Union-wide
Side Events
Disciplinary Sessions
Inter- and Transdisciplinary Sessions

Session programme

SM

SM – Seismology

Programme group chairs: Heiner Igel, P. Martin Mai, Damiano Pesaresi, Philippe Jousset, Aldo Zollo, Henriette Sudhaus, Cedric Schmelzbach, Lapo Boschi, Fabrice Cotton

MAL9/SM
Beno Gutenberg Medal Lecture by Annie Souriau
Conveners: P. Martin Mai, Philippe Jousset
Abstract
| Thu, 11 Apr, 19:00–20:00
 
Room D1
MAL41/SM ECS
SM Division Outstanding ECS Lecture by Piero Poli
Conveners: P. Martin Mai, Philippe Jousset
Abstract
| Wed, 10 Apr, 10:45–11:15
 
Room D2
DM18/SM ECS
Division meeting for Seismology (SM)
Conveners: P. Martin Mai, Philippe Jousset
Wed, 10 Apr, 12:45–13:45
 
Room D2
SAL1

Public information:
During the sixties, the new Plate Tectonics paradigm was established. At a recent international meeting (Collège de France, Paris, 2018), discussions arose on whether for the first time it would be possible to relate without ambiguity plate tectonics and mantle dynamics.
In this presentation, the author shares this point of view and explains why he does so.

Share:
Co-organized as BG/GD/SM/TS
Convener: Carlo Laj | Co-convener: Chris King (deceased)(deceased)
Tue, 09 Apr, 19:00–20:00
 
Room E1

SM1 – General seismology sessions

SM1.1

The session General Contributions on Earthquakes, Earth Structure, Seismology features a wide range of presentations on recent earthquakes and earthquake sequences of local, regional, and global significance, as well as recent advances in characterization of Earth structure using a variety of methods.

The session is also dedicated to the Beno Gutenberg medal and the award lecture of the medalist.

Share:
Convener: P. Martin Mai | Co-convener: Philippe Jousset
Orals
| Wed, 10 Apr, 08:30–12:30, 14:00–15:45
 
Room D2
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X2
SM1.3

Recent advances in rotational seismology have led to new applications in various geophysical disciplines such as earthquake physics, broadband seismology, seismic exploration, strong ground motion, and earthquake engineering. The progress is mainly driven by the development of new, sensitive rotational sensors that, when combined with classical seismometers and strain sensors, enable the complete observation of seismic ground motion.

The instrumental development overlap with considerable improvements in optical and atom interferometry for inertial rotation and gravity sensing which has led to a variety of improved sensor concepts over the last two decades. Thus, advanced instrumentation enables applications in seismology, geodesy, and fundamental physics.

We invite all contributions on theoretical advances to the seismic wavefield gradient, on novel measurement techniques, and on all aspects of applications in seismic, seismology, geodesy, and fundamental physics.

Share:
Co-organized as G6.2
Convener: Stefanie Donner | Co-conveners: André Gebauer, Christian Schubert, David Sollberger
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room D2
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2
GM1.4

Seismic techniques are becoming widely used to detect and quantitatively characterise a wide variety of natural processes occurring at the Earth’s surface. These processes include mass movements such as landslides, rock falls, debris flows and lahars; glacial phenomena such as icequakes, glacier calving/serac falls, glacier melt and supra- to sub-glacial hydrology; snow avalanches; water storage and water dynamics phenomena such as water table changes, river flow turbulence and fluvial sediment transport. Where other methods often provide limited spatial and temporal coverage, seismic observations allow recovering sequences of events with high temporal resolution and over large areas. These observational capabilities allow establishing connections with meteorological drivers, and give unprecedented insights on the underlying physics of the various Earth’s surface processes as well as on their interactions (chains of events). These capabilities are also of first interest for real time hazards monitoring and early warning purposes. In particular, seismic monitoring techniques can provide relevant information on the dynamics of flows and unstable slopes, and thus allow for the identification of precursory patterns of hazardous events and timely warning.

This session aims at bringing together scientists who use seismic methods to study Earth surface dynamics. We invite contributions from the field of geomorphology, cryospheric sciences, seismology, natural hazards, volcanology, soil system sciences and hydrology. Theoretical, field based and experimental approaches are highly welcome.

Share:
Co-organized as CR2.9/GI4.12/GMPV7.1/HS11.55/NH4.6/SM1.4/SSS12.13
Convener: Florent Gimbert | Co-conveners: Wei-An Chao, Velio Coviello (deceased)(deceased), Andrea Manconi, Anne Schöpa
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room G2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2
PS1.4 Media

The InSight mission to Mars landed in Elysium Planitia on November 26. InSight's scientific objective is the study of the Martian interior using two seismometers, a heat flow probe and geodetical measurements. Auxiliary instruments will collect meteorological and magnetic data for at least one Martian year.
This session provides initial results from Mars, status reports of instrument deployment and relevant pre-landing science.

Share:
Co-organized as AS4.60/EMRP2.33/GD9.3/GMPV7.13/SM1.5/TS1.7
Convener: Simon C. Stähler | Co-conveners: Brigitte Knapmeyer-Endrun, Anna Mittelholz, Ana-Catalina Plesa
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room L3, Fri, 12 Apr, 08:30–10:15
 
Room L3
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X4
GM1.3

In the last 20 years, a major breakthrough in palaeo-environmental research has been the utilisation of 2D and 3D seismic reflection data and its integration with borehole petrophysics and core lithologies: the so-called “geological Hubble”. This step-change in seismic data quality and interpretive techniques has allowed imaging and analysis of the subsurface from the seafloor down to the Moho, and for palaeo-geographies and contemporary processes to be reconstructed across 1D (borehole) to 4D (repeat seismic) scales.

Though many Earth scientists know the basic principles of these subsurface datasets, they are often unaware of the full capability of seismic data paired with borehole data. We hope that this session will provide a window into the exciting and cross-disciplinary research currently being performed using geomorphological approaches, state-of-the-art seismic interpretation, and integrative methodologies.

Submissions are welcome from a range of geological settings, thus, exposing seismic interpreters and non-specialists to differing geological perspectives, the latest seismic workflows, and examples of effective seismic and borehole integration. Examples could include (but are not restricted to), glacigenic tunnel valley complexes, igneous intrusions, submarine landslides, channel and canyon systems, salt tectonics overburden expression, methane hydrates, and subsurface fluid flow, all under the theme of how seismic data are interpreted and how the results are applied (e.g. palaeo-environmental reconstruction, seafloor engineering, or carbon sequestration).

The submissions will highlight the rationale behind the interpretation of seismic geometries and will generate discussions around potential issues of equifinality (i.e. similar seismic geometries arising from different Earth processes). We thus invite submissions that aim to present new insights in seismic geomorphology and particularly welcome studies integrating borehole and geotechnical drilling information with shallow high-resolution seismic data and deeper traditional legacy oil industry data. Such studies are a crucial component in seismic inversion and refining or elucidating the accuracy of palaeo-geographies that are interpreted from just seismic data.

The session will be an excellent opportunity for subsurface geoscientists to showcase and discuss with contemporary geomorphologists and environmental scientists what can be achieved by utilising seismic and borehole data to unravel the Earth’s past.

