These capabilities are also of first interest for real time hazards monitoring and early warning purposes. In particular, seismic monitoring techniques can provide relevant information on the dynamics of flows and unstable slopes, and thus allow for the identification of precursory patterns of hazardous events and timely warning.

This session aims at bringing together scientists who use seismic methods to study Earth surface dynamics. We invite contributions from the field of geomorphology, cryospheric sciences, seismology, natural hazards, volcanology, soil system sciences and hydrology. Theoretical, field based and experimental approaches are highly welcome.

Share:
Co-organized as CR2.9/GI4.12/GMPV7.1/HS11.55/NH4.6/SM1.4/SSS12.13
Convener: Florent Gimbert | Co-conveners: Wei-An Chao, Velio Coviello (deceased)(deceased), Andrea Manconi, Anne Schöpa
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room G2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2
PS1.4 Media

The InSight mission to Mars landed in Elysium Planitia on November 26. InSight's scientific objective is the study of the Martian interior using two seismometers, a heat flow probe and geodetical measurements. Auxiliary instruments will collect meteorological and magnetic data for at least one Martian year.
This session provides initial results from Mars, status reports of instrument deployment and relevant pre-landing science.

Share:
Co-organized as AS4.60/EMRP2.33/GD9.3/GMPV7.13/SM1.5/TS1.7
Convener: Simon C. Stähler | Co-conveners: Brigitte Knapmeyer-Endrun, Anna Mittelholz, Ana-Catalina Plesa
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room L3, Fri, 12 Apr, 08:30–10:15
 
Room L3
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X4
GM1.3

In the last 20 years, a major breakthrough in palaeo-environmental research has been the utilisation of 2D and 3D seismic reflection data and its integration with borehole petrophysics and core lithologies: the so-called “geological Hubble”. This step-change in seismic data quality and interpretive techniques has allowed imaging and analysis of the subsurface from the seafloor down to the Moho, and for palaeo-geographies and contemporary processes to be reconstructed across 1D (borehole) to 4D (repeat seismic) scales.

Though many Earth scientists know the basic principles of these subsurface datasets, they are often unaware of the full capability of seismic data paired with borehole data. We hope that this session will provide a window into the exciting and cross-disciplinary research currently being performed using geomorphological approaches, state-of-the-art seismic interpretation, and integrative methodologies.

Submissions are welcome from a range of geological settings, thus, exposing seismic interpreters and non-specialists to differing geological perspectives, the latest seismic workflows, and examples of effective seismic and borehole integration. Examples could include (but are not restricted to), glacigenic tunnel valley complexes, igneous intrusions, submarine landslides, channel and canyon systems, salt tectonics overburden expression, methane hydrates, and subsurface fluid flow, all under the theme of how seismic data are interpreted and how the results are applied (e.g. palaeo-environmental reconstruction, seafloor engineering, or carbon sequestration).

The submissions will highlight the rationale behind the interpretation of seismic geometries and will generate discussions around potential issues of equifinality (i.e. similar seismic geometries arising from different Earth processes). We thus invite submissions that aim to present new insights in seismic geomorphology and particularly welcome studies integrating borehole and geotechnical drilling information with shallow high-resolution seismic data and deeper traditional legacy oil industry data. Such studies are a crucial component in seismic inversion and refining or elucidating the accuracy of palaeo-geographies that are interpreted from just seismic data.

The session will be an excellent opportunity for subsurface geoscientists to showcase and discuss with contemporary geomorphologists and environmental scientists what can be achieved by utilising seismic and borehole data to unravel the Earth’s past.

Share:
Co-organized as CL1.28/CR2.10/SM1.7/SSP2.19
Convener: Andrew Newton | Co-conveners: Katrine Juul Andresen, Kieran Blacker, Rachel Harding, Elodie Lebas
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room 0.31
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X2
CR2.3 | PICO

______________________________________________________________________________________________________________
Invited Speaker is Christian Hauck (University of Fribourg) with the title:
'Geophysical monitoring techniques to observe Alpine permafrost degradation – a 20-years perspective'
______________________________________________________________________________________________________________

Geophysical measurements offer important baseline datasets as well as validation for modelling and remote sensing products for cryospheric sciences. Applications include the dynamics of ice-sheets, alpine glaciers and sea ice, changes in snow cover properties of seasonal and permanent snow, snow/ice-atmosphere-ocean interactions, permafrost degradation, geomorphic processes and changes in subsurface materials.

In this session we welcome contributions related to a wide spectrum of geophysical- and in-situ methods, including advances in diverse techniques such as radioglaciology, active and passive seismology, acoustic sounding, GPS/GNSS reflectometry or time delay techniques, cosmic ray neutron sensing, drone applications, geoelectrics and NMR. Contributions may concern field applications as well as new approaches in geophysical/in-situ survey techniques or theoretical advances in the field of data analysis, processing or inversion. Case studies from all parts of the cryosphere such as snow, alpine glaciers, ice sheets, glacial and periglacial environments and sea ice are highly welcome. The focus of the session is to compare experiences in the application, processing, analysis and interpretation of different geophysical and in-situ techniques in these highly complex environments.

This session is offered as a PICO: an engaging presentation format that has been successfully tested for this session during the last three years at EGU. All selected contributions will present their research orally, and then further present their research using interactive screens. This results in rich scientific feedback and is an effective tool for communicating science with high visibility.

Share:
Co-organized as HS1.1.6/SM1.9
Convener: Nanna Bjørnholt Karlsson | Co-conveners: Franziska Koch, Reinhard Drews, Kristina Keating, Emma C. Smith
PICOs
| Fri, 12 Apr, 08:30–12:30
 
PICO spot 4
GI1.3

The nature of science has changed: it has become more interconnected, collaborative, multidisciplinary, and data intensive. Accordingly, the main aim of this session is to create a common space for interdisciplinary scientific discussion, where EGU-GA delegates involved in geoscientific networks can share ideas and present the research activities carried out in their networks. The session represents an invaluable opportunity for different networks and their members to identify possible synergies and establish new collaborations, find novel links between disciplines, and design innovative research approaches.

Part of the session will be focused on COST (European Cooperation in Science and Technology) Actions*. The first edition of the session (successfully held in 2018) was actually entirely dedicated to the COST networking programme and hosted scientific contributions stemming from 25 Actions, covering different areas of the geosciences (sky, earth and subsurface monitoring, terrestrial life and ecosystems, earth's changing climate and natural hazards, sustainable management of resources and urban development, environmental contaminants, and big data management). Inspiring and fruitful discussions took place; the session was very well attended. We are looking forward to continuing the dialogue this year and to receiving new contributions from COST Action Members.

Another part of the session will be dedicated to the activities of other national and international scientific networks, associations, as well teams of scientists who are carrying out collaborative research projects.

Finally, the session is of course open to everyone! Accordingly, abstracts authored by scientists not involved in wide scientific networks are most welcome, too! In fact, in 2018 we received a good number of such abstracts, submitted by individual scientists or small research teams who wished to disseminate the results of their studies in front of the multidisciplinary audience that characterizes this session, as an alternative to making a presentation in a thematic session. This may be a productive way to broaden the perspective and find new partners for future interdisciplinary research ventures. We hope to receive this kind of abstracts this year, as well.


-- Notes --

* COST (www.cost.eu) is a EU-funded programme that enables researchers to set up their interdisciplinary research networks (the “Actions”), in Europe and beyond. COST provides funds for organising conferences, workshops, meetings, training schools, short scientific exchanges and other networking activities in a wide range of scientific topics. Academia, industry, public- and private-sector laboratories work together in Actions, sharing knowledge, leveraging diversity, and pulling resources. Every Action has a main objective, defined goals and clear deliverables. This session was started as a follow up initiative of COST Action TU1208 “Civil engineering applications of Ground Penetrating Radar” (2013-2017, www.GPRadar.eu).

Share:
Co-organized as AS4.13/BG1.33/CL4.42/GD1.7/GM12.7/GMPV7.16/NH11.15/NP9.4/SM1.10/SSP1.7/SSS13.20/ST4.9
Convener: Lara Pajewski | Co-conveners: Simona Fontul, Aleksandar Ristic
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room 2.44
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X1
GD6.2

The Arctic realm hosts vast extended continental shelves bordering old land masses, one of the largest submarine Large Igneous Provinces (LIPs) -the Alpha-Mendeleev Ridge - of Mesozoic age, and the slowest mid-ocean spreading ridge (the Gakkel Ridge) on the globe. Extreme variations in the evolution of landscapes and geology reflect the tug-of-war between the formation of new oceans, like the North Atlantic, and the destruction of older oceans: the South Anyui, Angayucham and North Pacific, which were accompanied by rifting, collision, uplift and subsidence. The causal relationships between the deep-mantle and surface processes in the Circum-Arcic region remain unclear. Geoscientific information on the relationship between the onshore geology and offshore ridges and basins in combination with variations in the mantle is the key for any deeper understanding of the entire Arctic Ocean.
This session provides a forum for discussions of a variety of problems linked to the Circum-Arctic geodynamics and aims to bring together a diversity of sub-disciplines including plate tectonics, mantle tomography, seismology, geodynamic modelling, igneous and structural geology, geophysical imaging, sedimentology, geochemistry. Particularly encouraged are papers that address lithospheric-mantle interactions in the North Atlantic, the Arctic and North Pacific regions, mantle dynamics and vertical and horizontal motion of crustal blocks and consequences for paleogeography. As geologic and tectonic models are inherently tied with changes in the oceanographic and climatic development of the Arctic, we also invite studies that focus on the interplay between these processes and across timescales. Lastly, we would like to invite contributions from studies concerning the implications of how the Arctic’s geography and geology are portrayed by modern data and issues related to jurisdiction and sovereign rights with particular focus on the UN Convention on the Law of the Sea.

Public information:
This session provides a forum for discussions of a variety of problems linked to the Circum-Arctic geodynamics and aims to bring together a diversity of sub-disciplines including plate tectonics, mantle tomography, seismology, geodynamic modelling, igneous and structural geology, geophysical imaging, sedimentology, geochemistry. As geologic and tectonic models are inherently tied with changes in the oceanographic and climatic development of the Arctic, we also show results from studies that focus on the interplay between these processes. The implications of how the Arctic’s geography and geology are portrayed by modern data and issues related to jurisdiction and sovereign rights with particular focus on the UN Convention on the Law of the Sea are also discussed.

Share:
Co-organized as CL4.32/SM1.12/TS7.11
Convener: Carmen Gaina | Co-conveners: Victoria Ershova, Alla Pozdnakova, Andrew Schaeffer
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X2
GD1.1

Since the 1960’s plate tectonics has been accepted as a surface expression of the earth's convecting mantle, and yet numerous geological features of plate interiors remain unexplained within the plate tectonic paradigm, including intraplate earthquakes and large-scale vertical motions of continents as epitomized by the uplift history of Africa. Kevin Burke (1929-2018), one of the greatest geologists of our time who published original and thought-provoking contributions for six decades, was one of the most vocal scientists to assert that plate tectonics is an incomplete theory without a clear understanding of its links with deep Earth processes, including the role of mantle plumes. In this session we commemorate the pioneering work of Kevin and explore contributions from across the diverse fields that interested him, including global tectonics, the Wilson Cycle, the origin of Precambrian greenstone belts, the evolution of the Caribbean, and the uplift history of Africa and other continents. We discuss the state-of-the art of the plume mode of mantle convection, its influence on the dynamics of the asthenosphere and the lithosphere, and its expression at the earth’s surface. We seek contributions from natural case studies (tectonic evolution, sedimentology, thermochronology, geophysics, palaeoclimate) and from geodynamics or geomaterials oriented (analog and numerical) modeling, which address the interplay of deep mantle – asthenosphere – lithosphere – basin – surface processes in all plate environments. In particular, we appreciate studies that contribute to the understanding of feedback processes causing the evolution of dynamic topography and welcome contributions that examine surface and deep Earth links based on observations and numerical models (although notably the latter never seduced Kevin).

Share:
Co-organized as GMPV2.10/SM1.13/TS9.6
Convener: Mathew Domeier | Co-conveners: Lewis D. Ashwal, Prof. Dr. Ulrich Anton Glasmacher, Anke Friedrich, Barbara Romanowicz, Susan Webb, Siavash Ghelichkhan
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room -2.21
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X2
NH6.2

The availability of high spatial resolution Synthetic Aperture Radar (SAR) data, the advances in SAR processing techniques (e.g. interferometric, polarimetric, and tomographic processing), and the fusion of SAR with optical imagery as well as geophysical modelling allow ever increasing use of Imaging Geodesy using SAR/InSAR as a geodetic method of choice for earth system monitoring and investigating geohazard, geodynamic and engineering processes. In particular, the exploitation of data from new generation SAR missions such as Sentinel-1 that provide near real-time measurements of deformation and changes in land cover/use has improved significantly our capabilities to understand natural and anthropogenic hazards and then helped us mitigate their impacts. The development of high-resolution X-band SAR sensors aboard missions such as Italian COSMO-SkyMed (CSK) and German TerraSAR-X (TSX) has also opened new opportunities over the last decade for very high-resolution radar imaging from space with centimetre geometric accuracy for detailed analysis of a variety of processes in the areas of the biosphere, geosphere, cryosphere and hydrosphere. All scientists exploiting radar data from spaceborne, airborne and/or ground-based SAR sensors are cordially invited to contribute to this session. The main objective of the session is to present and discuss the progress, state-of-the-art and future perspectives in scientific exploitation of SAR data, mitigating atmospheric effects and error sources, cloud computing, machine learning and big data analysis, and interpretation methods of results obtained from SAR data for various types of disasters and engineering applications such as earthquakes, volcanoes, landslides and erosion, infrastructure instability and anthropogenic activities in urban areas. Contributions addressing scientific applications of SAR/InSAR data in biosphere, cryosphere, and hydrosphere are also welcome.

Share:
Co-organized as AS5.13/CR2.15/G2.7/GD10.3/HS11.45/NP4.11/SM1.14
Convener: Mahdi Motagh | Co-conveners: Ziyadin Cakir, Franz J Meyer, Zhenhong Li
Orals
| Mon, 08 Apr, 08:30–12:30, 14:00–15:45
 
Room M2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X3
TS6.6

The integrated study of field (young, and ancient analogues preserved in orogenic systems), seismic reflection/refraction, gravity/magnetics, well data (exploration and IODP), analogue and thermo-mechanical modelling approaches have greatly improved our understanding of the processes that influence and modify the architecture (crustal, magmatic, sedimentary, structural and thermal) of the distal domain of rifted margins. As more data becomes available our appreciation of the 3D and ultimately 4D geodynamic processes that influence the formation and present day structure of distal margins is evolving. Although all rifted margins are somewhat unique, similar genetic processes are often proposed despite the underlying interpretational uncertainties. These uncertainties can impact the resulting interpretations relating to the tectono-magmatic and crustal models. Therefore, despite many models the process often remains controversial and/or far for being well constrained.

This session would like to explore and discuss the observations and interpretations derived from geological and geophysical datasets across rifted margins and distal margins. Importantly, uncertainties should be addressed with respect to our current understanding of the genetic rift-domain evolution. Observations should focus on the evidences for processes that impact the final architecture, rock content and thermal imprint of conjugate margins. This relates to the observed style of extension and thinning (high vs low angle faulting and static vs dynamic interpretations and their evidence), vertical motions (e.g. uplift and subsidence), the isostatic impacts of the tectonic, magmatic and stratigraphic history relating to the genetic-rift domains.