Share:
Co-organized as CL1.28/CR2.10/SM1.7/SSP2.19
Convener: Andrew Newton | Co-conveners: Katrine Juul Andresen, Kieran Blacker, Rachel Harding, Elodie Lebas
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room 0.31
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X2
CR2.3 | PICO

______________________________________________________________________________________________________________
Invited Speaker is Christian Hauck (University of Fribourg) with the title:
'Geophysical monitoring techniques to observe Alpine permafrost degradation – a 20-years perspective'
______________________________________________________________________________________________________________

Geophysical measurements offer important baseline datasets as well as validation for modelling and remote sensing products for cryospheric sciences. Applications include the dynamics of ice-sheets, alpine glaciers and sea ice, changes in snow cover properties of seasonal and permanent snow, snow/ice-atmosphere-ocean interactions, permafrost degradation, geomorphic processes and changes in subsurface materials.

In this session we welcome contributions related to a wide spectrum of geophysical- and in-situ methods, including advances in diverse techniques such as radioglaciology, active and passive seismology, acoustic sounding, GPS/GNSS reflectometry or time delay techniques, cosmic ray neutron sensing, drone applications, geoelectrics and NMR. Contributions may concern field applications as well as new approaches in geophysical/in-situ survey techniques or theoretical advances in the field of data analysis, processing or inversion. Case studies from all parts of the cryosphere such as snow, alpine glaciers, ice sheets, glacial and periglacial environments and sea ice are highly welcome. The focus of the session is to compare experiences in the application, processing, analysis and interpretation of different geophysical and in-situ techniques in these highly complex environments.

This session is offered as a PICO: an engaging presentation format that has been successfully tested for this session during the last three years at EGU. All selected contributions will present their research orally, and then further present their research using interactive screens. This results in rich scientific feedback and is an effective tool for communicating science with high visibility.

Share:
Co-organized as HS1.1.6/SM1.9
Convener: Nanna Bjørnholt Karlsson | Co-conveners: Franziska Koch, Reinhard Drews, Kristina Keating, Emma C. Smith
PICOs
| Fri, 12 Apr, 08:30–12:30
 
PICO spot 4
GI1.3

The nature of science has changed: it has become more interconnected, collaborative, multidisciplinary, and data intensive. Accordingly, the main aim of this session is to create a common space for interdisciplinary scientific discussion, where EGU-GA delegates involved in geoscientific networks can share ideas and present the research activities carried out in their networks. The session represents an invaluable opportunity for different networks and their members to identify possible synergies and establish new collaborations, find novel links between disciplines, and design innovative research approaches.

Part of the session will be focused on COST (European Cooperation in Science and Technology) Actions*. The first edition of the session (successfully held in 2018) was actually entirely dedicated to the COST networking programme and hosted scientific contributions stemming from 25 Actions, covering different areas of the geosciences (sky, earth and subsurface monitoring, terrestrial life and ecosystems, earth's changing climate and natural hazards, sustainable management of resources and urban development, environmental contaminants, and big data management). Inspiring and fruitful discussions took place; the session was very well attended. We are looking forward to continuing the dialogue this year and to receiving new contributions from COST Action Members.

Another part of the session will be dedicated to the activities of other national and international scientific networks, associations, as well teams of scientists who are carrying out collaborative research projects.

Finally, the session is of course open to everyone! Accordingly, abstracts authored by scientists not involved in wide scientific networks are most welcome, too! In fact, in 2018 we received a good number of such abstracts, submitted by individual scientists or small research teams who wished to disseminate the results of their studies in front of the multidisciplinary audience that characterizes this session, as an alternative to making a presentation in a thematic session. This may be a productive way to broaden the perspective and find new partners for future interdisciplinary research ventures. We hope to receive this kind of abstracts this year, as well.


-- Notes --

* COST (www.cost.eu) is a EU-funded programme that enables researchers to set up their interdisciplinary research networks (the “Actions”), in Europe and beyond. COST provides funds for organising conferences, workshops, meetings, training schools, short scientific exchanges and other networking activities in a wide range of scientific topics. Academia, industry, public- and private-sector laboratories work together in Actions, sharing knowledge, leveraging diversity, and pulling resources. Every Action has a main objective, defined goals and clear deliverables. This session was started as a follow up initiative of COST Action TU1208 “Civil engineering applications of Ground Penetrating Radar” (2013-2017, www.GPRadar.eu).

Share:
Co-organized as AS4.13/BG1.33/CL4.42/GD1.7/GM12.7/GMPV7.16/NH11.15/NP9.4/SM1.10/SSP1.7/SSS13.20/ST4.9
Convener: Lara Pajewski | Co-conveners: Simona Fontul, Aleksandar Ristic
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room 2.44
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X1
GD6.2

The Arctic realm hosts vast extended continental shelves bordering old land masses, one of the largest submarine Large Igneous Provinces (LIPs) -the Alpha-Mendeleev Ridge - of Mesozoic age, and the slowest mid-ocean spreading ridge (the Gakkel Ridge) on the globe. Extreme variations in the evolution of landscapes and geology reflect the tug-of-war between the formation of new oceans, like the North Atlantic, and the destruction of older oceans: the South Anyui, Angayucham and North Pacific, which were accompanied by rifting, collision, uplift and subsidence. The causal relationships between the deep-mantle and surface processes in the Circum-Arcic region remain unclear. Geoscientific information on the relationship between the onshore geology and offshore ridges and basins in combination with variations in the mantle is the key for any deeper understanding of the entire Arctic Ocean.
This session provides a forum for discussions of a variety of problems linked to the Circum-Arctic geodynamics and aims to bring together a diversity of sub-disciplines including plate tectonics, mantle tomography, seismology, geodynamic modelling, igneous and structural geology, geophysical imaging, sedimentology, geochemistry. Particularly encouraged are papers that address lithospheric-mantle interactions in the North Atlantic, the Arctic and North Pacific regions, mantle dynamics and vertical and horizontal motion of crustal blocks and consequences for paleogeography. As geologic and tectonic models are inherently tied with changes in the oceanographic and climatic development of the Arctic, we also invite studies that focus on the interplay between these processes and across timescales. Lastly, we would like to invite contributions from studies concerning the implications of how the Arctic’s geography and geology are portrayed by modern data and issues related to jurisdiction and sovereign rights with particular focus on the UN Convention on the Law of the Sea.

Public information:
This session provides a forum for discussions of a variety of problems linked to the Circum-Arctic geodynamics and aims to bring together a diversity of sub-disciplines including plate tectonics, mantle tomography, seismology, geodynamic modelling, igneous and structural geology, geophysical imaging, sedimentology, geochemistry. As geologic and tectonic models are inherently tied with changes in the oceanographic and climatic development of the Arctic, we also show results from studies that focus on the interplay between these processes. The implications of how the Arctic’s geography and geology are portrayed by modern data and issues related to jurisdiction and sovereign rights with particular focus on the UN Convention on the Law of the Sea are also discussed.

Share:
Co-organized as CL4.32/SM1.12/TS7.11
Convener: Carmen Gaina | Co-conveners: Victoria Ershova, Alla Pozdnakova, Andrew Schaeffer
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X2
GD1.1

Since the 1960’s plate tectonics has been accepted as a surface expression of the earth's convecting mantle, and yet numerous geological features of plate interiors remain unexplained within the plate tectonic paradigm, including intraplate earthquakes and large-scale vertical motions of continents as epitomized by the uplift history of Africa. Kevin Burke (1929-2018), one of the greatest geologists of our time who published original and thought-provoking contributions for six decades, was one of the most vocal scientists to assert that plate tectonics is an incomplete theory without a clear understanding of its links with deep Earth processes, including the role of mantle plumes. In this session we commemorate the pioneering work of Kevin and explore contributions from across the diverse fields that interested him, including global tectonics, the Wilson Cycle, the origin of Precambrian greenstone belts, the evolution of the Caribbean, and the uplift history of Africa and other continents. We discuss the state-of-the art of the plume mode of mantle convection, its influence on the dynamics of the asthenosphere and the lithosphere, and its expression at the earth’s surface. We seek contributions from natural case studies (tectonic evolution, sedimentology, thermochronology, geophysics, palaeoclimate) and from geodynamics or geomaterials oriented (analog and numerical) modeling, which address the interplay of deep mantle – asthenosphere – lithosphere – basin – surface processes in all plate environments. In particular, we appreciate studies that contribute to the understanding of feedback processes causing the evolution of dynamic topography and welcome contributions that examine surface and deep Earth links based on observations and numerical models (although notably the latter never seduced Kevin).

Share:
Co-organized as GMPV2.10/SM1.13/TS9.6
Convener: Mathew Domeier | Co-conveners: Lewis D. Ashwal, Prof. Dr. Ulrich Anton Glasmacher, Anke Friedrich, Barbara Romanowicz, Susan Webb, Siavash Ghelichkhan
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room -2.21
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X2
NH6.2

The availability of high spatial resolution Synthetic Aperture Radar (SAR) data, the advances in SAR processing techniques (e.g. interferometric, polarimetric, and tomographic processing), and the fusion of SAR with optical imagery as well as geophysical modelling allow ever increasing use of Imaging Geodesy using SAR/InSAR as a geodetic method of choice for earth system monitoring and investigating geohazard, geodynamic and engineering processes. In particular, the exploitation of data from new generation SAR missions such as Sentinel-1 that provide near real-time measurements of deformation and changes in land cover/use has improved significantly our capabilities to understand natural and anthropogenic hazards and then helped us mitigate their impacts. The development of high-resolution X-band SAR sensors aboard missions such as Italian COSMO-SkyMed (CSK) and German TerraSAR-X (TSX) has also opened new opportunities over the last decade for very high-resolution radar imaging from space with centimetre geometric accuracy for detailed analysis of a variety of processes in the areas of the biosphere, geosphere, cryosphere and hydrosphere. All scientists exploiting radar data from spaceborne, airborne and/or ground-based SAR sensors are cordially invited to contribute to this session. The main objective of the session is to present and discuss the progress, state-of-the-art and future perspectives in scientific exploitation of SAR data, mitigating atmospheric effects and error sources, cloud computing, machine learning and big data analysis, and interpretation methods of results obtained from SAR data for various types of disasters and engineering applications such as earthquakes, volcanoes, landslides and erosion, infrastructure instability and anthropogenic activities in urban areas. Contributions addressing scientific applications of SAR/InSAR data in biosphere, cryosphere, and hydrosphere are also welcome.

Share:
Co-organized as AS5.13/CR2.15/G2.7/GD10.3/HS11.45/NP4.11/SM1.14
Convener: Mahdi Motagh | Co-conveners: Ziyadin Cakir, Franz J Meyer, Zhenhong Li
Orals
| Mon, 08 Apr, 08:30–12:30, 14:00–15:45
 
Room M2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X3
TS6.6

The integrated study of field (young, and ancient analogues preserved in orogenic systems), seismic reflection/refraction, gravity/magnetics, well data (exploration and IODP), analogue and thermo-mechanical modelling approaches have greatly improved our understanding of the processes that influence and modify the architecture (crustal, magmatic, sedimentary, structural and thermal) of the distal domain of rifted margins. As more data becomes available our appreciation of the 3D and ultimately 4D geodynamic processes that influence the formation and present day structure of distal margins is evolving. Although all rifted margins are somewhat unique, similar genetic processes are often proposed despite the underlying interpretational uncertainties. These uncertainties can impact the resulting interpretations relating to the tectono-magmatic and crustal models. Therefore, despite many models the process often remains controversial and/or far for being well constrained.

This session would like to explore and discuss the observations and interpretations derived from geological and geophysical datasets across rifted margins and distal margins. Importantly, uncertainties should be addressed with respect to our current understanding of the genetic rift-domain evolution. Observations should focus on the evidences for processes that impact the final architecture, rock content and thermal imprint of conjugate margins. This relates to the observed style of extension and thinning (high vs low angle faulting and static vs dynamic interpretations and their evidence), vertical motions (e.g. uplift and subsidence), the isostatic impacts of the tectonic, magmatic and stratigraphic history relating to the genetic-rift domains.

Share:
Co-organized as GD5.9/SM1.16/SSP3.26
Convener: Philip Ball | Co-conveners: Laurent Gernigon, Geoffroy Mohn, Charlotte NIELSEN, Jean-Claude, Raymond Ringenbach
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30
 
Room K1
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2
GI2.2

Environmental systems often span spatial and temporal scales covering different orders of magnitude. The session is oriented in collecting studies relevant to understand multiscale aspects of these systems and in proposing adequate multi-platform surveillance networks monitoring tools systems. It is especially aimed to emphasize the interaction between environmental processes occurring at different scales. In particular, a special attention is devoted to the studies focused on the development of new techniques and integrated instrumentation for multiscale monitoring high natural risk areas, such as: volcanic, seismic, slope instability and other environmental context.
We expect contributions derived from several disciplines, such as applied geophysics, seismology, geodesy, geochemistry, remote sensing, volcanology, geotechnical and soil science. In this context, the contributions in analytical and numerical modeling of geodynamics processes are also welcome.
Finally, a special reference is devoted to the integration through the use of GeoWeb platforms and the management of visualization and analysis of multiparametric databases acquired by different sources

Share:
Co-organized as GD7.5/GMPV5.16/NH11.2/NP4.8/SM1.17/SSS9.7
Convener: Pietro Tizzani | Co-conveners: Francesca Bianco, Antonello Bonfante, Raffaele Castaldo, Nemesio M. Pérez
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room 0.96
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X1
SC1.13 ECS

This short course is an introduction to structural and petrological geological principles, used by geologist to understand system earth. The data available to geologists is often minimal, incomplete and representative for only part of the geological history. Besides learning field techniques to acquire and measure data, geologists need to develop a logical way of thinking to close gaps in the data to understand the system. There is a difference in the reality observed from field observation and the final geological model that tells the story.