Share:
Co-organized as GD5.9/SM1.16/SSP3.26
Convener: Philip Ball | Co-conveners: Laurent Gernigon, Geoffroy Mohn, Charlotte NIELSEN, Jean-Claude, Raymond Ringenbach
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30
 
Room K1
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2
GI2.2

Environmental systems often span spatial and temporal scales covering different orders of magnitude. The session is oriented in collecting studies relevant to understand multiscale aspects of these systems and in proposing adequate multi-platform surveillance networks monitoring tools systems. It is especially aimed to emphasize the interaction between environmental processes occurring at different scales. In particular, a special attention is devoted to the studies focused on the development of new techniques and integrated instrumentation for multiscale monitoring high natural risk areas, such as: volcanic, seismic, slope instability and other environmental context.
We expect contributions derived from several disciplines, such as applied geophysics, seismology, geodesy, geochemistry, remote sensing, volcanology, geotechnical and soil science. In this context, the contributions in analytical and numerical modeling of geodynamics processes are also welcome.
Finally, a special reference is devoted to the integration through the use of GeoWeb platforms and the management of visualization and analysis of multiparametric databases acquired by different sources

Share:
Co-organized as GD7.5/GMPV5.16/NH11.2/NP4.8/SM1.17/SSS9.7
Convener: Pietro Tizzani | Co-conveners: Francesca Bianco, Antonello Bonfante, Raffaele Castaldo, Nemesio M. Pérez
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room 0.96
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X1
SC1.13 ECS

This short course is an introduction to structural and petrological geological principles, used by geologist to understand system earth. The data available to geologists is often minimal, incomplete and representative for only part of the geological history. Besides learning field techniques to acquire and measure data, geologists need to develop a logical way of thinking to close gaps in the data to understand the system. There is a difference in the reality observed from field observation and the final geological model that tells the story.

In this course we briefly introduce the following subjects:
1) Acquisition of field-data
2) From structural field data to paleostresses
3) Using petrological field data to identify tectonic phases (e.g. burial and exhumation)
4) Rock deformation - What happens in the lab?
5) Data publications and EPOS - What to do with your research data?
6) Creating geological models: how to make the story complete


Our aim is not to make you the next specialist in geology, but we would rather try and make you aware of the challenges a geologist faces when he/she goes out into the field. Also the quality of data and the methods used nowadays are addressed to give seismologists and geodynamicists a feel for the capabilities and limits of geological research. This course is given by Early Career Scientist geologists and geoscientists and forms a trilogy with the short course on ‘Geodynamics 101’ and ‘Seismology 101’. For this reason, will also explain what kind of information we expect from the fields of seismology and geodynamics and we hope to receive some feedback in what kind of information you could use from our side.

Share:
Co-organized as GD11.4/SM1.20/TS13.6
Convener: Eldert Advokaat | Co-conveners: Anouk Beniest, Francesco Giuntoli, Richard Wessels
Tue, 09 Apr, 14:00–15:45
 
Room -2.62
SC1.21 ECS

The main goal of this short course is to provide an overview of the large scale dynamic processes on Earth, recent advances in the study of these processes and future directions. The course focusses on numerical methods to explain and advance our knowledge of geodynamic large scale processes, but additional constraints and insights obtained from the geological record and seismology (e.g., tomography) are also touched upon. The basic dynamics, state of the art understanding and outstanding questions of the following geodynamic processes are discussed through key papers in the field:
(1) Mantle convection
(2) The start of plate tectonics
(3) Break-up of supercontinents
(4) Subduction dynamics
(5) Crustal deformation & mountain building
Using their newfound knowledge of geodynamical processes, participants will be better able to understand and use geodynamical papers to answer their own research question.
The 90-minute short course is run by early career geodynamicists and is part of the Solid Earth 101 short course series together with Geodynamics 101A, Seismology 101, and Geology 101. It is dedicated to everyone who is interested in, but not necessarily experienced with, the large scale dynamics of the Earth; in particular early career scientists (BSc, MSc, PhD students and postdocs) and people who are new to the field of geodynamic modelling. The course "Geodynamics 101A: Numerical methods" discusses the numerical methods that are often used to solve for and study the processes outlined in this course. Discussion and questions will be greatly encouraged.

Share:
Co-organized as GD11.2/SM1.21/TS13.2
Convener: Adina E. Pusok | Co-conveners: Iris van Zelst, Fabio Crameri, Jessica Munch
Fri, 12 Apr, 14:00–15:45
 
Room -2.62
TS7.9

The Alps have been intensively studied by geologists for more than a century, providing a unique natural laboratory to deepen our understanding of orogenic processes and their relationship to mantle dynamics. Although most concepts that underlie current studies of mountain belts and convergence dynamics were born in the Alps, the belt is now being examined with renewed vigour in the AlpArray project. This project involves a large number of European institutions, with efforts focused on the AlpArray Seismic Network to provide homogeneous seismological coverage of the greater Alpine area at unprecedented aperture and station density, both on land and sea. New data is being recorded in a multidisciplinary research effort, and other projects are being planned in the immediate and mid-term future.
Within this context, we invite contributions from the Earth Science community that highlight new results in AlpArray and that identify and solve key open questions of the present and past structure and dynamics of the Alps and neighbouring orogens. Both disciplinary and multi-disciplinary contributions are welcome from geophysical imaging, seismotectonics, geodesy, geodynamics, gravimetry, tectonics, structural geology, petrology, geochronology, thermomechanical modelling and other allied fields. Scales of interest range from crustal to upper mantle, in the Alps and neighbouring mountain belts such as the Apennines, the Carpathians and the Dinarides.

Share:
Co-organized as GD6.7/SM1.22
Convener: Anne Paul | Co-conveners: Mark R. Handy, György Hetényi, Marco Giovanni Malusa', Irene Molinari
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room K1
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X2
TS5.3

Our first-order understanding of earthquake cycles is limited by our ability to detect and interpret natural phenomena or their relict signatures on faults. However, such observations allow us to define fundamental hypotheses that can be tested by way of experiments and models, ultimately yielding deeper insights into mechanics of faulting in nature. Inter-, co-, and post-seismic deformation can be documented geodetically, but the sparseness of the data and its large spatial and temporal variability do not sufficiently resolve their driving mechanisms. Laboratory experiments under controlled conditions can narrow down the possibilities, while numerical modelling helps extrapolating these results back to natural conditions. Thus, integrated approaches to bridge long-term tectonics and the earthquake cycle that combine observation, interpretation, experimentation, and finally, physical or numerical modelling, are key for our understanding of the deformation behaviour of complex fault systems.

This session seeks contributions toward an integrated perspective on the earthquake cycle that span a wide range of observations, methodologies, and modelling over a variety of spatial and temporal scales. Presentations can cover brittle and ductile deformation, from microstructures to mantle rheology and with applications to earthquake mechanics, geodynamics, geodesy, geohazards, and more. Specific questions include: How do long-term crustal and lithospheric deformation affect short-term seismicity and earthquake cycle behaviour? What is the long-term topographic signature of the earthquake? What are the relative contributions of rheology and geometry for seismic and aseismic slip? What are the roles of on- and off-fault deformation in shaping the landscape and partitioning seismic and aseismic energy dissipation? We welcome submissions by early-career scientists in particular.

— Invited speaker: Luc L Lavier, Jackson School of Geosciences | The University of Texas at Austin

Share:
Co-organized as GD2.11/NH4.17/SM1.23
Convener: Luca Dal Zilio | Co-conveners: Luca C Malatesta, Onno Oncken, Ylona van Dinther
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room K2
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2
TS6.1

Continental rifting is a multi-facetted process spanning from the inception of extension to continental rupture or the formation of a failed rift. This session aims at combining new data sets, concepts and techniques elucidating the structure and dynamics of rifts and rifted margins. We invite submissions highlighting the time-dependent evolution of processes such as initiation of faults and ductile shear zones, tectono-magmatic and sedimentary history, lithospheric necking and rift strength loss, influence of the pre-rift lithospheric structure, mantle dynamics and associated effects on rifting processes, as well as continental break-up and the transition to sea-floor spreading. We encourage contributions using multi-disciplinary and innovative methods from field geology, geochronology, seismology, geodesy, marine geophysics, plate reconstruction, or modeling. Focus regions may include but are not limited to the Atlantic, Indian Ocean, Mediterranean and South China Sea (e.g. IODP 367/368 area) rifted margins, or the East African, Eger, Baikal and Gulf of California rift systems. Special emphasis will be given to presentations that provide an integrated picture by combining results from active rifts, passive margins, failed rift arms or by bridging the temporal and spatial scales associated with rifting.

Share:
Co-organized as GD5.6/GMPV2.12/SM1.24
Convener: Sascha Brune | Co-conveners: Carmen Gaina, Giacomo Corti, Nick Kusznir
Orals
| Mon, 08 Apr, 10:45–12:30, 14:00–15:45
 
Room K1
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X2
TS6.4

What controls lithosphere evolution during extension? The aim of this session is to investigate diverging systems over a wide range of spatial and temporal scales, and at all stages in the life cycle of divergent plate boundaries including continental rifting, mantle exhumation and seafloor spreading.
A special emphasis will be given to
(1) studies that couple lithospheric deformation models to plate kinematics, and that integrate possibly the role of serpentinisation and/or magmatism in the models.
(2) works that analyse subsidence and thermal effect of rifting and break-up.
(3) paleogeographic reconstructions revealing the influence of sedimentation and lithosphere structure evolution on biogeochemical cycles and oceanographic circulation.
(4) contributions that elucidate extensional modes through the interplay between tectonic structures, magmatism and the stratigraphic record using field, petrological and seismic data.

Share:
Co-organized as GD5.7/GMPV7.26/SM1.25/SSP3.30
Convener: Gianluca Frasca | Co-conveners: Marta Pérez-Gussinyé, Michael Nirrengarten, Eun Young Lee, Maria Luisa Garcia Tejada, Joanne Whittaker, Simon Williams, Christopher Jackson
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room K1
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X2
TS8.1 Media

Transform faults form major active plate boundaries and are intrinsic features of plate tectonics and plate accretion. Submarine transforms are likely to be fundamental pathways for fluid circulation in depth, thus significantly contributing to the exchange between the lithosphere and the hydrosphere. This implies serpentinization and weathering that affect the mechanical properties in the deformation zone. An open question is the influence of the elemental exchange between the crust and ocean water on these processes, as well as the interactions with the biosphere, both at the surface and at depth. Continental transforms and strike-slip faults are often a site of major earthquakes, representing major hazards for the population. Here too, the role of weathering in the deformation zone is still unconstrained. Both types of faults are still poorly known in terms of structure, rheology and deformation. These features are seismically active zones, with large earthquakes often being recorded on the largest faults. Yet, little is known about the rupture process, seismic cyclicity and active deformation of transform faults. Recent works have shown that fracture zones, supposedly inactive features, can be reactivated and be the site of large earthquakes and deformation. Additional open questions are the way transform faults deform under far-field stresses, such as plate kinematic changes, and under more local stresses, what are the time constants of the processes and what are the primary controls of the tectonic and magmatic styles of the response. The tectonic and magmatic response of large offset transforms, particularly, is still largely unknown.

This session aims to present recent results on studies of these large features, especially on the rheology, deformation patterns, rupture processes, fluid circulation and physical properties of transform faults. We welcome observational studies on strike-slip and transform faults, both continental and oceanic, on fracture zones and on transform continental margins (structural geology and tectonics, geophysical imaging of the crust and lithosphere, petrology and geochemistry, seismology, fluid circulation and rock alteration, geodesy) as well as modelling studies, both analogue and numerical. Cross-disciplinary approaches are encouraged. The submission of abstracts divulging on-going international projects (drilling sites, seismic reflection imaging along strike-slip faults) are also welcome. This session is promoted by the Oceanic Transform Faults working group of InterRidge.

Share:
Co-organized as GD5.12/GMPV3.8/SM1.26
Convener: João Duarte | Co-conveners: Marcia Maia, Mathieu Rodriguez, Daniele Brunelli, Barry Hanan
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room K2
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X2
SC1.14 ECS

How do seismologists detect earthquakes? How do we locate them? Is seismology only about earthquakes? Seismology has been integrated into a wide variety of geo-disciplines to be complementary to many fields such as tectonics, geology, geodynamics, volcanology, hydrology, glaciology and planetology. This 90-minute course is part of the Solid Earth 101 short course series together with ‘Geodynamics 101 (A & B)’ and ‘Geology 101’ to better illustrate the link between these fields.

In ‘Seismology 101’, we will present an introduction to the basic concepts and methods in seismology. In previous years, this course was given as "Seismology for non-seismologists" and it is still aimed at those not familiar with seismology -- in particular early career scientists. An overview will be given on various methods and processing techniques, which are applicable to investigate surface processes, near-surface geological structures and the Earth’s interior. The course will highlight the role that advanced seismological techniques can play in the co-interpretation of results from other fields. The topics will include:
- the basics of seismology, including the detection and location of earthquakes
- understanding and interpreting those enigmatic "beachballs"
- an introduction to free seismo-live.org tutorials and other useful tools
- how seismic methods are used to learn about the Earth, such as for imaging the Earth’s interior (on all scales), deciphering tectonics, monitoring volcanoes, landslides and glaciers, etc...

We likely won’t turn you in the next Charles Richter in 90 minutes but would rather like to make you aware how seismology can help you in geoscience. The intention is to discuss each topic in a non-technical manner, emphasizing their strengths and potential shortcomings. This course will help non-seismologists to better understand seismic results and can facilitate more enriched discussion between different scientific disciplines. The short course is organised by early career scientist seismologists and geoscientists who will present examples from their own research experience and from high-impact reference studies for illustration. Questions from the audience on the topics covered will be highly encouraged.

Share:
Co-organized as GD11.3/SM1.28/TS13.3
Convener: Maria Tsekhmistrenko | Co-convener: Nienke Blom
Wed, 10 Apr, 14:00–15:45
 
Room -2.62

SM2 – Deformation, Faulting, and Earthquake Processes (incl. seismotectonics, geodynamics, earthquake source physics)

SM2.1

Numerical modeling of earthquakes provides new approaches to apprehend the physics of earthquake rupture and the seismic cycle, seismic wave propagation, fault zone evolution and seismic hazard assessment.
Recent advances in numerical algorithms and increasing computational power enable unforeseen precision and multi-physics components in physics-based earthquake simulation but also pose challenges in terms of fully exploiting modern supercomputing infrastructure, realistic parameterization of simulation ingredients and the analysis of large synthetic datasets.
This session aims to bring together modelers and data analysts interested in the physics and computational aspects of earthquake phenomena. We welcome studies focusing on all aspects of the physics of various earthquakes - from slow slip events, fault mechanics and rupture dynamics, to wave propagation and ground motion analysis, to the seismic cycle and inter seismic deformation - and studies which further the state-of-the art in the related computational and numerical aspects.
We further encourage studies linking earthquake source processes to rock mechanics and the laboratory scale.

Share:
Co-organized as GD8.7/NH4.8
Convener: Alice-Agnes Gabriel | Co-conveners: Jean Paul Ampuero, Hideo Aochi
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X2
SM2.2

This session covers the broad field of earthquake source processes, and includes the topics of observing the surface deformation caused by earthquakes, imaging the rupture kinematics and simulating earthquake dynamics using numerical methods, to develop a deeper understanding of earthquake source physics. We also invite presentation that link novel field observations and laboratory experiments to earthquake dynamics, and studies on earthquake scaling properties. Of particular interest are innovative studies on quantifying the uncertainties in earthquake source-parameter estimation.
Within this framework our session also provides a forum to discuss case studies of field observation, kinematic and dynamic source modeling of recent significant earthquakes.