In this course we briefly introduce the following subjects:
1) Acquisition of field-data
2) From structural field data to paleostresses
3) Using petrological field data to identify tectonic phases (e.g. burial and exhumation)
4) Rock deformation - What happens in the lab?
5) Data publications and EPOS - What to do with your research data?
6) Creating geological models: how to make the story complete


Our aim is not to make you the next specialist in geology, but we would rather try and make you aware of the challenges a geologist faces when he/she goes out into the field. Also the quality of data and the methods used nowadays are addressed to give seismologists and geodynamicists a feel for the capabilities and limits of geological research. This course is given by Early Career Scientist geologists and geoscientists and forms a trilogy with the short course on ‘Geodynamics 101’ and ‘Seismology 101’. For this reason, will also explain what kind of information we expect from the fields of seismology and geodynamics and we hope to receive some feedback in what kind of information you could use from our side.

Share:
Co-organized as GD11.4/SM1.20/TS13.6
Convener: Eldert Advokaat | Co-conveners: Anouk Beniest, Francesco Giuntoli, Richard Wessels
Tue, 09 Apr, 14:00–15:45
 
Room -2.62
SC1.21 ECS

The main goal of this short course is to provide an overview of the large scale dynamic processes on Earth, recent advances in the study of these processes and future directions. The course focusses on numerical methods to explain and advance our knowledge of geodynamic large scale processes, but additional constraints and insights obtained from the geological record and seismology (e.g., tomography) are also touched upon. The basic dynamics, state of the art understanding and outstanding questions of the following geodynamic processes are discussed through key papers in the field:
(1) Mantle convection
(2) The start of plate tectonics
(3) Break-up of supercontinents
(4) Subduction dynamics
(5) Crustal deformation & mountain building
Using their newfound knowledge of geodynamical processes, participants will be better able to understand and use geodynamical papers to answer their own research question.
The 90-minute short course is run by early career geodynamicists and is part of the Solid Earth 101 short course series together with Geodynamics 101A, Seismology 101, and Geology 101. It is dedicated to everyone who is interested in, but not necessarily experienced with, the large scale dynamics of the Earth; in particular early career scientists (BSc, MSc, PhD students and postdocs) and people who are new to the field of geodynamic modelling. The course "Geodynamics 101A: Numerical methods" discusses the numerical methods that are often used to solve for and study the processes outlined in this course. Discussion and questions will be greatly encouraged.

Share:
Co-organized as GD11.2/SM1.21/TS13.2
Convener: Adina E. Pusok | Co-conveners: Iris van Zelst, Fabio Crameri, Jessica Munch
Fri, 12 Apr, 14:00–15:45
 
Room -2.62
TS7.9

The Alps have been intensively studied by geologists for more than a century, providing a unique natural laboratory to deepen our understanding of orogenic processes and their relationship to mantle dynamics. Although most concepts that underlie current studies of mountain belts and convergence dynamics were born in the Alps, the belt is now being examined with renewed vigour in the AlpArray project. This project involves a large number of European institutions, with efforts focused on the AlpArray Seismic Network to provide homogeneous seismological coverage of the greater Alpine area at unprecedented aperture and station density, both on land and sea. New data is being recorded in a multidisciplinary research effort, and other projects are being planned in the immediate and mid-term future.
Within this context, we invite contributions from the Earth Science community that highlight new results in AlpArray and that identify and solve key open questions of the present and past structure and dynamics of the Alps and neighbouring orogens. Both disciplinary and multi-disciplinary contributions are welcome from geophysical imaging, seismotectonics, geodesy, geodynamics, gravimetry, tectonics, structural geology, petrology, geochronology, thermomechanical modelling and other allied fields. Scales of interest range from crustal to upper mantle, in the Alps and neighbouring mountain belts such as the Apennines, the Carpathians and the Dinarides.

Share:
Co-organized as GD6.7/SM1.22
Convener: Anne Paul | Co-conveners: Mark R. Handy, György Hetényi, Marco Giovanni Malusa', Irene Molinari
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room K1
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X2
TS5.3

Our first-order understanding of earthquake cycles is limited by our ability to detect and interpret natural phenomena or their relict signatures on faults. However, such observations allow us to define fundamental hypotheses that can be tested by way of experiments and models, ultimately yielding deeper insights into mechanics of faulting in nature. Inter-, co-, and post-seismic deformation can be documented geodetically, but the sparseness of the data and its large spatial and temporal variability do not sufficiently resolve their driving mechanisms. Laboratory experiments under controlled conditions can narrow down the possibilities, while numerical modelling helps extrapolating these results back to natural conditions. Thus, integrated approaches to bridge long-term tectonics and the earthquake cycle that combine observation, interpretation, experimentation, and finally, physical or numerical modelling, are key for our understanding of the deformation behaviour of complex fault systems.

This session seeks contributions toward an integrated perspective on the earthquake cycle that span a wide range of observations, methodologies, and modelling over a variety of spatial and temporal scales. Presentations can cover brittle and ductile deformation, from microstructures to mantle rheology and with applications to earthquake mechanics, geodynamics, geodesy, geohazards, and more. Specific questions include: How do long-term crustal and lithospheric deformation affect short-term seismicity and earthquake cycle behaviour? What is the long-term topographic signature of the earthquake? What are the relative contributions of rheology and geometry for seismic and aseismic slip? What are the roles of on- and off-fault deformation in shaping the landscape and partitioning seismic and aseismic energy dissipation? We welcome submissions by early-career scientists in particular.

— Invited speaker: Luc L Lavier, Jackson School of Geosciences | The University of Texas at Austin

Share:
Co-organized as GD2.11/NH4.17/SM1.23
Convener: Luca Dal Zilio | Co-conveners: Luca C Malatesta, Onno Oncken, Ylona van Dinther
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room K2
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2
TS6.1

Continental rifting is a multi-facetted process spanning from the inception of extension to continental rupture or the formation of a failed rift. This session aims at combining new data sets, concepts and techniques elucidating the structure and dynamics of rifts and rifted margins. We invite submissions highlighting the time-dependent evolution of processes such as initiation of faults and ductile shear zones, tectono-magmatic and sedimentary history, lithospheric necking and rift strength loss, influence of the pre-rift lithospheric structure, mantle dynamics and associated effects on rifting processes, as well as continental break-up and the transition to sea-floor spreading. We encourage contributions using multi-disciplinary and innovative methods from field geology, geochronology, seismology, geodesy, marine geophysics, plate reconstruction, or modeling. Focus regions may include but are not limited to the Atlantic, Indian Ocean, Mediterranean and South China Sea (e.g. IODP 367/368 area) rifted margins, or the East African, Eger, Baikal and Gulf of California rift systems. Special emphasis will be given to presentations that provide an integrated picture by combining results from active rifts, passive margins, failed rift arms or by bridging the temporal and spatial scales associated with rifting.

Share:
Co-organized as GD5.6/GMPV2.12/SM1.24
Convener: Sascha Brune | Co-conveners: Carmen Gaina, Giacomo Corti, Nick Kusznir
Orals
| Mon, 08 Apr, 10:45–12:30, 14:00–15:45
 
Room K1
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X2
TS6.4

What controls lithosphere evolution during extension? The aim of this session is to investigate diverging systems over a wide range of spatial and temporal scales, and at all stages in the life cycle of divergent plate boundaries including continental rifting, mantle exhumation and seafloor spreading.
A special emphasis will be given to
(1) studies that couple lithospheric deformation models to plate kinematics, and that integrate possibly the role of serpentinisation and/or magmatism in the models.
(2) works that analyse subsidence and thermal effect of rifting and break-up.
(3) paleogeographic reconstructions revealing the influence of sedimentation and lithosphere structure evolution on biogeochemical cycles and oceanographic circulation.
(4) contributions that elucidate extensional modes through the interplay between tectonic structures, magmatism and the stratigraphic record using field, petrological and seismic data.

Share:
Co-organized as GD5.7/GMPV7.26/SM1.25/SSP3.30
Convener: Gianluca Frasca | Co-conveners: Marta Pérez-Gussinyé, Michael Nirrengarten, Eun Young Lee, Maria Luisa Garcia Tejada, Joanne Whittaker, Simon Williams, Christopher Jackson
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room K1
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X2
TS8.1 Media

Transform faults form major active plate boundaries and are intrinsic features of plate tectonics and plate accretion. Submarine transforms are likely to be fundamental pathways for fluid circulation in depth, thus significantly contributing to the exchange between the lithosphere and the hydrosphere. This implies serpentinization and weathering that affect the mechanical properties in the deformation zone. An open question is the influence of the elemental exchange between the crust and ocean water on these processes, as well as the interactions with the biosphere, both at the surface and at depth. Continental transforms and strike-slip faults are often a site of major earthquakes, representing major hazards for the population. Here too, the role of weathering in the deformation zone is still unconstrained. Both types of faults are still poorly known in terms of structure, rheology and deformation. These features are seismically active zones, with large earthquakes often being recorded on the largest faults. Yet, little is known about the rupture process, seismic cyclicity and active deformation of transform faults. Recent works have shown that fracture zones, supposedly inactive features, can be reactivated and be the site of large earthquakes and deformation. Additional open questions are the way transform faults deform under far-field stresses, such as plate kinematic changes, and under more local stresses, what are the time constants of the processes and what are the primary controls of the tectonic and magmatic styles of the response. The tectonic and magmatic response of large offset transforms, particularly, is still largely unknown.

This session aims to present recent results on studies of these large features, especially on the rheology, deformation patterns, rupture processes, fluid circulation and physical properties of transform faults. We welcome observational studies on strike-slip and transform faults, both continental and oceanic, on fracture zones and on transform continental margins (structural geology and tectonics, geophysical imaging of the crust and lithosphere, petrology and geochemistry, seismology, fluid circulation and rock alteration, geodesy) as well as modelling studies, both analogue and numerical. Cross-disciplinary approaches are encouraged. The submission of abstracts divulging on-going international projects (drilling sites, seismic reflection imaging along strike-slip faults) are also welcome. This session is promoted by the Oceanic Transform Faults working group of InterRidge.

Share:
Co-organized as GD5.12/GMPV3.8/SM1.26
Convener: João Duarte | Co-conveners: Marcia Maia, Mathieu Rodriguez, Daniele Brunelli, Barry Hanan
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room K2
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X2
SC1.14 ECS

How do seismologists detect earthquakes? How do we locate them? Is seismology only about earthquakes? Seismology has been integrated into a wide variety of geo-disciplines to be complementary to many fields such as tectonics, geology, geodynamics, volcanology, hydrology, glaciology and planetology. This 90-minute course is part of the Solid Earth 101 short course series together with ‘Geodynamics 101 (A & B)’ and ‘Geology 101’ to better illustrate the link between these fields.

In ‘Seismology 101’, we will present an introduction to the basic concepts and methods in seismology. In previous years, this course was given as "Seismology for non-seismologists" and it is still aimed at those not familiar with seismology -- in particular early career scientists. An overview will be given on various methods and processing techniques, which are applicable to investigate surface processes, near-surface geological structures and the Earth’s interior. The course will highlight the role that advanced seismological techniques can play in the co-interpretation of results from other fields. The topics will include:
- the basics of seismology, including the detection and location of earthquakes
- understanding and interpreting those enigmatic "beachballs"
- an introduction to free seismo-live.org tutorials and other useful tools
- how seismic methods are used to learn about the Earth, such as for imaging the Earth’s interior (on all scales), deciphering tectonics, monitoring volcanoes, landslides and glaciers, etc...

We likely won’t turn you in the next Charles Richter in 90 minutes but would rather like to make you aware how seismology can help you in geoscience. The intention is to discuss each topic in a non-technical manner, emphasizing their strengths and potential shortcomings. This course will help non-seismologists to better understand seismic results and can facilitate more enriched discussion between different scientific disciplines. The short course is organised by early career scientist seismologists and geoscientists who will present examples from their own research experience and from high-impact reference studies for illustration. Questions from the audience on the topics covered will be highly encouraged.

Share:
Co-organized as GD11.3/SM1.28/TS13.3
Convener: Maria Tsekhmistrenko | Co-convener: Nienke Blom
Wed, 10 Apr, 14:00–15:45
 
Room -2.62

SM2 – Deformation, Faulting, and Earthquake Processes (incl. seismotectonics, geodynamics, earthquake source physics)

SM2.1

Numerical modeling of earthquakes provides new approaches to apprehend the physics of earthquake rupture and the seismic cycle, seismic wave propagation, fault zone evolution and seismic hazard assessment.
Recent advances in numerical algorithms and increasing computational power enable unforeseen precision and multi-physics components in physics-based earthquake simulation but also pose challenges in terms of fully exploiting modern supercomputing infrastructure, realistic parameterization of simulation ingredients and the analysis of large synthetic datasets.
This session aims to bring together modelers and data analysts interested in the physics and computational aspects of earthquake phenomena. We welcome studies focusing on all aspects of the physics of various earthquakes - from slow slip events, fault mechanics and rupture dynamics, to wave propagation and ground motion analysis, to the seismic cycle and inter seismic deformation - and studies which further the state-of-the art in the related computational and numerical aspects.
We further encourage studies linking earthquake source processes to rock mechanics and the laboratory scale.

Share:
Co-organized as GD8.7/NH4.8
Convener: Alice-Agnes Gabriel | Co-conveners: Jean Paul Ampuero, Hideo Aochi
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X2
SM2.2

This session covers the broad field of earthquake source processes, and includes the topics of observing the surface deformation caused by earthquakes, imaging the rupture kinematics and simulating earthquake dynamics using numerical methods, to develop a deeper understanding of earthquake source physics. We also invite presentation that link novel field observations and laboratory experiments to earthquake dynamics, and studies on earthquake scaling properties. Of particular interest are innovative studies on quantifying the uncertainties in earthquake source-parameter estimation.
Within this framework our session also provides a forum to discuss case studies of field observation, kinematic and dynamic source modeling of recent significant earthquakes.

Share:
Co-organized as NH4.9/TS5.10
Convener: P. Martin Mai | Co-conveners: Alice-Agnes Gabriel, Henriette Sudhaus
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X2
SM2.3

Over the past several years, interest in earthquake foreshocks has experienced considerable growth. This can, on one side, be explained by a largely improved observational database that spans all seismic scales. A development that is driven by a growing number of permanent seismic stations and large-scale campaign networks, the development of advanced detection and analysis techniques, and by the improvement of laboratory equipment and techniques. In addition, the ongoing endeavor to better understand induced seismicity has been contributing to this upgrowth with densely-monitored underground lab-scale experiments and enhanced microseismic monitoring. On the other side, earthquake foreshocks are widely perceived as one of the few and, as of now, most direct observations of earthquake nucleation processes.