Share:
Co-organized as NH4.9/TS5.10
Convener: P. Martin Mai | Co-conveners: Alice-Agnes Gabriel, Henriette Sudhaus
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X2
SM2.3

Over the past several years, interest in earthquake foreshocks has experienced considerable growth. This can, on one side, be explained by a largely improved observational database that spans all seismic scales. A development that is driven by a growing number of permanent seismic stations and large-scale campaign networks, the development of advanced detection and analysis techniques, and by the improvement of laboratory equipment and techniques. In addition, the ongoing endeavor to better understand induced seismicity has been contributing to this upgrowth with densely-monitored underground lab-scale experiments and enhanced microseismic monitoring. On the other side, earthquake foreshocks are widely perceived as one of the few and, as of now, most direct observations of earthquake nucleation processes.

Foreshocks are generally thought to arise by one of two mechanisms: cascading failure or preslip. The cascading model proposes that a mainshock following a foreshock has an identical origin to that of aftershocks. In this case, earthquake frequency-magnitude statistics predict that occasionally an aftershock will be larger than the prior event, which makes the prior event a foreshock only after the fact. The mechanism proposed by the preslip model is that premonitory processes - perhaps fault creep related to mainshock nucleation - result in stress changes that drive the foreshock process. Seismologists have found no agreement so far; this is made more difficult by two facts: that no agreed-upon, universal strategy to identify foreshocks in a seismic catalog exists and that data quality and quantity vary considerably over spatial and temporal scales.

In this session, we want to bring together scientists from all disciplines working on, or interested in, earthquake foreshock occurrence. We invite reports on observational and theoretical studies on all scales. This includes laboratory and deep underground experimental earthquakes, as well as microseismic to megathrust earthquakes. We also encourage submissions from colleagues working on advanced detection and analysis techniques for improved foreshock identification.

Share:
Co-organized as NP4.9/TS5.9
Convener: Toni Kraft | Co-conveners: Christine J Ruhl, Aitaro Kato
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2
SM2.4

Since 2004, there have been a number of large subduction earthquakes whose unexpected rupture features contributed to the generation of devastating tsunamis. The impact that these events had on human society highlights the need to improve our knowledge of the key mechanisms behind their origin. Advances in these areas have led to progess in our understanding of the most important parameters affecting tsunamigenesis. For example, unexpectedly large slip was observed during the 2011 Tohoku-Oki earthquake, leading to re-investigations of the geology of other subduction zones and the conditions that can lead to large slip at the trench.

In general, the large amount of geophysical data recorded at present has led to new descriptions of faulting and rupture complexity (e.g., spatial and temporal seismic rupture heterogeneity, fault roughness, geometry and sediment type, interseismic coupling, etc.). Rock physicists have proposed new constitutive laws and parameters based on a new generation of laboratory experiments, which simulate close to natural seismic deformation conditions on natural fault samples. Analog modellers now have apparati that simulate multiple seismic cycles with unprecedented realism. These represent a valuable tool for investigating how various boundary conditions (e.g., frictional segmentation, interplate roughness) influence the seismic behavior of subduction megathrusts. In addition, advances in numerical modelling now allow scientists to test how new geophysical observations, e.g. from ocean drilling projects and laboratory analyses, influence subduction zone processes over a range of temporal and spatial scales (i.e., geodynamic, seismic cycling, earthquake rupture, wave propagation modelling).

In light of these advances, this session has a twofold mission: i) to integrate recent results from different fields to foster a comprehensive understanding of the key parameters controlling the physics of large subduction earthquakes over a range of spatial and temporal scales; ii) to individuate how the tsunami hazard analysis can benefit from using a multi-disciplinary approach.

We invite abstracts that enhance interdisciplinary collaboration and integrate observations, rock physics experiments, analog- and numerical modeling, and tsunami hazard.

Share:
Co-organized as NH4.10/TS5.7
Convener: Fabrizio Romano | Co-conveners: Elena Spagnuolo, Antonio Scala, Paola Vannucchi, Fabio Corbi, Dietrich Lange, Elizabeth H. Madden, Iris van Zelst
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room -2.21
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X2
SM2.5

The mechanics of earthquakes is controlled by a spectrum of processes covering a wide range of length scales, from tens of kilometres down to few nanometres. For instance, while the geometry of the fault/fracture network and its physical properties control the global stress distribution and the propagation/arrest of the seismic rupture, earthquake nucleation and fault weakening is governed by frictional processes occurring within extremely localized sub-planar slipping zones. The co-seismic rheology of the slipping zones themselves depends on deformation mechanisms and dissipative processes active at the scale of the grain or asperity. If this is the case of shallow earthquakes, the nucleation of intermediate and deep earthquakes remains enigmatic since it occurs at elevated ambient pressure-temperature conditions which should favour plastic deformation and suppress frictional processes. Though, recent studies on fault rocks of Earth’s lower crust and upper mantle reveal microstructures comparable to those associated with co-seismic slip and off-fault damage in brittle rocks. The study of such complex multiscale systems requires an interdisciplinary approach spanning from structural geology to seismology, geophysics, petrology, rupture modelling and experimental rock deformation. In this session we aim to convene contributions dealing with different aspects of earthquake mechanics at various depths and scales such as:
· the thermo-hydro-mechanical processes associated to co-seismic fault weakening based on rock deformation experiments, numerical simulations and microstructural studies of fault rocks;

· the study of natural and experimental fault rocks to investigate the nucleation mechanisms of intermediate and deep earthquakes in comparison to their shallow counterparts;

· the elastic, frictional and transport properties of fault rocks from the field (geophysical and hydrogeological data) to the laboratory scale (petrophysical and rock deformation studies);

· the internal architecture of seismogenic fault zones from field structural survey and geophysical investigations (e.g. seismic, electric and electromagnetic methods);

· the modeling of earthquake ruptures, off-fault dynamic stress fields and long-term mechanical evolution of realistic fault networks;

· the earthquake source energy budget and partitioning between fracture, friction and elastic wave radiation from seismological, theoretical and field observations.

· the interplay between fault geometry and earthquake rupture characteristics (e.g. coseismic slip and rupture velocity distribution) from seismological, geodetic, remote sensed or field observations;

We particularly welcome novel observations or innovative approaches to the study of earthquake faulting. Contributions from early career scientists are solicited.

Solicited oral presentation: Matthew Tarling (University of Otago)

Share:
Co-organized as EMRP1.20/TS5.8
Convener: Sarah Incel | Co-conveners: Stefano Aretusini, Matteo Demurtas, Michele Fondriest, Francois Passelegue
Orals
| Mon, 08 Apr, 10:45–12:30
 
Room -2.21
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2
GD5.2

Many new high quality and high resolution geophysical and geological data had been acquired in the past years that need to be updated, re-analysed and re-interpreted in the light of our present knowledge in subductions processes. Moreover it is needed to better clarify the temporal and spatial evolution of those processes in order to much precise our geodynamic ideas of mountain building, subduction, transition of collision to subduction, or transition of subduction to collision.
Among other global places, the zone from Japan, Taiwan to the Philippines is a key area to study such subduction/collision transition due to the rapid convergence between Eurasian and Philippine Sea plates. There are geodynamic inversion of the east dipping Manila oceanic subduction, that evolves northward, first, into a Continental Subduction (also called Collision) onshore Taiwan, then secondly, east of Taiwan, into the north dipping Ryukyu arc/continent subduction. Due to the so rapid Plates shortening rate (10cm.y-1), those active Oceanic to Continental Subductions processes in Taiwan creates 1/8 of the annual seismicity in the World !
There are other places in the World active or not, that should also be taken into careful consideration in order to reveal and lead us to better understand new tectonic processes (e.g.: Alpes, Pyrénées, Cascades and so on).
To conclude in this EGU session, we aim to update the existing geodynamic state of the art of the oceanic to continental subductions processes after so numerous data that had been collected recently and all the works that had been done on this subject. Therefore this EGU Session should help us to much better understand the tectonics related to plate, plate collision and the transition between the subduction and collision.

Share:
Co-organized as GI2.11/NH4.15/SM2.6
Convener: Benoit Deffontaines | Co-conveners: Ho-Han Hsu, Shu-Kun Hsu
Posters
| Attendance Mon, 08 Apr, 08:30–10:15
 
Hall X2
GD2.3

Knowledge of the lithosphere-asthenosphere system and its dynamics is one of the key questions for understanding geological processes. Constraints on the style, mechanism, and pattern of deformation in the crust and upper mantle come from direct and indirect observations using a variety of methods. Seismological studies focusing on anisotropy have successfully improved our knowledge of deformation patterns, and when combined with tomographic models, anisotropy can shed light on the geometry of deformation in the lithosphere and asthenosphere. Sophisticated geodynamic modeling (numerical and physical analogue) and laboratory (rock physics) experiments enhance our understanding of flow patterns in the Earth’s upper mantle and their bearing on vertical motions of crust and lithosphere. Combined with seismic anisotropy data these methods have the potential to reveal the mechanisms that create deformation-induced features such as shape preferred orientation (SPO) and lattice-preferred orientation (LPO). Structural and kinematic characterization of deformation events by geometric and kinematic analyses infer the direction and magnitude of the tectonic forces involved in driving deformation within crust and upper mantle. Additionally, physical analogue and numerical modeling studies have fostered our understanding of complex 3D-plate interaction on various time-scales, regulated through the degree of plate coupling and the rheology of the lithosphere.

However, more work is required to better integrate the various experimental and modelling techniques and to link them to multi-scale observations. This session will bring together different disciplines that focus on the deformation of the lithosphere and upper mantle as well as on the dynamics and nature of the lithosphere-asthenosphere system. The main goal is to demonstrate the potential of different methods, and to share ideas of how we can collaboratively study lithospheric deformation, and how it relates to the ongoing dynamics within the asthenospheric mantle. Contributions are sought from studies employing seismic observation, geodynamical modeling (analogue and numerical), structural geology, and mineral and rock physics.

Invited Speakers:
Greg Houseman (Institute of Geophysics and Tectonics, University of Leeds)
Agnes Kiraly (Department of Geosciences, University of Oslo)

Share:
Co-organized as SM2.7/TS9.8
Convener: Ehsan Qorbani Chegeni | Co-conveners: Irene Bianchi, Boris Kaus, Ernst Willingshofer
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room -2.21
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X2
TS2.2

The advent of novel technologies have boosted our capability of acquiring new evidences that faults behavior is various and extremely sensitive to a large number of parameters. These evidences are supported in natural earthquakes by the occurence of a large pletora of events spanning from slow to fast earthquakes, precursory slips, non volcanic tremors and low frequency earthquakes. The aim of this session is to convey interdisciplinary studies on fault behaviour and processes controlling the propagation of slip instabilities in rocks, granular materials and/or laboratory analogs; we invite contributions at the frontiers between Rock Mechanics, Models, Seismology, Tectonics and Mineralogy dealing with either slow, fast or transient evolution of earthquakes and earthquake sequences in shallow and deep environments; we welcome studies performed at the laboratory and field scale, providing insights on earthquake evolution and/or constraining observed seismological statistical laws like Omori’s and Gutenberg-Richter’s; we welcome innovative techniques that help the observations and take advantage of high-speed imaging and continuous acoustic emission streaming data.

Share:
Co-organized as EMRP1.9/GMPV7.25/SM2.9
Convener: Marco Maria Scuderi | Co-conveners: Giulio Di Toro, Pierre Dublanchet, Francois Passelegue, Elena Spagnuolo
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room K2
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X2
TS5.4

Earthquakes that occur within regions of slow lithospheric deformation (low-strain regions) are inherently difficult to study. The long interval between earthquakes, coupled with natural and anthropogenic modification, limit preservation of paleoearthquakes in the landscape. Low deformation rates push the limits of modern geodetic observation techniques. The short instrumental record challenges extrapolation of small earthquake recurrence based on modern seismological measurement to characterize the probability of larger, more damaging earthquakes. Characterizing the earthquake cycle in low-strain settings is further compounded by temporal clustering of earthquakes, punctuated by long periods of quiescence (e.g. non-steady recurrence intervals). However, earthquakes in slowly deforming regions can reach high magnitudes and pose significant risk to populations.

This session seeks to integrate paleoseismic, geomorphic, geodetic, geophysical, and seismologic datasets to provide a comprehensive understanding of the earthquake cycle in low-strain regions. This session will draw upon recent advances in high-resolution topography, geochronology, satellite geodesy techniques, subsurface imaging techniques, longer seismological records, high-density geophysical networks and unprecedented computational power to explore the driving mechanisms for earthquakes in low-strain settings. We welcome contributions that (1) present new observations that place constraints on earthquake occurrence in low-strain regions, (2) explore patterns of stable or temporally varying earthquake recurrence, and (3) provide insight into the mechanisms that control earthquakes in regions of slow deformation via observation and/or modeling.

Share:
Co-organized as NH4.18/SM2.10
Convener: Ryan Gold | Co-conveners: Pierre Arroucau, Sierd Cloetingh, Susana Custódio, Gordana Vlahovic
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room K2
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2

SM3 – Seismic Hazard Assessment (earthquake forecasting, ground-motion modelling, seismic and/or multihazard probabilistic assessment)

SM3.1

Recent catastrophic earthquakes have highlighted the importance of advancing seismic hazard models over a wide range of time frames, for example to support more reliable building codes and to track the short-term evolution of seismic sequences. Over the past years, the exponential growth of ground-motion data, short- and long-term forecasting models, hazard model test results, new engineering needs, and progress in research on earthquake predictability and ground-motion processes are creating a strong motivation for the exploration and incorporation of new concepts and methods into the next generation of probabilistic forecasts, both for long-term probabilistic seismic hazard assessment (PSHA), and operational earthquake forecasting. Owing to the important societal impact, any forecasting model has to be scientifically reliable. Prospective modeling is the best way of testing alternate hypotheses and models, and hence advancing our scientific understanding of the processes involved. Pragmatically, prospective testing provides an essential scientific contribution to improving the capacity to manage seismic hazard and risk in a wide range of forecasting time windows, for a broad range of stakeholders, including vulnerable societies. The development of such new and innovative long- and short-term forecasting/hazard models is a necessary but insufficient step: major advances in forecasting and hazard assessment require a solid testing phase that allows for model evaluation and quantifies any increase in forecasting skill over a benchmark model. 

We solicit contributions related to new developments in all aspects of long- and short-term seismic hazard and earthquake forecasting models:
   • Definition of earthquake sources and determination of activity rates and their uncertainty, including assessment of earthquake datasets, calibration of magnitude scales, representation of seismogenic sources and their geological constraints, and the emerging roles of strain and simulation-based earthquake-rupture forecasts.
   • Development of innovative earthquake forecasting models with forecast horizons of days to decades.
   • Estimation of strong ground motions and their uncertainty, development of new ground-motion models, assessment of site effects, the consideration of new parameters to characterize the intensity of shaking, and potential insights and uses of physics-based simulations of ground shaking. 
   • Testing and evaluation of hazard and earthquake forecasting models including statistical tests of 
activity rates, earthquake occurrence, calibration of ground-motion models, hazard-model parameterization and implementation, sensitivity analyses of key parameters and results, as well as the development of innovative testing procedures.
   • Case studies of PSHA from Europe and around the globe. 
   • Model building processes and related uncertainties, formal elicitation of expert opinion and its consequences for the levels of knowledge or belief, and comprehensive treatment of aleatory and epistemic uncertainties.
   • Contributions related to the ongoing update of the Harmonized European Seismic Hazard model and the emerging EPOS infrastructure on hazard and risk.
.