Foreshocks are generally thought to arise by one of two mechanisms: cascading failure or preslip. The cascading model proposes that a mainshock following a foreshock has an identical origin to that of aftershocks. In this case, earthquake frequency-magnitude statistics predict that occasionally an aftershock will be larger than the prior event, which makes the prior event a foreshock only after the fact. The mechanism proposed by the preslip model is that premonitory processes - perhaps fault creep related to mainshock nucleation - result in stress changes that drive the foreshock process. Seismologists have found no agreement so far; this is made more difficult by two facts: that no agreed-upon, universal strategy to identify foreshocks in a seismic catalog exists and that data quality and quantity vary considerably over spatial and temporal scales.

In this session, we want to bring together scientists from all disciplines working on, or interested in, earthquake foreshock occurrence. We invite reports on observational and theoretical studies on all scales. This includes laboratory and deep underground experimental earthquakes, as well as microseismic to megathrust earthquakes. We also encourage submissions from colleagues working on advanced detection and analysis techniques for improved foreshock identification.

Share:
Co-organized as NP4.9/TS5.9
Convener: Toni Kraft | Co-conveners: Christine J Ruhl, Aitaro Kato
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2
SM2.4

Since 2004, there have been a number of large subduction earthquakes whose unexpected rupture features contributed to the generation of devastating tsunamis. The impact that these events had on human society highlights the need to improve our knowledge of the key mechanisms behind their origin. Advances in these areas have led to progess in our understanding of the most important parameters affecting tsunamigenesis. For example, unexpectedly large slip was observed during the 2011 Tohoku-Oki earthquake, leading to re-investigations of the geology of other subduction zones and the conditions that can lead to large slip at the trench.

In general, the large amount of geophysical data recorded at present has led to new descriptions of faulting and rupture complexity (e.g., spatial and temporal seismic rupture heterogeneity, fault roughness, geometry and sediment type, interseismic coupling, etc.). Rock physicists have proposed new constitutive laws and parameters based on a new generation of laboratory experiments, which simulate close to natural seismic deformation conditions on natural fault samples. Analog modellers now have apparati that simulate multiple seismic cycles with unprecedented realism. These represent a valuable tool for investigating how various boundary conditions (e.g., frictional segmentation, interplate roughness) influence the seismic behavior of subduction megathrusts. In addition, advances in numerical modelling now allow scientists to test how new geophysical observations, e.g. from ocean drilling projects and laboratory analyses, influence subduction zone processes over a range of temporal and spatial scales (i.e., geodynamic, seismic cycling, earthquake rupture, wave propagation modelling).

In light of these advances, this session has a twofold mission: i) to integrate recent results from different fields to foster a comprehensive understanding of the key parameters controlling the physics of large subduction earthquakes over a range of spatial and temporal scales; ii) to individuate how the tsunami hazard analysis can benefit from using a multi-disciplinary approach.

We invite abstracts that enhance interdisciplinary collaboration and integrate observations, rock physics experiments, analog- and numerical modeling, and tsunami hazard.

Share:
Co-organized as NH4.10/TS5.7
Convener: Fabrizio Romano | Co-conveners: Elena Spagnuolo, Antonio Scala, Paola Vannucchi, Fabio Corbi, Dietrich Lange, Elizabeth H. Madden, Iris van Zelst
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room -2.21
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X2
SM2.5

The mechanics of earthquakes is controlled by a spectrum of processes covering a wide range of length scales, from tens of kilometres down to few nanometres. For instance, while the geometry of the fault/fracture network and its physical properties control the global stress distribution and the propagation/arrest of the seismic rupture, earthquake nucleation and fault weakening is governed by frictional processes occurring within extremely localized sub-planar slipping zones. The co-seismic rheology of the slipping zones themselves depends on deformation mechanisms and dissipative processes active at the scale of the grain or asperity. If this is the case of shallow earthquakes, the nucleation of intermediate and deep earthquakes remains enigmatic since it occurs at elevated ambient pressure-temperature conditions which should favour plastic deformation and suppress frictional processes. Though, recent studies on fault rocks of Earth’s lower crust and upper mantle reveal microstructures comparable to those associated with co-seismic slip and off-fault damage in brittle rocks. The study of such complex multiscale systems requires an interdisciplinary approach spanning from structural geology to seismology, geophysics, petrology, rupture modelling and experimental rock deformation. In this session we aim to convene contributions dealing with different aspects of earthquake mechanics at various depths and scales such as:
· the thermo-hydro-mechanical processes associated to co-seismic fault weakening based on rock deformation experiments, numerical simulations and microstructural studies of fault rocks;

· the study of natural and experimental fault rocks to investigate the nucleation mechanisms of intermediate and deep earthquakes in comparison to their shallow counterparts;

· the elastic, frictional and transport properties of fault rocks from the field (geophysical and hydrogeological data) to the laboratory scale (petrophysical and rock deformation studies);

· the internal architecture of seismogenic fault zones from field structural survey and geophysical investigations (e.g. seismic, electric and electromagnetic methods);

· the modeling of earthquake ruptures, off-fault dynamic stress fields and long-term mechanical evolution of realistic fault networks;

· the earthquake source energy budget and partitioning between fracture, friction and elastic wave radiation from seismological, theoretical and field observations.

· the interplay between fault geometry and earthquake rupture characteristics (e.g. coseismic slip and rupture velocity distribution) from seismological, geodetic, remote sensed or field observations;

We particularly welcome novel observations or innovative approaches to the study of earthquake faulting. Contributions from early career scientists are solicited.

Solicited oral presentation: Matthew Tarling (University of Otago)

Share:
Co-organized as EMRP1.20/TS5.8
Convener: Sarah Incel | Co-conveners: Stefano Aretusini, Matteo Demurtas, Michele Fondriest, Francois Passelegue
Orals
| Mon, 08 Apr, 10:45–12:30
 
Room -2.21
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2
GD5.2

Many new high quality and high resolution geophysical and geological data had been acquired in the past years that need to be updated, re-analysed and re-interpreted in the light of our present knowledge in subductions processes. Moreover it is needed to better clarify the temporal and spatial evolution of those processes in order to much precise our geodynamic ideas of mountain building, subduction, transition of collision to subduction, or transition of subduction to collision.
Among other global places, the zone from Japan, Taiwan to the Philippines is a key area to study such subduction/collision transition due to the rapid convergence between Eurasian and Philippine Sea plates. There are geodynamic inversion of the east dipping Manila oceanic subduction, that evolves northward, first, into a Continental Subduction (also called Collision) onshore Taiwan, then secondly, east of Taiwan, into the north dipping Ryukyu arc/continent subduction. Due to the so rapid Plates shortening rate (10cm.y-1), those active Oceanic to Continental Subductions processes in Taiwan creates 1/8 of the annual seismicity in the World !
There are other places in the World active or not, that should also be taken into careful consideration in order to reveal and lead us to better understand new tectonic processes (e.g.: Alpes, Pyrénées, Cascades and so on).
To conclude in this EGU session, we aim to update the existing geodynamic state of the art of the oceanic to continental subductions processes after so numerous data that had been collected recently and all the works that had been done on this subject. Therefore this EGU Session should help us to much better understand the tectonics related to plate, plate collision and the transition between the subduction and collision.

Share:
Co-organized as GI2.11/NH4.15/SM2.6
Convener: Benoit Deffontaines | Co-conveners: Ho-Han Hsu, Shu-Kun Hsu
Posters
| Attendance Mon, 08 Apr, 08:30–10:15
 
Hall X2
GD2.3

Knowledge of the lithosphere-asthenosphere system and its dynamics is one of the key questions for understanding geological processes. Constraints on the style, mechanism, and pattern of deformation in the crust and upper mantle come from direct and indirect observations using a variety of methods. Seismological studies focusing on anisotropy have successfully improved our knowledge of deformation patterns, and when combined with tomographic models, anisotropy can shed light on the geometry of deformation in the lithosphere and asthenosphere. Sophisticated geodynamic modeling (numerical and physical analogue) and laboratory (rock physics) experiments enhance our understanding of flow patterns in the Earth’s upper mantle and their bearing on vertical motions of crust and lithosphere. Combined with seismic anisotropy data these methods have the potential to reveal the mechanisms that create deformation-induced features such as shape preferred orientation (SPO) and lattice-preferred orientation (LPO). Structural and kinematic characterization of deformation events by geometric and kinematic analyses infer the direction and magnitude of the tectonic forces involved in driving deformation within crust and upper mantle. Additionally, physical analogue and numerical modeling studies have fostered our understanding of complex 3D-plate interaction on various time-scales, regulated through the degree of plate coupling and the rheology of the lithosphere.

However, more work is required to better integrate the various experimental and modelling techniques and to link them to multi-scale observations. This session will bring together different disciplines that focus on the deformation of the lithosphere and upper mantle as well as on the dynamics and nature of the lithosphere-asthenosphere system. The main goal is to demonstrate the potential of different methods, and to share ideas of how we can collaboratively study lithospheric deformation, and how it relates to the ongoing dynamics within the asthenospheric mantle. Contributions are sought from studies employing seismic observation, geodynamical modeling (analogue and numerical), structural geology, and mineral and rock physics.

Invited Speakers:
Greg Houseman (Institute of Geophysics and Tectonics, University of Leeds)
Agnes Kiraly (Department of Geosciences, University of Oslo)

Share:
Co-organized as SM2.7/TS9.8
Convener: Ehsan Qorbani Chegeni | Co-conveners: Irene Bianchi, Boris Kaus, Ernst Willingshofer
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room -2.21
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X2
TS2.2

The advent of novel technologies have boosted our capability of acquiring new evidences that faults behavior is various and extremely sensitive to a large number of parameters. These evidences are supported in natural earthquakes by the occurence of a large pletora of events spanning from slow to fast earthquakes, precursory slips, non volcanic tremors and low frequency earthquakes. The aim of this session is to convey interdisciplinary studies on fault behaviour and processes controlling the propagation of slip instabilities in rocks, granular materials and/or laboratory analogs; we invite contributions at the frontiers between Rock Mechanics, Models, Seismology, Tectonics and Mineralogy dealing with either slow, fast or transient evolution of earthquakes and earthquake sequences in shallow and deep environments; we welcome studies performed at the laboratory and field scale, providing insights on earthquake evolution and/or constraining observed seismological statistical laws like Omori’s and Gutenberg-Richter’s; we welcome innovative techniques that help the observations and take advantage of high-speed imaging and continuous acoustic emission streaming data.

Share:
Co-organized as EMRP1.9/GMPV7.25/SM2.9
Convener: Marco Maria Scuderi | Co-conveners: Giulio Di Toro, Pierre Dublanchet, Francois Passelegue, Elena Spagnuolo
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room K2
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X2
TS5.4

Earthquakes that occur within regions of slow lithospheric deformation (low-strain regions) are inherently difficult to study. The long interval between earthquakes, coupled with natural and anthropogenic modification, limit preservation of paleoearthquakes in the landscape. Low deformation rates push the limits of modern geodetic observation techniques. The short instrumental record challenges extrapolation of small earthquake recurrence based on modern seismological measurement to characterize the probability of larger, more damaging earthquakes. Characterizing the earthquake cycle in low-strain settings is further compounded by temporal clustering of earthquakes, punctuated by long periods of quiescence (e.g. non-steady recurrence intervals). However, earthquakes in slowly deforming regions can reach high magnitudes and pose significant risk to populations.

This session seeks to integrate paleoseismic, geomorphic, geodetic, geophysical, and seismologic datasets to provide a comprehensive understanding of the earthquake cycle in low-strain regions. This session will draw upon recent advances in high-resolution topography, geochronology, satellite geodesy techniques, subsurface imaging techniques, longer seismological records, high-density geophysical networks and unprecedented computational power to explore the driving mechanisms for earthquakes in low-strain settings. We welcome contributions that (1) present new observations that place constraints on earthquake occurrence in low-strain regions, (2) explore patterns of stable or temporally varying earthquake recurrence, and (3) provide insight into the mechanisms that control earthquakes in regions of slow deformation via observation and/or modeling.

Share:
Co-organized as NH4.18/SM2.10
Convener: Ryan Gold | Co-conveners: Pierre Arroucau, Sierd Cloetingh, Susana Custódio, Gordana Vlahovic
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room K2
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2

SM3 – Seismic Hazard Assessment (earthquake forecasting, ground-motion modelling, seismic and/or multihazard probabilistic assessment)

SM3.1

Recent catastrophic earthquakes have highlighted the importance of advancing seismic hazard models over a wide range of time frames, for example to support more reliable building codes and to track the short-term evolution of seismic sequences. Over the past years, the exponential growth of ground-motion data, short- and long-term forecasting models, hazard model test results, new engineering needs, and progress in research on earthquake predictability and ground-motion processes are creating a strong motivation for the exploration and incorporation of new concepts and methods into the next generation of probabilistic forecasts, both for long-term probabilistic seismic hazard assessment (PSHA), and operational earthquake forecasting. Owing to the important societal impact, any forecasting model has to be scientifically reliable. Prospective modeling is the best way of testing alternate hypotheses and models, and hence advancing our scientific understanding of the processes involved. Pragmatically, prospective testing provides an essential scientific contribution to improving the capacity to manage seismic hazard and risk in a wide range of forecasting time windows, for a broad range of stakeholders, including vulnerable societies. The development of such new and innovative long- and short-term forecasting/hazard models is a necessary but insufficient step: major advances in forecasting and hazard assessment require a solid testing phase that allows for model evaluation and quantifies any increase in forecasting skill over a benchmark model. 