Share:
Co-organized as NH4.11
Convener: Danijel Schorlemmer | Co-conveners: Fabrice Cotton, Warner Marzocchi, Maximilian Werner, Stefan Wiemer
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room D1
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X2
NH4.2 Media

Earthquakes occur with great spatio-temporal variability, which emerges from the complex interactions between them. Significant progress is being made towards understanding spatio-temporal correlations, scaling laws and clustering, and the emergence of seismicity patterns. New models being developed in statistical seismology have direct implications for time-dependent seismic hazard assessment and probabilistic earthquake forecasting. In addition, the increasing amount of earthquake data available on local to global scales provides new opportunities for model testing.


This session focuses both on recent insights on the physical processes responsible for the distribution of earthquakes in space and time, and on new models and techniques for quantifying the seismotectonic process and its evolution. Particular emphasis will be placed on:
- physical and statistical models of earthquake occurrence;
- analysis of earthquake clustering;
- spatio-temporal properties of earthquake statistics;
- quantitative testing of earthquake occurrence models;
- implications for time-dependent hazard assessment;
- methods for earthquake forecasting;
- data analyses and requirements for model testing.

Confirmed solicited speaker: Danijel Schorlemmer (GFZ - German Research Center for Geosciences, Potsdam, Germany)

Share:
Co-organized as SM3.4
Convener: Stefania Gentili | Co-conveners: Rita Di Giovambattista, Álvaro González
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room M1
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X3
NH4.4

Our capability to provide timely and reliable seismic risk estimates is an essential element towards building a resilient society, through informed decision for risk management. The scientific base of the process of seismic risk mitigation includes various seismic hazard models, developed at different time scales and by different methods, as well as the use of information as complete and reliable as possible about past seismicity.
Some recent large earthquakes caused extensive damage in areas where some models indicated low seismic hazard, leading to an increased demand for criteria to objectively assess how well seismic hazard models are performing. This session aims to tackle theoretical and implementation issues, which are essential for the development of effective mitigation strategies and include:
⇒ methods for comparison of seismic hazard models and their performance evaluation;
⇒ hazard and risk assessment of extreme seismic events;
⇒ long-term evidences about past great earthquakes (including unconventional seismological observations, such as impact on caves, ancient constructions and other deformations evidences);
⇒ earthquake hazard assessment in terms of macro-seismic intensity;
⇒ seismic risk estimation at different time and space scale.
In particular, the session will address concepts, problems, and approaches in assessing hazard related to the earthquakes that “may cause loss of life, injury or other health impacts, property damage, loss of livelihoods and services, social and economic disruption, or environmental damage” (according to UNISDR terminology). The session will include discussions of the pros and cons of deterministic, neo-deterministic, probabilistic, and intensity-based seismic hazard assessments. The latter is of special importance for Europe because of the available large historical information on macro-seismic intensities.
We invite contributions related to: hazard and risk assessment methods and their performance in applications; critical observations and constraints for seismic hazard assessment; verification methods that are suitable to quantify seismic hazard estimates and that can be applied to limited and/or heterogeneous observations (ranging from recent records of ground shaking parameters to past intensity data); seismic hazard and risk monitoring and modeling; and risk communication and mitigation.
The session will provide an opportunity to discuss best practices and share experience gained with different testing methods, including their application in different fields. We hope to highlight both the existing gaps and future research directions that could strengthen the procedures for testing and comparing performance of seismic hazard models.

Share:
Co-organized as SM3.5
Convener: Antonella Peresan | Co-conveners: Katalin Gribovszki, Vladimir Kossobokov, Elisa Varini, Mihaela Kouteva
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room M1
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X3
NH9.11 ECS

In recent years an increasing number of research projects focused on natural hazards (NH) and climate change impacts, providing a variety of information to end user or to scientists working on related topics.

The session aims at promoting new and innovative studies, experiences and models to improve risk management and communication about natural hazards to different end users.

End users such as decision and policy makers or the general public, need information to be easy and quickly interpretable, properly contextualized, and therefore specifically tailored to their needs. On the other hand, scientists coming from different disciplines related to natural hazards and climate change (e.g., economists, sociologists), need more complete dataset to be integrated in their analysis. By facilitating data access and evaluation, as well as promoting open access to create a level playing field for non-funded scientists, data can be more readily used for scientific discovery and societal benefits. However, the new scientific advancements are not only represented by big/comprehensive dataset, geo-information and earth-observation architectures and services or new IT communication technologies (location-based tools, games, virtual and augmented reality technologies, and so on), but also by methods in order to communicate risk uncertainty as well as associated spatio-temporal dynamic and involve stakeholders in risk management processes.

However, data and approaches are often fragmented across literature and among geospatial/natural hazard communities, with an evident lack of coherence. Furthermore, there is not a unique approach of communicating information to the different audiences. Rather, several interdisciplinary techniques and efforts can be applied in order to simplify access, evaluation, and exploration to data.

This session encourages critical reflection on natural risk mitigation and communication practices and provides an opportunity for geoscience communicators to share best methods and tools in this field. Contributions – especially from Early Career Scientists – are solicited that address these issues, and which have a clear objective and research methodology. Case studies, and other experiences are also welcome as long as they are rigorously presented and evaluated.

New and innovative abstract contributions are particularly welcomed and their authors will be invited to submit the full paper on a special issue on an related-topics Journal.

In cooperation with NhET (Natural hazard Early career scientists Team).

Share:
Co-organized as ESSI1.8/GI1.11/GMPV6.3/HS11.44/SM3.7/SSS13.19
Convener: Raffaele Albano | Co-conveners: Valeria Cigala, Jonathan Rizzi
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room L1
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X3
NH4.3

From the real-time integration of multi-parametric observations is expected the major contribution to the development of operational t-DASH systems suitable for supporting decision makers with continuously updated seismic hazard scenarios. A very preliminary step in this direction is the identification of those parameters (seismological, chemical, physical, biological, etc.) whose space-time dynamics and/or anomalous variability can be, to some extent, associated with the complex process of preparation of major earthquakes.
This session wants then to encourage studies devoted to demonstrate the added value of the introduction of specific, observations and/or data analysis methods within the t-DASH and StEF perspectives. Therefore studies based on long-term data analyses, including different conditions of seismic activity, are particularly encouraged. Similarly welcome will be the presentation of infrastructures devoted to maintain and further develop our present observational capabilities of earthquake related phenomena also contributing in this way to build a global multi-parametric Earthquakes Observing System (EQuOS) to complement the existing GEOSS initiative.
To this aim this session is not addressed just to seismology and natural hazards scientists but also to geologist, atmospheric sciences and electromagnetism researchers, whose collaboration is particular important for fully understand mechanisms of earthquake preparation and their possible relation with other measurable quantities. For this reason all contributions devoted to the description of genetic models of earthquake’s precursory phenomena are equally welcome. Every 2 years selected papers presented in thsi session will be proposed for publication in a dedicated Special Issue of an international (ISI) scientific journal.

Share:
Co-organized as AS4.62/EMRP2.40/ESSI1.7/GI2.13/SM3.9, co-sponsored by JpGU
Convener: Valerio Tramutoli | Co-conveners: Mariano Lisi, Pier Francesco Biagi, Katsumi Hattori, Filippos Vallianatos
Orals
| Wed, 10 Apr, 08:30–12:30, 14:00–15:45
 
Room M2
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X3
TS5.1

The study of active faults and deformation of the Earth's surface has made, and continues to make, significant contributions to our understanding of earthquakes and the assessment of seismic related hazard.
Active faulting may form and deform the Earth's surface so that records are documented in young sediments and in the landscape. Field studies of recent earthquake ruptures help not only constraining earthquake source parameters but also the identification of previously unknown active structures. The insights gleaned from recent earthquakes can be applied to study past earthquakes. Paleoseismology and related disciplines such as paleogeodesy and paleotsunami investigations still are the primary tools to establish earthquake records that are long enough to determine recurrence intervals and long-term deformation rates for active faults. Multidisciplinary data sets accumulated over the years have brought unprecedented constraints on the size and timing of past earthquakes, and allow deciphering shorter-term variations in fault slip rates or seismic activity rates, as well as the interaction of single faults within fault systems. Based on the this rich, but very heterogeneous knowledge of seismogenic faults, a variety of approaches have been developed to tranfer earthquake-fault geology into fault models suitable for probabilistic SHA. This session thus aims at linking field geologists, crustal deformation modellers, fault modellers, and seismic hazard practitioners.

In this session, we welcome contributions describing and critically discussing different approaches to study active faults. We are particularly interested in studies applying new and innovative methodological or multidisciplinary approaches. We hope to assemble a broad program bringing together studies dealing with on-land, lake or offshore environments, and applying a variety of methods such as traditional paleoseismic trenching, high-resolution coring, geophysical imaging, tectonic geomorphology, and remote sensing, as well as the application of earthquake geology in seismic hazard assessments. In addition, we encourage contributors describing how to translate fault data or catalogue data into fault models for SHA , and how to account for faults or catalogue issues.

Share:
Co-organized as GM4.5/NH4.16/SM3.10
Convener: Esther Hintersberger | Co-conveners: Romain Le Roux-Mallouf, Silke Mechernich, Oona Scotti
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room K2
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X2
NH5.1 Media

Tsunamis can produce catastrophic damage on vulnerable coastlines, essentially following major earthquakes, landslides or atmospheric disturbances. After the disastrous tsunamis in 2004 and 2011, tsunami science has grown significantly, opening new fields of research for various domains, and also in regions where the tsunami hazard was previously underestimated.
Numerical modeling, complemented with laboratory experiments, are essential to quantify the tsunami hazard based. To this end, it is essential to rely on complete databases of past tsunami observations, including both historical events and results of paleotsunami investigations. Furthermore, a robust hazard analysis has to take into account uncertainties and probabilities with the more advanced approaches such as PTHA.
Because the vulnerability of populations, of infrastructures and of the built environment in coastal zones increases, integrated plans for tsunami risk prevention and mitigation should be encouraged in any exposed coastline, consistent with the procedures now in place in a growing number of Tsunami Warning System.
The NH5.1/OS2.22/SM3.11 Tsunami session welcomes contributions covering any of the aspects mentioned here, encompassing field data, regional hazard studies, observation databases, numerical modeling, risk studies, real time networks, operational tools and procedures towards a most efficient warning.
A focus on recent tsunami events all over the globe is encouraged (including Palu 28 September, Zakynthos 26 October, Tadine, New Caledonia, 5 December), as well as on the achievements of recent research projects.

Share:
Co-organized as OS2.22/SM3.11
Convener: Hélène Hébert | Co-conveners: Alberto Armigliato, Miquel Canals, Ira Didenkulova, Finn Løvholt
Orals
| Thu, 11 Apr, 08:30–12:30, 14:00–18:00
 
Room 1.61
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X3

SM4 – Seismic Imaging Across Scales (from near-surface to global scale, incl. methodological developments)

SM4.1

Seismic tomography is a powerful tool for imaging the Earth’s interior and inferring its structure, composition, dynamics and evolution. Over the last decades, our images have sharpened, thanks to the growth of global and dense regional networks (on land and in the oceans), the extraction of new observables, advances in modelling techniques and increased computational power. We are now not only resolving unprecedented details on local and regional scales, but also moving towards whole-Earth tomography, including the inner core.

We welcome contributions on methods and applications of seismic tomography from the crust to the core and at scales from local to regional to global, including studies of new observables, developments in forward modelling and inversion techniques, innovative approaches to uncertainty quantification, and seismological and interdisciplinary efforts aimed at obtaining new insights into Earth's dynamics and evolution. While we welcome all studies aimed at constraining Earth structure, we particularly invite contributions that utilise passive sources.

Share:
Co-organized as GD3.7
Convener: Sergei Lebedev | Co-conveners: Ana MG Ferreira, Kasra Hosseini, Paula Koelemeijer
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room -2.21
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X2
SM4.2

This session will cover applied and theoretical aspects of geophysical imaging, modelling and inversion using both active- and passive-source seismic measurements as well as other geophysical techniques (e.g., gravimetry, magnetic and electromagnetic) to investigate the Earth’s crust and uppermost mantle. We invite contributions focused on methodological developments, theoretical aspects, and applications. Studies across the scales and disciplines are particularly welcome.

Among others, the session may cover the following topics:
- Active- and passive-source imaging using body- and surface-waves;
- Full waveform inversion developments and applications;
- Advancements and case studies in 2D and 3D active-source imaging;
- Interferometry and Marchenko imaging;
- Seismic attenuation and anisotropy;
- Developments and applications of multi-scale and multi-parameter inversion;
- Joint inversion of seismic and complementary geophysical data;
- Applications of new acquisition systems.

Share:
Co-organized as EMRP2.62/GD2.7
Convener: Cedric Schmelzbach | Co-conveners: Matthew Agius, Stefan Buske, Michal Malinowski, Milena Marjanovic
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room D3
Posters
| Attendance Fri, 12 Apr, 16:15–18:00
 
Hall X2
SM4.4

Geophysical imaging techniques such as seismic, (complex) electrical resistivity, electromagnetic, and ground-penetrating radar methods are widely used to characterize structures and processes in the shallow subsurface. Advances in experimental design, instrumentation, data acquisition, data processing, numerical modeling, and inversion constantly push the limits of spatial and temporal resolution. Despite these advances, the interpretation of geophysical images often remains ambiguous. Persistent challenges addressed in this session include optimal data acquisition strategies, (automated) data processing and error quantification, appropriate spatial and temporal regularization of model parameters, integration of prior information and non-geophysical measurements into the imaging process, joint inversion, Bayesian inference, as well as the quantitative interpretation of tomograms through suitable petrophysical relations.

In light of these topics, we invite submissions concerning a broad spectrum of near-surface geophysical imaging methods and applications at different spatial and temporal scales. Novel developments in the combination of complementary measurement methods and process-monitoring applications are particularly welcome.

Invited speaker: Frederick D. Day-Lewis (U.S. Geological Survey)

Share:
Convener: Florian Wagner | Co-conveners: Frédéric Nguyen, Anja Klotzsche, James Irving, Andreas Kemna
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room -2.21
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X2
SM4.5

The aims of the session are (1) to discuss methodological and instrumental advances in geophysical imaging of volcanoes and (2) to explore new knowledge provided by these studies on the internal structure and physical processes of volcanic systems. We invite contributors from all geophysical areas, such as seismology, electromagnetics/geoelectrics, gravimetry/magnetics, muon tomography, remote sensing, and other geophysical observations applied to volcanic systems ranging from near-surface hydrothermal activity to magmatic processes at depth.

This year's session is focused on the contribution of geophysical imaging to better understand volcanological processes. We particularly welcome studies where complementary imaging techniques, as well as multi-disciplinary datasets, are integrated to investigate subsurface hydrothermal and magmatic processes.

Share:
Co-organized as GD6.13/GMPV5.19
Convener: Ivan Koulakov | Co-conveners: Luca De Siena, Volker Rath, Marina Rosas-Carbajal
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room -2.91
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X2
SM4.6

The past few years have seen an increase in the application of machine learning methods for seismic data analysis. This is due to the increased adoption and visibility of freely available and easy-to-use machine learning toolkits, faster computation, reduced cost of data storage, and the very large sets of continuous geophysical and laboratory experimental data. The combination of these factors means that now is the time to consider machine learning as one of the key strategies modeling tools in both improving routine data processing and for better understanding the underlying geophysical processes.

Already, significant progress has been made in seismic waveform detection and classification of seismic waves for automatic onset picking. Such advances are allowing us to vastly speed up and improve the accuracy of previously laborious processing flows. In other notable recent applications, waveforms and ground motions, from both laboratory and natural datasets, are being used to understand the precursory physics of sudden- and slow-slip and to predict aftershock locations within supervised learning frameworks.

In this session, we will see machine learning focussed presentations covering topics such as seismic waveform processing, earthquake cataloging, earthquake classification, and earthquake cycle behavior from numerical and laboratory experiments.

In particular we would like to highlight invited talks from
Beroza et al.: Earthquake Monitoring with Deep Learning
Hulbert et al.: Probing Fault Physics Applying Machine Learning
De Hoop et al.: Unsupervised learning for identification of seismic signals
and
Kriegerowski et al.: Deep learning for localizing and detecting earthquake swarm activity based on full waveforms: Chances, challenges and questions

Share:
Convener: Léonard Seydoux | Co-conveners: Jonathan Bedford, Fabio Corbi, Jens Dittrich, Piero Poli
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room -2.91
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X2
GD3.6

Many mantle structures have recently been observed by seismologists including the lithosphere-asthenosphere boundary (LAB), a possible transition near ~1000 km depth, small scale heterogeneities in the transition zone and in the lowermost mantle (ULVZ, D"), plumes, stagnating slabs, mantle anisotropy... However their origin is still unclear and geodynamical modelling can help propose plausible scenarios. Furthermore, geodynamic models and tomographic images often investigate different physical parameters, and propose views of the mantle at separate scales. Combining information from both fields is therefore necessary to understand and link mantle processes across scales. We encourage every contribution that can feed the dialogue between seismologists and geodynamicists.

Sollicited speakers: Harriet C.P Lau (Harvard University), Manuele Faccenda (University of Padova)

Share:
Co-organized as SM4.8
Convener: Thomas Bodin | Co-conveners: Stephanie Durand, Bernhard Schuberth, Benoit Tauzin, Martina Ulvrova
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room -2.21
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X2
GD3.1

Dynamic processes shape the Earth and other planets throughout their history. Processes and lifetimes of magma oceans establish the initial conditions on the development of rocky planets and their early atmospheres. The dynamics of the mantle, the composition and mineral physics shape the present-day observable structure of the Earth's mantle and planetary bodies visible through seismic observations.
This session aims to provide a multidisciplinary view on the processes and structures of the Earth and planets. We welcome contributions that address the structure, dynamics, composition and evolution of their mantle, and their interactions with the outer layers, on temporal scales ranging from the present day to billions of years, and on spatial scales ranging from microscopic mineralogical samples, kilometer-size seismic structures to global planetary models.

Share:
Co-organized as PS1.11/SM4.9
Convener: Paul Tackley | Co-conveners: Christine Thomas, Sébastien Merkel, Stephanie C. Werner
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room D1
GD3.2 | PICO

Dynamic processes shape the Earth and other planets throughout their history. Processes and lifetimes of magma oceans establish the initial conditions on the development of rocky planets and their early atmospheres. The dynamics of the mantle, the composition and mineral physics shape the present-day observable structure of the Earth's mantle and planetary bodies visible through seismic observations.
This session aims to provide a multidisciplinary view on the processes and structures of the Earth and planets. We welcome contributions that address the structure, dynamics, composition and evolution of their mantle, and their interactions with the outer layers, on temporal scales ranging from the present day to billions of years, and on spatial scales ranging from microscopic mineralogical samples, kilometer-size seismic structures to global planetary models.

Share:
Co-organized as PS1.12/SM4.10
Convener: Christine Thomas | Co-conveners: Sébastien Merkel, Paul Tackley, Stephanie C. Werner
PICOs
| Fri, 12 Apr, 14:00–15:45
 
PICO spot 3
G3.4

The processes of the Earth deformation can be revealed by means of diverse methods of investigations. The seasonal distribution of surface loading, the earthquake cycle, volcanic processes (eruptions, dike intrusions, induced seismic activity), near surface motions (landslides, induced and natural superficial subsidence/collapse).
Recently, major earthquakes in Sumatra (2004, Mw 9.2), Maule (2010, Mw 8.8), Haiti (2010, Mw 7.1) and Tohoku (2011, Mw 9.0) have exposed the impact of such events and the need for better understanding of Earth deformation processes. These events illustrate the geodynamic complexities that include subduction zones and giant earthquakes, continental faults and depth versus surface deformation, the seismic cycle and seismotectonics of active zones, magmatism processes and crustal deformation. The observation techniques, methods and data analysis need the Earth observation systems and reference frames that include remote sensing and surface and satellite gravity observations
This session is conducted in the frame of the WEGENER consortium*) and we seek submissions that emphasize multidisciplinary studies of Earth deformation using geodetic techniques (GPS, InSAR, LiDAR, space/air/terrestrial gravity, ground-based geodetic observations), complementary tectonic and geophysical observations, and modeling approaches focusing on the European-Mediterranean and Northern African regions. We also welcome contributions discussing the realization and outcomes of Supersites in the frame of the GEO initiative, as well as fundamental studies of natural and induced physical phenomena, strategies to develop early warning and rapid response systems.
*) The World Earthquake GEodesy Network for Environmental Hazard Research (Sub-commission 3.5 of IAG commission 3, namely Tectonics and Earthquake Geodesy)

Share:
Co-organized as GD2.8/SM4.11
Convener: Haluk Ozener | Co-conveners: Matthias Becker, Sara Bruni, Susanna Zerbini
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room -2.32
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X3
GD3.4

Mantle upwellings are an important component of the Earth’s convective system that can cause volcanism and anomalies in surface topography. Upwellings can rise from thermal boundary layers as hot “mantle plumes”. Alternatively, they can be the response to upper-mantle convective flow, subduction, or rifting. Clearly, different mechanisms sustain mantle upwellings of various temperature, vigour and composition, causing characteristic signals that can potentially be imaged using geophysical data, as well as expressed in the geochemistry and petrology of related magmatism.

This session invites contributions that focus on mantle upwellings from geophysics, geochemistry, and modelling perspectives. Our aim is to bring together constraints from multiple disciplines to understand the origin and dynamics of mantle upwellings, as well as their potential to trigger mantle melting, create volcanism, generate ore deposits, and build dynamic topography.

Share:
Co-organized as GMPV2.8/PS1.13/SM4.12/TS9.4
Convener: Maxim Ballmer | Co-conveners: Maria Tsekhmistrenko, Catherine Chauvel, Sebastien Pilet, Catherine A. Rychert, Karin Sigloch, Bernhard Steinberger, Vincent Strak
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room -2.32
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2
GD5.1 Media

Subduction drives plate tectonics, generates the major proportion of subaerial volcanism, forms continents, and entrains surface material back to the deep Earth. Therefore, it is arguably the most important geodynamical phenomenon on Earth and the major driver of global geochemical cycles. Seismological data show a fascinating range in shapes of subducting slabs. Arc volcanism illustrates the complexity of geochemical and petrological phenomena associated with subduction. Surface topography provides insight in the orogenic processes related to subduction and continental collision.

Numerical and laboratory modelling studies have successfully built our understanding of many aspects of the geodynamics of subduction zones. Detailed geochemical studies, investigating compositional variation within and between volcanic arcs, provide further insights into systematic chemical processes at the slab surface and within the mantle wedge, providing constraints on thermal structures and material transport within subduction zones. However, with different technical and methodological approaches, model set-ups, inputs and material properties, and in some cases conflicting conclusions between chemical and physical models, a consistent picture of the controlling parameters of subduction-zone processes has so far not emerged.

This session aims to follow subducting lithosphere on its journey from the surface down into the Earth's mantle, and to understand the driving processes for deformation and magmatism in the over-riding plate. We aim to address topics such as: subduction initiation and dynamics; changes in mineral breakdown processes at the slab surface; the formation and migration of fluids and melts at the slab surface; primary melt generation in the wedge; subduction-related magmatism; controls on the position and width of the volcanic arc; subduction-induced seismicity; mantle wedge processes; the fate of subducted crust, sediments and volatiles; the importance of subducting seamounts, LIPs, and ridges; links between near-surface processes and slab dynamics and with regional tectonic evolution; slab delamination and break-off; the effect of subduction on mantle flow; and imaging subduction zone processes.

With this session, we aim to form an integrated picture of the subduction process, and invite contributions from a wide range of disciplines, such as geodynamics, modelling, geochemistry, petrology, volcanology and seismology, to discuss subduction zone dynamics at all scales from the surface to the lower mantle, or in applications to natural laboratories.

Share:
Co-organized as GMPV2.5/SM4.14/TS9.15
Convener: Valentina Magni | Co-conveners: Taras Gerya, Oğuz H Göğüş, Wim Spakman
Orals
| Mon, 08 Apr, 10:45–12:30, 14:00–18:00
 
Room D1
Posters
| Attendance Mon, 08 Apr, 08:30–10:15
 
Hall X2
GD5.4

The lithosphere, the outermost shell of the Earth, constitutes the upper thermal boundary layer of mantle convection. It is well established that its properties play a central role in the development of solid Earth dynamics. Through its properties the lithosphere also provides a primary source of thermal and chemical anomalies for mantle convection when it is injected in the mantle as subducting slabs. Here, the subduction of cold and dense oceanic lithosphere into the underlying mantle acts as the major driving force of plate motion, and as a key component of the water and carbon cycles throughout the Earth. At the global scale, some of these lithosphere heterogeneities include rheological stratifications, sutures, fracture zones, and lateral and vertical variations in temperature and composition. These exist at various scales and play a major role in determining subduction dynamics and the degree of lithosphere-mantle decoupling. Deciphering the interaction of the lithosphere with the underlying asthenosphere and deeper mantle is critical to understanding the secular evolution of the Earth system and to reconcile models with natural observations. This session aims to highlight recent advances in constraining the scales and amplitudes of heterogeneities in the lithosphere as well as their dynamic role. We welcome multidisciplinary contributions. Some key areas of interest are lithospheric structure and morphology, subduction kinematics and dynamics, slab-mantle interaction and slab deformation, active margin tectonics and subduction-induced seismicity.

Share:
Co-organized as SM4.15/TS9.12
Convener: Roberta Carluccio | Co-conveners: Fabio Capitanio, Lorenzo Colli, Nathan Simmons
Posters
| Attendance Mon, 08 Apr, 08:30–10:15
 
Hall X2
GD2.4

We invite, in particular multidisciplinary, contributions which focus on the structure and evolution of the continental crust and upper mantle and on the nature of mantle discontinuities. The latter include, but are not limited to, the mid-lithosphere discontinuity (MLD), the lithosphere-asthenosphere boundary (LAB), and the mantle transition zone, as imaged by various seismological techniques and interpreted within interdisciplinary approaches. Papers with focus on the structure of the crust and the nature of the Moho are also welcome. Methodologically, the contributions will include studies based on seismic, thermal, gravity, petrological, and/or electro-magnetic data interpretations.
Confirmed invited speaker: Arwen Deuss on Upper Mantle Doscontinuities

Share:
Co-organized as SM4.16
Convener: Alexey Shulgin | Co-conveners: Hans Thybo, Lev Vinnik
Orals
| Wed, 10 Apr, 14:00–15:45
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X2
GD7.2

Many regions of the Earth, from crust to core, exhibit anisotropic fabrics which can reveal much about geodynamic processes in the subsurface. These fabrics can exist at a variety of scales, from crystallographic orientations to regional structure alignments. In the past few decades, a tremendous body of multidisciplinary research has been dedicated to characterizing anisotropy in the solid Earth and understanding its geodynamical implications. This has included work in fields such as: (1) geophysics, to make in situ observations and construct models of anisotropic properties at a range of depths; (2) mineral physics, to explain the cause of some of these observations; and (3) numerical modelling, to relate the inferred fabrics to regional stress and flow regimes and, thus, geodynamic processes in the Earth. The study of anisotropy in the Solid Earth encompasses topics so diverse that it often appears fragmented according to regions of interest, e.g., the upper or lower crust, oceanic lithosphere, continental lithosphere, cratons, subduction zones, D'', or the inner core. The aim of this session is to bring together scientists working on different aspects of anisotropy to provide a comprehensive overview of the field. We encourage contributions from all disciplines of the earth sciences (including mineral physics, seismology, magnetotellurics, geodynamic modelling) focused on anisotropy at all scales and depths within the Earth.

Share:
Co-organized as EMRP2.19/SM4.18/TS11.8
Convener: Manuele Faccenda | Co-conveners: Sébastien Chevrot, Tuna Eken, Miriam Christina Reiss
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room D1
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall X2
GD4.1 | PICO

Our understanding of Earth's inner and outer core is progressing at a rapid pace thanks to cross-fertilization between a number of observational, theoretical and experimental disciplines.

Improved seismic observations continue to provide better images of the core and prompt refinements in structural and geodynamic models. Mineral physics provides constraints for dynamic, structural, and thermodynamic models. The heat budget of the core, paleomagnetic observations, and models promote the exploration of new dynamo mechanisms. Geomagnetic observations from both ground and satellite, along with magneto-hydrodynamic experiments, provide additional insight to our ever expanding view of Earth's core.

This session welcomes contributions from all disciplines, as well as interdisciplinary efforts, on attempts to proceed towards an integrated, self-consistent picture of core structure, dynamics and history, and to understand its overwhelming complexity.

Share:
Co-organized as EMRP2.7/SM4.22
Convener: Sébastien Merkel | Co-conveners: Andy Biggin, Arwen Deuss, Phil Livermore
PICOs
| Mon, 08 Apr, 10:45–12:30
 
PICO spot 3
TS7.7

The Alpine-Himalayan orogenic belt is one of the largest and most prominent suture zones on Earth. The belt ranges from the Mediterranean in the west to Indonesia in the east. It results from the subduction and closing of different branches of the Tethyan Oceanic Realm and the subsequent collision of the African, Arabian and Indian continental plates with Eurasia. Its long-lasting geological record of complex interactions among major and smaller plates, featuring the presence of subduction zones at different evolutionary stages, has progressively grown as a comprehensive test site to investigate fundamental plate tectonics and geodynamic processes with multi-disciplinary studies. Advances in a variety of geophysical and geological fields provide a rich and growing set of constraints on the crust-lithosphere and mantle structure, as well as tectonics and geodynamic evolution of the entire mountain belt

We welcome contributions presenting new insights and observations derived from different perspectives like geology (stratigraphy, petrology, geochronology, geochemistry, tectonics and geomorphology), geophysics (seismicity, seismic imaging, seismic anisotropy, gravity), geodesy (GPS, InSAR), modelling (numerical and analogue), risk assessment (earthquake, volcanism), as well as from multi-disciplinary studies.

Keynote Presentations:
-Insights into the transitions in the Banda Arc-Australian continental collision from seismic imaging of deep slab structures by Meghan Miller (Australian National University)
-Active tectonics of Iran and the South Caspian: from earthquakes to
mountain-building by Richard Walker(Oxford University)

Share:
Co-organized as GD6.5/SM4.23
Convener: Ágnes Király | Co-conveners: Derya Gürer, Marc Hässig, Claudia Piromallo, Jonas B. Ruh
Orals
| Tue, 09 Apr, 10:45–12:30, 14:00–18:00
 
Room D3
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2

SM5 – Seismic Instrumentation & Infrastructure

SM5.1

The use of fibre technologies for geophysical applications is expanding since few years. The design of highly sensitive sensors, such as rotational seismometers or strainmeters is one approach. In addition, initiatives such as SMART cables systems aim at piggy-backing environmental sensors onto submarine repeater units in order to improve sensor coverage across the oceans The use the fibre itself as a distribution of sensors for temperature or strain distributed sensing is an alternative. The vast majority of all telecommunications data (99%) transit through submarine and land-based fibre-optic cables. As the need for larger bandwidth and more rapid transmission has increased, so do the global networks of cables encircling the Earth. They now cover even remote regions of most continents and oceans. There have been significant advances in cable design and manufacturing technology, as well as cable deployment procedures. In very recent years there have been significant breakthroughs, applying techniques developed to interrogate the cables at very high precision over very large distances. For example, laser reflectometry using DAS (Distributed Acoustic Sensing) on both dedicated experimental and commercial fiber optic cables onshore and in submarine environment have successfully detected a variety of seismic sources (including ambient noise (microseism), local and teleseismic earthquakes, volcanic events, etc.). Other laser reflectometry techniques have long been used for monitoring of large-scale engineering infrastructures (dams, tunnels, bridges, pipelines, boreholes, etc.) and recently have been applied to natural hazard studies on land (monitoring of landslides or karst sinkholes) and have broader applications to the study of faults for instance. We welcome contributions that involve the application of fiber-optic cables or sensors in seismology, geodesy, geophysics, natural hazards, etc. from the laboratory to large-scale field tests.
We are delighted to have an Invited Speaker: Giuseppe Marra

Share:
Co-organized as NH4.13
Convener: Philippe Jousset | Co-conveners: Gilda Currenti, Marc-Andre Gutscher, Shane Murphy, Luciano Zuccarello
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room -2.91
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X2
SM5.2

The number and quality of seismic stations and networks in Europe continually improves, nevertheless there is always scope to optimize their performance. In this session we welcome contributions from all aspects of seismic network installation, operation and management. This includes site selection; equipment testing and installation; planning and implementing communication paths; policies for redundancy in data acquisition, processing and archiving; and integration of different datasets including GPS and OBS.

Share:
Co-organized as GI4.13
Convener: Damiano Pesaresi | Co-conveners: Helle Pedersen, Angelo Strollo
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room -2.91
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X2
AS5.1 | PICO

The International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) senses the solid Earth, the oceans and the atmosphere with a global network of seismic, infrasound, and hydroacoustic sensors as well as detectors for atmospheric radioactivity. The primary purpose of the IMS data is for nuclear explosion monitoring regarding all aspects of detecting, locating and characterizing nuclear explosions and their radioactivity releases. On-site verification technologies apply similar methods on smaller scales as well as geophysical methods such as ground penetrating radar and geomagnetic surveying with the goal of identifying evidence for a nuclear explosion close to ground zero. Papers in this session address advances in the sensor technologies, new and historic data, data collection, data processing and analysis methods and algorithms, uncertainty analysis, machine learning and data mining, experiments and simulations including atmospheric transport modelling. This session also welcomes papers on applications of the IMS and OSI instrumentation data. This covers the use of IMS data for disaster risk reduction such as tsunami early warning, earthquake hazard assessment, volcano ash plume warning, radiological emergencies and climate change related monitoring. The scientific applications of IMS data establish another large range of topics, including acoustic wave propagation in the Earth crust, stratospheric wind fields and gravity waves, global atmospheric circulation patterns, deep ocean temperature profiles and whale migration. The use of IMS data for such purposes returns a benefit with regard to calibration, data analysis methods and performance of the primary mission of monitoring for nuclear explosions.

Share:
Co-organized as NH1.18/SM5.3
Convener: Martin Kalinowski | Co-conveners: Lars Ceranna, Yan Jia, Peter Nielsen, Ole Ross
PICOs
| Fri, 12 Apr, 10:45–12:30
 
PICO spot 5a
NH6.9

The session aims to collect original or review contributions on the use of data from Low-Earth-Orbiting (LEO) satellites making measurements in the thermosphere-ionosphere to investigate ionospheric anomalies related to space weather, geophysical and artificial sources. In fact, data from LEO satellites can provide a global view of near-Earth space variability and are complementary to ground-based observations, which have limited global coverage. The AMPERE project and integration of the Swarm data into ESA’s Space Weather program are current examples of this. The availability of thermosphere and ionosphere data from the DEMETER satellite and the new operative CSES mission demonstrates that also satellites that have not been specifically designed for space weather studies can provide important contributions to this field. On the other hand, there are evidences that earthquakes can generate electromagnetic anomalies into the near Earth space. A multi-instrumental approach, by using ground observations (magnetometers, magnetotelluric stations, GNSS receivers, etc.) and LEO satellites (DEMETER, Swarm, CSES, etc.) measurements can help in clarifying the missing scientific knowledge of the lithosphere-atmosphere-ionosphere coupling (LAIC) mechanisms before, during and after large earthquakes. We also solicit contributions on studies about other phenomena, such as tropospheric and anthropogenic electromagnetic emissions, that influence the near-Earth electromagnetic and plasma environment on all relevant topics including data processing, data-assimilation in models, space weather case studies, superimposed epoch analyses, etc.

Share:
Co-organized as AS4.57/EMRP2.10/ESSI1.9/GI3.14/NP9.3/SM5.4/ST4.10
Convener: Mirko Piersanti | Co-conveners: Livio Conti, Rune Floberghagen, Xuhui Shen, Michel Parrot
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room M2
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X3
G4.4

Integrated modelling of gravity, magnetic, seismological and petrological data contributes to a wide range of geo-scientific research, from imaging the structure of the Solid earth and geodynamic processes (e.g. GIA and the coupling between Solid Earth and Cryosphere) to near surface investigations. The session especially welcomes contributions related to spatial and temporal variations of the Earth gravity and magnetic field at all scales and their application in an integrated context.

Share:
Co-organized as EMRP2.31/GD10.4/SM5.6
Convener: Jörg Ebbing | Co-conveners: Carla Braitenberg, Alexandra Guy, Bart Root, Holger Steffen
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room -2.21, Fri, 12 Apr, 14:00–15:45
 
Room -2.91
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X3
G3.5 Media

Geodesy is becoming increasingly important for observing the hydrological cycle and its effects on solid Earth shape. Signals in geodetic data have revealed water's influence on other geophysical processes including earthquakes, volcanos, land subsidence, mountain uplift, and other aspects of long- and short-term vertical land motion. GPS and InSAR measurements, for example, respectively provide high temporal and spatial resolution to study natural hydrologically-related deformation and monitor anthropogenic groundwater extraction and recharge, and GRACE is helping to track changes in the global terrestrial water storage. Signals of loading from changes in surface and groundwater storage are seen from basin to continental scale. Additionally, novel use of GPS reflectometry is operational for monitoring soil moisture and snow depth at continuous GPS stations in the western USA and Canada. We encourage contributions describing new observations and models of hydrological signals in geodetic time series and/or imaging. These include but are not limited to studies exploring deformation induced by loading, aquifer extraction/recharge, poroelastic deformation and stress changes, techniques for removing hydrological signals from geodetic datasets, monitoring water resources, or teleconnections between hydrologic and other geophysical phenomena.

Share:
Co-organized as HS2.5.5/NH1.13/SM5.7
Convener: William Hammond | Co-conveners: Kristel Chanard, Francesca Silverii, Nicola DAgostino
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room D1
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X3
EOS10.1

State-of-the-art environmental research infrastructures become increasingly complex and costly, often requiring integration of different equipment, services, and data, as well as extensive international collaboration. Clear and measurable impact of the research Infrastructures is therefore needed in order to justify such investments (from member states and the EU) - whether it is an impact in terms of knowledge, developments in the environmental field of science, new innovative approaches, capacity-building or other socio-economic impacts. Moreover, improving the impact supports the long-term sustainability of the research infrastructures.

This session aims at discussing how to best monitor, interpret, and assess the efficiency and impact of environmental and Earth system research infrastructures. Even more importantly, the session seeks a breadth of contributions, with focus on ways to increase and improve the impact of research infrastructures, not only through the scientific outcomes they produce, but also, for example, through increasing the number of touchpoints with other actors in the society, or awareness of the services they offer- whether this is enhanced by lobbying, direct cooperation with industrial partners, or any other action. Talks on how to enhance the impact through the strategic communications activities are especially welcome.

Share:
Co-organized as AS5.25/BG1.59/GI1.8/OS4.34/SM5.8
Convener: Katri Ahlgren | Co-convener: Magdalena Brus
Orals
| Wed, 10 Apr, 10:45–12:30
 
Room L8
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X4
GMPV5.2

Over the past few years, major technological advances allowed to significantly increase both the spatial coverage and frequency bandwidth of geochemical and geophysical observations at active volcanoes. Establishment of high-rate GPS networks, continuous gravity meters, dense arrays of broad-band seismometers, and networks of instruments for the quantitative measurement of volcanic gas emissions now permits an unprecedented, multi-parameter vision of the surface manifestations of mass transport beneath volcanoes. Accompanying these progresses are new models and processing techniques leading to innovative paradigms for the interpretation and inversion of observational data. Within this context, this session aims at bringing together a multidisciplinary audience to discuss about the most recent innovations in monitoring approaches and to present observations, methods and models that increase our understanding of volcanic processes.

We welcome contribution related to (1) New instruments and techniques for the measurement of geophysical and geochemical parameters, from in-situ methods to ground-, air- and space-based remote sensing techniques; (2) Reports of significant case histories, documenting the relationships between the measured parameters and the evolving volcanic processes; (3) New modelling frameworks for the interpretation of the observed data, and their significance in terms of eruption forecasting.

The session will provide an opportunity to discuss volcanic activity from a monitoring perspective on a wide range of volcanoes. We therefore encourage submission of papers that are easily understandable to a broad, multi-disciplinary audience.

Share:
Co-organized as AS3.28/NH2.7/SM5.9
Convener: Jurgen Neuberg | Co-conveners: Evgenia Ilyinskaya, Thomas R. Walter
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room -2.21
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X2

SM6 – Crustal Fluids & Seismic Activity (incl. induced & triggered seismicity, volcano seismology)

SM6.1

Induced and triggered seismicity are common phenomena associated with sub-surface exploration and remote seismic events, respectively, and have been related to hydrocarbon extraction, hydraulic fracturing, geothermal exploitation, open-pit crater formation and underground mining operations, CO2 sequestration, and filling of new water reservoirs. Public awareness and concern of induced seismicity has become ubiquitous in locations where subsurface exploration and storage is carried out in close proximity to communities. Of particular concerns are massive fluid injections for hydro-fracturing to increase subsurface permeability as well as long-term injection in disposal wells. These concerns have led to regulations to passively monitor induced seismicity and consequently to a wealth of continuous seismic data. In contrast to the increase in data volume, our understanding of the relationship between exploitation techniques and induced seismicity as well as earthquake-earthquake interactions is still limited. New processing methods to analyze data and quantitative models to improve our understanding of the causal relationship between exploitation and seismicity have been developped. The current session is intended to provide a platform to present the latest research, field studies, theoretical and modelling aspects as well as methods for seismic hazard analysis related to induced and triggered seismicity. Topics to be presented include spatio-temporal variations of physical parameters in reservoirs and natural environments including stress and pressure changes, spatial-temporal patterns of seismicity, source mechanisms of micro- or larger-scale seismicity, mechanisms for induced events and seismic interaction, as well as, fracture-induced anisotropy. Contributions are sought from fundamental and applied research covering the fields of oil and gas operations including hydro-fracturing, geothermal exploitation particularly related to enhanced geothermal systems, open pit and underground mining, CO2 storage, and other fields such as volcano-seismology where induced and triggered seismic activity is observed.

Share:
Co-organized as ERE6.7/NH4.14
Convener: Philippe Jousset | Co-conveners: Roland Gritto, Luke Griffiths
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X2
SM6.3

Volcanic seismicity is fundamental for monitoring and investigating volcanic systems, their structure and processes that occur therein. Volcanoes are very complex objects, where both the pronounced heterogeneity and topography can modify the recorded signals to a great extent. In source inversion work, one of the challenges is to capture the effect of small scale heterogeneities in order to remove complex path effects from seismic data. This requires high resolution imagery, which is a significant challenge in heterogeneous volcanoes. If not removed, the path effect signature may significantly alter our interpretation of the seismic source location and mechanism. In addition, the link between the variety of physical processes beneath volcanoes and their seismic response (or lack of) is often not well known, leading to large uncertainties in the interpretation of volcano dynamics based on the seismic observations. Taking into account all these complexities, many standard techniques for seismic analysis may fail to produce breakthrough results.

In order to address the outlined challenges, this session aims to bring together seismologists, volcano and geothermal seismologists, wave propagation and source modellers, working on different aspects of volcano seismology including: (i) seismicity catalogues, statistics & spatio-temporal evolution of seismicity, (ii) seismic wave propagation & scattering, (iii) new developments in volcano imagery, (iii) seismic source inversions, and (iv) seismic time-lapse monitoring. Contribution on controlled geothermal systems in volcanic environments are also welcome.
By considering interrelationships in these complementary seismological areas, we aim to build up a coherent picture of the latest advances and outstanding challenges in volcano seismology.

Share:
Co-organized as GMPV7.7
Convener: Ivan Lokmer | Co-conveners: Chris Bean, Kristín Jónsdóttir, Vala Hjörleifsdóttir
Orals
| Fri, 12 Apr, 10:45–12:30
 
Room -2.91
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X2
ERE6.6

Hydraulic stimulation is a well-operation that aims at enhancing fluid flow at depth. It is applied to exploit unconventional hydrocarbon reservoirs with low permeability and deep geothermal resources. Induced earthquakes frequently accompany the injection of fluids into boreholes potentially leading to damage to infrastructure at the surface and thus generally raising public concern. Damage caused by such events have already terminated Enhanced Geothermal Energy projects in South Korea and Switzerland. Hence, finding safe stimulation methods is critical for future use and public acceptance of geothermal energy projects and potential other forms of energy extraction from the underground. A range of stimulation techniques have been developed to increase the permeability of low-permeable reservoirs, however, our understanding of the processes involved in the formation of hydrofracs and hydroshears and the effectiveness of these operations regarding flow enhancement are still rather limited. A series of successful mine-back experiments have been performed in a range of underground laboratories in Europe. For this session, we invite presentations covering the full range of rock mechanics experiments, underground laboratory testing, and field-scale operations aiming at improving the fundamental understanding of stimulation operations.

Share:
Co-organized as EMRP1.91/NH4.7/SM6.4
Convener: Georg Dresen | Co-conveners: Grzegorz Kwiatek, Joerg Renner
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room L2
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X1
ERE6.5

Numerous cases of induced/triggered seismicity have been reported in the last decades as a result of the increasing interest in fluid injection/extraction projects related to geo-resources exploration. When such seismicity is felt by the population, it can negatively affect public perception of geo-energies and may lead to the cancellation of important projects. Furthermore, large earthquakes may jeopardize wellbore stability and damage surface infrastructure. Thus, a key issue is to better understand how to monitor and model the processes leading to seismicity, in order to facilitate the development of effective and reliable forecasting methodologies during deep underground exploitation.
Given the complexity of induced seismicity processes and their interdisciplinary nature, understanding the triggering mechanisms implies to take into account coupled thermo-hydro-mechanical-chemical processes.
In this session, we invite contributions from research aimed at understanding such processes during exploitation of deep underground resources, including hydrocarbon
extraction, wastewater disposal, geothermal
energy exploitation, hydraulic fracturing, gas storage and production, mining, and reservoir impoundment for hydro-energy.
We particularly encourage novel contributions based on laboratory and underground near-fault experiments, numerical modelling, spatio-temporal variations of physical parameters and seismicity, and fieldwork, covering both theoretical and experimental aspects of induced and triggered seismicity at multiple spatial and temporal scales.

Share:
Co-organized as EMRP1.82/SM6.5
Convener: Antonio Pio Rinaldi | Co-conveners: Luisa Valoroso, Victor Vilarrasa, Marie Violay
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room L2
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X1
GD5.3

Subduction zones are arguably the most important geological features of our planet, where plates plunge into the deep, metamorphic reactions take place, large earthquakes happen and melting induces volcanism and creation of continental crust. None of these processes would be possible without the cycling of volatiles, and this session aims to explore their role in convergent margins. Questions to address include the following. Do Atlantic and Pacific subduction zones cycle volatiles in different ways? What dynamic or chemical roles are played by subducted fracture zones and plate bending faults? How do fluids and melts interact with the mantle wedge and overlying lithosphere? Why do some of the Earth’s largest mineral resources form in subduction settings? We aim to bring together geodynamicists, geochemists, petrologists, seismologists, mineral and rock physicists, and structural geologists to understand how plate hydration/slab dynamics/dehydration, and subsequent mantle wedge melting/fluid percolation, and ultimately melt segregation/accumulation lead to the diverse range of phenomena observed at convergence zones around the globe.

Invited speakers:
Lena Melekhova (Bristol University)
Ingo Grevemeyer (GEOMAR)

Share:
Co-organized as GMPV2.6/SM6.6/TS9.14
Convener: Jeroen van Hunen | Co-conveners: Jenny Collier, Colin Macpherson, Andreas Rietbrock, Jamie Wilkinson
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room D2
Posters
| Attendance Mon, 08 Apr, 08:30–10:15
 
Hall X2
GMPV5.6

We invite multidisciplinary contributions - both observational (seismology, geodetics, geobarometry etc.) and modelling (computational, analogue etc.) - on magma transport in the crust through dykes and sills. Understanding dykes and sills is vital as they serve both as the conduits that feed eruptions (and must be monitored to evaluate volcanic hazards), and as the bodies that build the crust. Although considerable uncertainties in our understanding of magma plumbing systems remain, recent events in Iceland (2014 Bárðarbunga-Holuhraun rifting event) have demonstrated how progress can be made by combining diverse observations from traditionally distinct disciplines.

Share:
Co-organized as SM6.8
Convener: Jennifer Woods | Co-conveners: David Neave, Robert S White
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room D2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2

SM7 – Computational & Theoretical Seismology

SM7.1

Increase in the amount of high quality seismic data and advances in high-performance computing in recent years have been transformative to explore Earth’s interior at all scales through seismic modelling, both in theory and practice. The goal of this session is to bring seismologists and computational scientists together to discuss recent advances and future directions in innovative forward & inverse modelling techniques, HPC systems & computational tools as well as the related theory and scientific outcomes.

We encourage contributions in the field of theoretical and computational seismology highlighting, but not limited to;

- advancements in numerical solvers and techniques,
- seismic codes on emerging CPU/GPU architectures
- full-waveform inversion from local to global scales,
- Bayesian inverse problems,
- machine learning algorithms for seismic problems,
- big data (seismic & computational) problems,
- large-scale workflows on HPC systems and their automatization,
- optimization strategies,
- uncertainty analysis for large-scale imaging,
- seismological results of HPC applications from passive (earthquakes and noise) and active seismic sources,
- visualization (parallel, VR platforms, etc. ).

Share:
Co-organized as ESSI1.11/GD8.8
Convener: Ebru Bozdag | Co-conveners: Christian Boehm, Andreas Fichtner
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room D2
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X2
SM7.2

Ambient seismic noise, once regarded as a nuisance, is now a core part of the seismological toolkit. Tomographic images are constructed from surface waves within small arrays and on the continental scale. Reflected waves are recovered from cross- and autocorrelations of the ambient field at local and teleseismic distances. Temporal variations of wave velocities and impedance structure are observed in the very shallow subsurface and at significant depth and led to the discovery of dynamic processes in the subsurface with relevance for earthquake triggering and relaxation, volcano and landslide dynamics as well as for the production from hydrocarbon reservoirs and geothermal fields. Established techniques are now routinely applied but new types of applications and continuing developments of new processing strategies constantly extend the capabilities of the noise based techniques. In addition, there are many unknowns related to the distributed and temporally variable sources of ambient vibrations. This variability affects the stability of seismic ‘noise correlation’ signals which leads to uncertainties in the seismic images and complicated time-lapse observations.

In this session, we focus on open questions and methodological advances in seismic interferometry and ambient noise based seismology. We invite (A) contributions on new methodological approaches in seismic interferometry and noise processing (B) studies of time variations of elastic material properties and (C) investigations of the sources of the ambient seismic noise.

This extends to evaluations of the accuracy of noise-based measurements for use in tomography or time-dependent imaging. It includes theoretical advances, such as the use of deconvolution or those exploring the role of source distribution or scattering, as well as methodological improvements and alternative processing techniques aimed at enhancing the quality of the correlations. Understanding the noise generation processes (microseisms, hum, microbaroms, etc) and causes of temporal variations of the noise field and the medium properties (dynamic and static stress changes, hydrology, etc.), and their effects on noise correlations is of fundamental interest in this context.

Invited speaker: Lise Retailleau (Stanford, USA)

Share:
Convener: Céline Hadziioannou | Co-conveners: Laura Ermert, Gregor Hillers, Anne Obermann, Christoph Sens-Schönfelder
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room D1
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2
GI2.1

The aim of this session is to present the latest research and case studies related to various data analysis and improvement methods and modeling techniques, and demonstrate their applications from the various fields of earth sciences like: hydrology, geology and paleogeomorphology, to geophysics, seismology, environmental and climate change.

Share:
Co-organized as CL5.16/SM7.4
Convener: Sid-Ali Ouadfeul | Co-convener: Leila Aliouane
Orals
| Mon, 08 Apr, 10:45–12:30
 
Room 0.96
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X1
GD8.1 | PICO

Geological and geophysical data provide quantitative information which permit the advancement of our understanding of the present, and past, interior of the Earth. Examples of such processes span from the internal structure of the Earth, plate kinematics, composition of geomaterials, estimation of physical conditions and dating of key geological events, thermal state of the Earth to more shallow processes such as reservoir geomechanics, or nuclear waste storage.

A quantitative understanding of the dynamics and the feedbacks between geological processes requires the integration of geological data with process oriented numerical models. Innovative inverse methods, linking forward dynamic models with observables, are topics of growing interest within the community. Improving our knowledge of the governing physical parameters can thus be addressed while reconciling models and observables.

Resolving the interactions between various processes occurring at scales differing from each other over several orders of magnitude in space and time represents a computational challenge. Hence, simulating such coupled, nonlinear physics-based forward models requires both the development of new approaches and the enhancement of established numerical schemes.

The majority of geological processes combine several physical mechanisms such as hydrological, thermal, chemical and mechanical processes (e.g. thermo-mechanical convection). Understanding the tight couplings among those processes represents a challenging and essential research direction. The development of novel numerical modelling approaches, which resolve multi-physics feedbacks, is vital in order to provide accurate predictions and gain deeper understanding of geological processes.

We invite contributions from the following two complementary themes:

#1 Computational advances associated with
- alternative spatial and/or temporal discretisations for existing forward/inverse models
- scalable HPC implementations of new and existing methodologies (GPUs / multi-core)
- solver and preconditioner developments
- code and methodology comparisons (“benchmarks”)
- open source implementations for the community

#2 Physics advances associated with
- development of partial differential equations to describe geological processes
- inverse and adjoint-based methods
- numerical model validation through comparison with natural observations and geophysical data
- scientific insights enabled by 2D and 3D modelling
- utilisation of coupled models to address nonlinear interactions

Share:
Co-organized as EMRP1.81/SM7.6/TS11.6
Convener: Thibault Duretz | Co-conveners: Boris Kaus, Dave May, Ludovic Räss
PICOs
| Wed, 10 Apr, 14:00–15:45
 
PICO spot 3
NP4.1

This interdisciplinary session welcomes contributions on novel conceptual approaches and methods for the analysis of observational as well as model time series and associated uncertainties from all geoscientific disciplines.

Methods to be discussed include, but are not limited to:
- linear and nonlinear methods of time series analysis
- time-frequency methods
- predictive approaches
- statistical inference for nonlinear time series
- nonlinear statistical decomposition and related techniques for multivariate and spatio-temporal data
- nonlinear correlation analysis and synchronisation
- surrogate data techniques
- filtering approaches and nonlinear methods of noise reduction

We particularly encourage submissions addressing the problem of uncertainty of geoscientific time series and its treatment in the context of statistical and dynamical analysis, including:
- representation of time series with uncertain dating (in particular paleoclimatic records from ice cores, sediments, speleothems etc.)
- uncertainties in change point / transition detection
- uncertainty propagation in time series methods like correlation, synchronization, spectral analysis, PCA, networks, and similar techniques
- uncertainty propagation in empirical (i.e., data-derived) inverse models

Share:
Co-organized as AS5.17/CL5.24/HS3.7/NH11.5/SM7.7
Convener: Reik Donner | Co-conveners: Andrea Toreti, Niklas Boers, Bedartha Goswami, Aljoscha Rheinwalt
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room L3
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X4
NP4.3

This session aims to bring together researchers working with big data sets generated from monitoring networks, extensive observational campaigns and detailed modeling efforts across various fields of geosciences. Topics of this session will include the identification and handling of specific problems arising from the need to analyze such large-scale data sets, together with methodological approaches towards semi or fully automated inference of relevant patterns in time and space aided by computer science-inspired techniques. Among others, this session shall address approaches from the following fields:
• Dimensionality and complexity of big data sets
• Data mining in Earth sciences
• Machine learning, including deep learning and other advanced approaches
• Visualization and visual analytics of big data
• Informatics and data science
• Emerging big data paradigms, such as datacubes

Share:
Co-organized as AS5.20/CL5.25/ESSI2.3/GD8.5/HS3.5/NH11.11/SM7.8
Convener: Mikhail Kanevski | Co-conveners: Peter Baumann, Sandro Fiore, Kwo-Sen Kuo, Nicolas Younan
Orals
| Mon, 08 Apr, 10:45–12:30, 14:00–18:00
 
Room L3
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X4

Union sessions of interest

US2

This year marks the 250th anniversary of the birth of Alexander von Humboldt (1769-1859), the intrepid explorer of the Andes and other regions in the world, and the most famous scientist of his time. Alexander von Humboldt is perhaps best known for his radical new vision of nature as a complex and interconnected global force, thereby becoming the founder of the field of biogeography and laying the ground for modern Earth-System Science approaches. It seems fitting to pay tribute to Alexander von Humboldt’s legacy by reviewing the state of the art in studies of the coupled lithosphere – atmosphere – hydrosphere – biosphere system with a focus on the Andean mountain belt. The Andes have become one of the main natural laboratories in the world to explore these questions and many recent studies have addressed its tectonic and geodynamic evolution, but also the two-way couplings between surface uplift, climatic evolution and biodiversity in the Andes and its foreland. This Union Session will bring together world-leading specialists on these questions with the aim to shed light on both suspected and unexpected couplings in the system.

Share:
Convener: Peter van der Beek | Co-conveners: Mike Burton, Giuliana Panieri, Lily Pereg (deceased)(deceased)
Orals
| Fri, 12 Apr, 08:30–12:15
 
Room E1
US3 Media|ECS

Over the whole Earth history, the climate has encountered tipping points, shifting from one regulated system to the other. This tilting motion affects both climate and the carbon cycle and has played a major role in the evolution of the Earth climate, at all timescales. Earth History has been ponctuated by large climate changes and carbon cycle reorganizations, from large climate variations occurring in deep times (snowball events, terrestrialisation, Mesozoic and early Cenozoic warm episodes, quaternary glacial cycles…) to past and on-going abrupt events. Many potential triggers of those climate and carbon cycle shifts have been proposed and tested through modeling studies, and against field data, such as those directly or indirectly linked with tectonics (plate motion, orogenesis, opening/closing of seaways, weathering…) and orbital forcing. Given that the Earth climate is currently experiencing an unprecedented transition under anthropogenic pressure, understanding the mechanisms behind the scene is crucial.

Our aim is to point out the most recent results concerning how a complex system as the climate of the Earth has undergone many tipping points and what is the specificity of the future climate changes. Therefore, within this session, we would like to encourage talks discussing advances in our record and modeling of the forces triggering and amplifying the changes of Earth climate and carbon cycle across spatial and temporal scales.

Share:
Convener: Gilles Ramstein | Co-conveners: Ayako Abe-Ouchi, Richard Betts, Robert DeConto
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room E1
US4 ECS

In today’s changing world we need to tap the potential of every talented mind to develop solutions for a sustainable future. The existence of under-representation of different groups (cultural, national and gender) remains a reality across the fields of science, technology, engineering, and mathematics (STEM fields) around the world, including the geosciences. This Union Symposium will focus on remaining obstacles that contribute to these imbalances, with the goal of identifying best practices and innovative ideas to overcome obstacles.

EGU is welcoming six high-level speakers from the funding agencies and research centres on both sides of the Atlantic related to geosciences to present efforts and discuss initiatives to tackle both implicit and explicit biases. Speakers are:

Jill Karsten, AGU Diversity and Inclusion Task Force (confirmed)
Erika Marín-Spiotta, University of Wisconsin - Madison (confirmed)
Daniel Conley, Lund University (confirmed)
Giulio di Toro, University of Padua (confirmed)
Liviu Matenco, Utrecht University (confirmed)
Barbara Romanowicz, European Research Council (confirmed)

Share:
Co-sponsored by AGU and JpGU
Convener: Claudia Jesus-Rydin | Co-conveners: Alberto Montanari, Robin Bell, Chiaki Oguchi, Lily Pereg (deceased)(deceased)
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room E1
US5

Atmospheric composition matters to climate, weather forecasting, human health, terrestrial and aquatic ecosystems, agricultural productivity, aeronautical operations, renewable energy production, and more. Hence research in atmospheric composition is becoming increasingly cross-cutting and linked to many disciplines including climate, biogeosciences, hydrology, natural hazards, computer and data sciences, socio-economic studies and many others. There is a growing need for atmospheric composition information and an improved understanding of the processes that drive changes in the composition and resulting impacts. While atmospheric composition research is advancing rapidly, there is a need to pay more attention to the translation of this research to support societal needs. Although translational research is a major focus of the health sciences and meteorology, it is in a relatively early stage in atmospheric composition. In this Union Symposium, we plan to highlight the need for, and to illustrate exciting advances in the translation of atmospheric composition research to support services. We will build upon work within the World Meteorological Organization and other communities related to the closer linkages of weather, atmospheric composition, and climate research and related services. We will also articulate the needs for advances in observing systems, models and a better understanding of fundamental processes. This session will also serve as a celebration of the 30 year anniversary of the WMO Global Atmosphere Watch programme and an opportunity for the broader community to envision partnerships needed to facilitate the effective translation of atmospheric composition research.

Share:
Convener: Oksana Tarasova | Co-conveners: Marcos Andrade, Claudia Volosciuk
Orals
| Tue, 09 Apr, 10:45–12:15, 14:00–15:30
 
Room E1
GDB1 Media

In October 2018, the IPCC published its special report on impacts of global warming of 1.5 deg C. Another recent, highly publicised study suggests that the planet could pass an irreversible threshold into a so called “Hothouse Earth” state for a temperature increase of as low as 2 degrees C above pre-industrial temperatures, while other studies and commentaries have emphasised the urgency on climate action, arguing that 2020 must be a turning point for global fossil fuel emissions, to increase the chance of maintaining a safe operating space for the humans on the planet. In 2018, the IPCC celebrated its 30th anniversary. The importance of taking action on human-induced climate change has been emphasised with governments around the world since the 1990s yet CO2 concentrations continue to rise and international initiatives have, to date, had limited and insufficient impact to avert some of the most serious consequences of climate change.
How close are we to one or more critical thresholds (cliff edge)? Is there time to avert passing one or more of these thresholds? What can the geoscience community do to reduce the risks? How important is bottom up versus top down action to ensuring the least worst outcome? These are some of the questions we will debate with world experts in their field and authors of the thought papers on these topics.

Public information:
In October 2018, the IPCC published its special report on impacts of global warming of 1.5 deg C. Another recent, highly publicised study suggests that the planet could pass an irreversible threshold into a so called “Hothouse Earth” state for a temperature increase of as low as 2 degrees C above pre-industrial temperatures.

In 2018, the IPCC celebrated its 30th anniversary. The importance of taking action on human-induced climate change has been emphasised with governments around the world since the 1990s yet CO2 concentrations continue to rise and international initiatives have, to date, had limited and insufficient impact to avert some of the most serious consequences of climate change that may pose an existential threat to modern civilisation.

How close are we to one or more critical thresholds? Is there time to avert passing one or more of them? What can the geoscience community do to reduce the risks? How important is bottom up versus top down action to ensuring the least worst outcome? These are some of the questions we will debate with world experts in their field and authors of the thought papers on these topics.

The Great Debate panellists are:
Prof. Myles Allen is Professor of Geosystem Science in the Environmental Change Institute, University of Oxford. His research focuses on how human and natural influences on climate contribute to observed climate change and risks of extreme weather and in quantifying their implications for long-range climate forecasts. He was a Coordinating Lead Author on the Intergovernmental Panel on Climate Change Special Report on 1.5 degrees, having served on the IPCC’s 3rd, 4th and 5th Assessments, including the Synthesis Report Core Writing Team in 2014.

Prof. Sabine Fuss, Mercator Research Institute on Global Commons and Climate Change (MCC), Berlin. Sabine is an economist, currently leading a working group at the MCC. She holds a professorship on Sustainable Resource Management and Global Change at Humboldt University of Berlin. Her research interests are in sustainable development, land use change and climate change mitigation. She has been an IPCC Lead Author for the Special Report on 1.5°C global warming, serves on the steering committee of the Global Carbon Project and is a guest scholar at the International Institute for Applied Systems Analysis.

Erica Hope leads the cross-sectoral ‘2050 Task Force’ and governance programme of the European Climate Foundation (ECF) in Brussels, which seeks to build knowledge, political strategies and coalitions to drive the transition to a zero emissions society by mid-century. Erica has previously worked for the energy efficiency and UK programmes of the ECF, and before that led the policy and advocacy activities of NGO network Climate Action Network Europe on energy efficiency. From 2005-2009 she was researcher to Green MEP Caroline Lucas, and has also worked at the Institute for Public Policy Research in London.

Prof. Linda Steg is professor of environmental psychology at the University of Groningen. She studies factors influencing sustainable behaviour, the effects and acceptability of strategies aimed at promoting sustainable behaviour, and public perceptions of technology and system changes. She is member of Member of the Royal Netherlands Academy of Sciences (KNAW), and lead author of the IPCC special report on 1.5°C and AR6. She works on various interdisciplinary and international research programmes, and collaborates with practitioners working in industry, governments and NGOs.

Share:
Convener: Jonathan Bamber | Co-conveners: Alberto Montanari, Didier Roche
Thu, 11 Apr, 10:45–12:30
 
Room E1
GDB2 ECS

The geosciences are currently used by policymakers in a wide variety of areas to help guide the decision-making process and ensure that the best possible outcome is achieved. While the importance of scientific advice and the use of evidence in the policymaking process is generally acknowledged by both policymakers and scientists, how scientific advice is integrated and who is responsible is still unclear.

EU Policymakers frequently highlight institutionalised processes for integrating scientific advice into policy such as European Commission's Group of Chief Scientific Advisors (SAM) and the EU Commission’s Register of Expert Groups. But how efficient and accessible are these mechanisms really?

Some emphasise the need for scientists to have their own policy networks in place so that they can share their research outcomes with policymakers who can then use it directly or pass it on to those responsible for relevant legislation. But from funding applications to teaching and even outreach activities – scientists are often already overloaded with additional tasks on top of their own research. Can they really be held responsible for keeping up with the latest policy news and maintaining a constantly changing network of policymakers as well?

This debate will feature a mixed panel of policymakers and geoscientists who have previously given scientific advice. Some key questions that the panel will debate include:
• How can the accessibility of current EU science-advisory mechanisms be improved?
• Are scientists doing enough to share their research?
• And who is responsible for ensuring that quality scientific evidence is used in policymaking?

Speakers will be encouraged to explain any science advisory mechanism that they highlight (e.g. SAM) to ensure that the debate is understood by all those in attendance.

While the panel and subsequent debate will have an EU focus, it is likely that many of the issues discussed will be applicable to countries around the world.

Public information:
David Mair: Head of Unit, Knowledge for Policy: Concepts & Methods, Joint Research Centre
Paul Watkinson: Chair of SBSTA (Subsidiary Body for Scientific and Technological Advice)
Kasey White: Director for Geoscience Policy, Geological Society of America
Günter Blöschl: Head of Institute of Hydraulic Engineering and Engineering Hydrology, Vienna University of Technology
Detlef van Vuuren: Professor in Integrated Assessment of Global Environmental Change at the Faculty of Geosciences, Utrecht University

Share:
Convener: Chloe Hill | Co-conveners: Sarah Connors, Hazel Gibson
Mon, 08 Apr, 10:45–12:30
 
Room E1
GDB3 ECS

The ever more challenging work environments and increasing pressures on Early Career Scientists e.g. publish or perish, securing grant proposals, developing transferable skills and many more – and all while having a lack of job security. This puts a big strain on Early Career Scientists and this can lead to neglected mental well-being which in turn increases the risk of developing anxiety, depression or other mental health issues. The graduate survey from 2017 (https://www.nature.com/nature/journal/v550/n7677/full/nj7677-549a.html) shows that 12% of respondents had sought help or advice for anxiety or depression during their PhD.

In this debate we want to discuss: Is there a problem? How ECS can take control of their mental wellbeing and prioritise this in the current research environment? And what support would ECS like to see from organisations like EGU or their employers?

Share:
Convener: Stephanie Zihms | Co-conveners: Raffaele Albano, Anita Di Chiara, Hazel Gibson, Mathew Stiller-Reeve
Thu, 11 Apr, 19:00–20:30
 
Room E1
GDB4 ECS

"What counts may not be countable and what is countable may not count". Assessments of scientists and their institutions tend to focus on easy-to-measure metrics related to research outputs such as publications, citations, and grants. However, society is increasingly dependent on Earth science research and data for immediate decisions and long-term planning. There is a growing need for scientists to communicate, engage, and work directly with the public and policy makers, and practice open scholarship, especially regarding data and software. Improving the reward and recognition structure to encourage broader participation of scientists in these activities must involve societies, institutions, and funders. EGU, AGU, and JPGU have all taken steps to improve this recognition, from developing new awards to starting journals around the topic of engaging the public to implementing FAIR data practices in the Earth, environmental, and space sciences, but far more is needed for a broad cultural change. How can we fairly value and credit harder-to-measure, these less tangible contributions, compared to the favoured metrics? And how can we shift the emphasis away from the "audit culture" towards measuring performance and excellence? This session will present a distinguished panel of stakeholders discussing how to implement and institutionalize these changes.

Public information:
Moderator:
Robin Bell - AGU President

Co-Moderator:
Helen M. Glaves - President of the EGU ESSI Division

Panelists:

Liz Allen – Director of Strategic Initiatives at F1000
Visiting Senior Research Fellow, Policy Institute, King's College London

Stephen Curry – Professor and Assistant Provost, Imperial College London
Chair, Declaration on Research Assessment (DORA)

Demetris Koutsoyiannis – Professor and former Dean, Faculty of Engineering, Technical University of
Athens, Past Editor in Chief of the Hydrological Sciences Journal of IAHS

Share:
Co-sponsored by AGU and JpGU
Convener: Alberto Montanari | Co-conveners: Jonathan Bamber, Robin Bell, Hiroshi Kitazato, Lily Pereg (deceased)(deceased)
Wed, 10 Apr, 10:45–12:30
 
Room E1
GDB5 Media

Public information:
Plan S, devised by a coalition of research funders with support from the European Commission and European Research Council, demands that by January 1, 2020 research supported by participating funders must be published in Open Access journals. Representatives from subscription-based and Open Access publishers, architects of Plan S, and researchers affected by it will debate questions surrounding the implementation of the plan and its consequences.

The panelists are David Sweeney, Heike Langenberg, Marc Schiltz and Brooks Hanson. They will present the case for and against mandatory OA followed by an open debate with questions and comments from the audience.

David Sweeney is Executive Chair of Research England, the biggest research funder in the UK. He has been invited to visit many countries to advise on research assessment and funding, particularly with respect to research impact. He is also co-chair of the Implementation Task Force for Plan S, the international initiative on full and immediate open access to research publications.

Heike Langenberg is the Chief Editor of Nature Geoscience. She started her editorial career in 1999 as an Associate, then Senior Editor at Nature handling manuscripts in the broad area of climate sciences. In 2007 she moved to Nature Geoscience to launch the journal in January 2008. A graduate in mathematics of the Philipps-Universität Marburg, Germany, she ventured into oceanography for her PhD at the University of Hamburg. Her postdoctoral research at various research institutes in Hamburg was focused on numerical simulations of the ocean and atmosphere at a regional scale.

Marc Schiltz is president of Science Europe, the European association of all major national public research funding and research performing organisations. In this role, he has contributed to setting the European agenda to foster Open Science and is one of the architects of Plan S. He is also leading the Luxembourg National Research Fund. He is a relentless advocate of science and research, serving on a number of external boards and committees, both at the national and international level. Having received a PhD in Crystallography from the University of Paris-Sud and an executive MBA from INSEAD, Marc has been active in research and higher education for more than 25 years and held research and faculty positions in several European countries.

Brooks Hanson is the Executive Vice President for Science for the American Geophysical Union (AGU), responsible for AGU’s publications, meetings, ethics and data programs, and Thriving Earth Exchange. He previously acted as Sr. Vice President for Publications at AGU, where he was responsible for AGU's portfolio of books and 21 journals and served as Deputy Editor for Physical Sciences at Science. Brooks received a Ph.D. in Geology from UCLA and held a post-doctoral appointment at the Department of Mineral Sciences at the Smithsonian Institution.

Share:
Convener: Katja Fennel | Co-convener: Jonathan Bamber
Tue, 09 Apr, 16:15–18:00
 
Room E1
SCS1 Media|ECS

Wed, 10 Apr, 12:45-14:00 / Room E1

Public information:
The dialogue between scientists, institutions, policymakers and the general public is widely recognised as an essential step towards a fair and sustainable society. Nowadays, more than ever in human history, international cooperation is an essential requirement for protecting the planet, advancing science and ensuring an equitable development of the global economy.
Despite its importance, the above dialogue can be a challenge for scientists, who often cannot find a productive connection with governments and politicians. Scientific associations are a key link between researchers and policy makers, as they have the potential to establish a durable and profitable connection with institutions.
The EGU elected the dialogue with society as one of its priority missions. At its General Assembly, the EGU is launching an innovative symposium format, Science and Society (SCS), to host scientific forums specifically dedicated to connecting with high-level institutions and engaging the public and policymakers.
The conversation with Ilaria Capua and Mario Monti will focus on science and politics with a global perspective, and the impact of populism on European integrity and therefore scientific research. The discussion will elaborate on optimal strategies to deliver topical and clear scientific messages to key institutions.
Ilaria Capua is a virologist best known for her research on influenza viruses and her efforts promoting open access to genetic information on emerging viruses. In 2006, Science reported on Capua’s effort towards open access science, stating that she had “renewed the debate about how to balance global health against scientists’ needs to publish and countries’ demands for secrecy". She has been a member of the Italian parliament from 2013 to 2016 and a fake news victim. She is currently a full professor at the University of Florida in Gainesville, Florida, US, and director of the UF One Health Center of Excellence.
Mario Monti served as a European Commissioner from 1995 to 2004, with responsibility for the internal market, services, customs, taxation and competition. He was Prime Minister of Italy from 2011 to 2013, leading a government of national unity to cope with the Italian debt crisis. Monti has also been Rector and is currently President of Bocconi University in Milan. His publications deal mainly with monetary and financial economics, public finance, European integration, competition policy. He is currently lifetime member of the Italian Senate.
During the conversation, Ilaria Capua and Mario Monti will present their vision with two 15-minute talks that will be followed by 20 minutes dedicated to questions from the audience and answers.

Share:
Conveners: Alberto Montanari, Jonathan Bamber
Wed, 10 Apr, 12:45–14:00
 
Room E1
SCS2 Media|ECS

Plastic pollution is recognized as one of the most serious and urgent problems facing our planet. Rates of manufacture, use and ultimately disposal of plastics continue to soar, posing an enormous threat to the planet’s oceans and rivers and the flora and fauna they support. There is an urgent need for global action, backed by sound scientific understanding, to tackle this problem.

This Union Symposium will address the problems posed to our planet by plastic pollution, and examine options for dealing with the threat.

Share:
Convener: Jessica Hickie | Co-conveners: Bruce Newport, Christopher Hackney, David Todd, Tim van Emmerik
Orals
| Mon, 08 Apr, 14:00–17:45
 
Room E1
SCA1 ECS

The Games Night is a space to gather, socialise, and play some games. The catch is that all the games are based on Geoscience! Bring along your own games or try one of the others in the session and meet the people who created them. This will also be your chance to try games featured in the Games for Geoscience session.

Public information:
Confirmed games include -
Breath of the Wild, HEAT, Flash Flood! Vol. 2, Resilience, Druids & Defences, Wanted: Head of the Centre for Flood Forecasts (IMPREX serious game), Rivers Top Trumps.

Share:
Convener: Christopher Skinner | Co-conveners: Rolf Hut, Sam Illingworth, Elizabeth Lewis, Jazmin Scarlett
Programme
| Wed, 10 Apr, 18:00–20:00
 
Foyer D
SCA2 ECS

Join us to help put some of the world's most vulnerable places on the map. A mapathon is a mapping marathon, where we get together to contribute to OpenStreetMap - the world's free map.
No experience is necessary - just bring your laptop and we will provide the training. Learn more about crowdsourcing, open data and humanitarian response - we will also provide some tips for how to host a mapathon at your home institution.

Share:
Convener: Faith Taylor | Co-conveners: Hessel Winsemius, Joanne Wood, chen zhong
Thu, 11 Apr, 19:00–20:30
 
Room L4/5
SCA3

Plastic Oceans UK have been experts on plastic pollution for nearly a decade - solving the plastic crisis through their science, sustainability and education programmes. This all began with the award-winning documentary A Plastic Ocean, now available for streaming on Netflix.

Through changing attitudes, behaviours and practices on the use and value of plastics, we can stop plastic pollution reaching the ocean within a generation.

Come along to the screening of A Plastic Ocean to understand the impacts of plastic pollution around the world, what action we can take to stop plastics entering our natural world and pose your questions to the film's producer, Jo Ruxton, at the end of film.

http://plasticoceans.uk/

Public information:
Plastic Oceans UK have been experts on plastic pollution for nearly a decade - solving the plastic crisis through their science, sustainability and education programmes. This all began with the award-winning documentary A Plastic Ocean, now available for streaming on Netflix.

Through changing attitudes, behaviours and practices on the use and value of plastics, we can stop plastic pollution reaching the ocean within a generation.

Come along to the screening of A Plastic Ocean to understand the impacts of plastic pollution around the world, what action we can take to stop plastics entering our natural world and pose your questions to the film's producer, Jo Ruxton, at the end of film.

http://plasticoceans.uk/

Share:
Convener: Fiona Tovey | Co-convener: Jessica Hickie
Tue, 09 Apr, 19:00–21:00
 
Room E2