We solicit contributions related to new developments in all aspects of long- and short-term seismic hazard and earthquake forecasting models:
   • Definition of earthquake sources and determination of activity rates and their uncertainty, including assessment of earthquake datasets, calibration of magnitude scales, representation of seismogenic sources and their geological constraints, and the emerging roles of strain and simulation-based earthquake-rupture forecasts.
   • Development of innovative earthquake forecasting models with forecast horizons of days to decades.
   • Estimation of strong ground motions and their uncertainty, development of new ground-motion models, assessment of site effects, the consideration of new parameters to characterize the intensity of shaking, and potential insights and uses of physics-based simulations of ground shaking. 
   • Testing and evaluation of hazard and earthquake forecasting models including statistical tests of 
activity rates, earthquake occurrence, calibration of ground-motion models, hazard-model parameterization and implementation, sensitivity analyses of key parameters and results, as well as the development of innovative testing procedures.
   • Case studies of PSHA from Europe and around the globe. 
   • Model building processes and related uncertainties, formal elicitation of expert opinion and its consequences for the levels of knowledge or belief, and comprehensive treatment of aleatory and epistemic uncertainties.
   • Contributions related to the ongoing update of the Harmonized European Seismic Hazard model and the emerging EPOS infrastructure on hazard and risk.
.

Share:
Co-organized as NH4.11
Convener: Danijel Schorlemmer | Co-conveners: Fabrice Cotton, Warner Marzocchi, Maximilian Werner, Stefan Wiemer
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room D1
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X2
NH4.2 Media

Earthquakes occur with great spatio-temporal variability, which emerges from the complex interactions between them. Significant progress is being made towards understanding spatio-temporal correlations, scaling laws and clustering, and the emergence of seismicity patterns. New models being developed in statistical seismology have direct implications for time-dependent seismic hazard assessment and probabilistic earthquake forecasting. In addition, the increasing amount of earthquake data available on local to global scales provides new opportunities for model testing.


This session focuses both on recent insights on the physical processes responsible for the distribution of earthquakes in space and time, and on new models and techniques for quantifying the seismotectonic process and its evolution. Particular emphasis will be placed on:
- physical and statistical models of earthquake occurrence;
- analysis of earthquake clustering;
- spatio-temporal properties of earthquake statistics;
- quantitative testing of earthquake occurrence models;
- implications for time-dependent hazard assessment;
- methods for earthquake forecasting;
- data analyses and requirements for model testing.

Confirmed solicited speaker: Danijel Schorlemmer (GFZ - German Research Center for Geosciences, Potsdam, Germany)

Share:
Co-organized as SM3.4
Convener: Stefania Gentili | Co-conveners: Rita Di Giovambattista, Álvaro González
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room M1
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X3
NH4.4

Our capability to provide timely and reliable seismic risk estimates is an essential element towards building a resilient society, through informed decision for risk management. The scientific base of the process of seismic risk mitigation includes various seismic hazard models, developed at different time scales and by different methods, as well as the use of information as complete and reliable as possible about past seismicity.
Some recent large earthquakes caused extensive damage in areas where some models indicated low seismic hazard, leading to an increased demand for criteria to objectively assess how well seismic hazard models are performing. This session aims to tackle theoretical and implementation issues, which are essential for the development of effective mitigation strategies and include:
⇒ methods for comparison of seismic hazard models and their performance evaluation;
⇒ hazard and risk assessment of extreme seismic events;
⇒ long-term evidences about past great earthquakes (including unconventional seismological observations, such as impact on caves, ancient constructions and other deformations evidences);
⇒ earthquake hazard assessment in terms of macro-seismic intensity;
⇒ seismic risk estimation at different time and space scale.
In particular, the session will address concepts, problems, and approaches in assessing hazard related to the earthquakes that “may cause loss of life, injury or other health impacts, property damage, loss of livelihoods and services, social and economic disruption, or environmental damage” (according to UNISDR terminology). The session will include discussions of the pros and cons of deterministic, neo-deterministic, probabilistic, and intensity-based seismic hazard assessments. The latter is of special importance for Europe because of the available large historical information on macro-seismic intensities.
We invite contributions related to: hazard and risk assessment methods and their performance in applications; critical observations and constraints for seismic hazard assessment; verification methods that are suitable to quantify seismic hazard estimates and that can be applied to limited and/or heterogeneous observations (ranging from recent records of ground shaking parameters to past intensity data); seismic hazard and risk monitoring and modeling; and risk communication and mitigation.
The session will provide an opportunity to discuss best practices and share experience gained with different testing methods, including their application in different fields. We hope to highlight both the existing gaps and future research directions that could strengthen the procedures for testing and comparing performance of seismic hazard models.

Share:
Co-organized as SM3.5
Convener: Antonella Peresan | Co-conveners: Katalin Gribovszki, Vladimir Kossobokov, Elisa Varini, Mihaela Kouteva
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room M1
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X3
NH9.11 ECS

In recent years an increasing number of research projects focused on natural hazards (NH) and climate change impacts, providing a variety of information to end user or to scientists working on related topics.

The session aims at promoting new and innovative studies, experiences and models to improve risk management and communication about natural hazards to different end users.

End users such as decision and policy makers or the general public, need information to be easy and quickly interpretable, properly contextualized, and therefore specifically tailored to their needs. On the other hand, scientists coming from different disciplines related to natural hazards and climate change (e.g., economists, sociologists), need more complete dataset to be integrated in their analysis. By facilitating data access and evaluation, as well as promoting open access to create a level playing field for non-funded scientists, data can be more readily used for scientific discovery and societal benefits. However, the new scientific advancements are not only represented by big/comprehensive dataset, geo-information and earth-observation architectures and services or new IT communication technologies (location-based tools, games, virtual and augmented reality technologies, and so on), but also by methods in order to communicate risk uncertainty as well as associated spatio-temporal dynamic and involve stakeholders in risk management processes.

However, data and approaches are often fragmented across literature and among geospatial/natural hazard communities, with an evident lack of coherence. Furthermore, there is not a unique approach of communicating information to the different audiences. Rather, several interdisciplinary techniques and efforts can be applied in order to simplify access, evaluation, and exploration to data.

This session encourages critical reflection on natural risk mitigation and communication practices and provides an opportunity for geoscience communicators to share best methods and tools in this field. Contributions – especially from Early Career Scientists – are solicited that address these issues, and which have a clear objective and research methodology. Case studies, and other experiences are also welcome as long as they are rigorously presented and evaluated.

New and innovative abstract contributions are particularly welcomed and their authors will be invited to submit the full paper on a special issue on an related-topics Journal.

In cooperation with NhET (Natural hazard Early career scientists Team).

Share:
Co-organized as ESSI1.8/GI1.11/GMPV6.3/HS11.44/SM3.7/SSS13.19
Convener: Raffaele Albano | Co-conveners: Valeria Cigala, Jonathan Rizzi
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room L1
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X3
NH4.3

From the real-time integration of multi-parametric observations is expected the major contribution to the development of operational t-DASH systems suitable for supporting decision makers with continuously updated seismic hazard scenarios. A very preliminary step in this direction is the identification of those parameters (seismological, chemical, physical, biological, etc.) whose space-time dynamics and/or anomalous variability can be, to some extent, associated with the complex process of preparation of major earthquakes.
This session wants then to encourage studies devoted to demonstrate the added value of the introduction of specific, observations and/or data analysis methods within the t-DASH and StEF perspectives. Therefore studies based on long-term data analyses, including different conditions of seismic activity, are particularly encouraged. Similarly welcome will be the presentation of infrastructures devoted to maintain and further develop our present observational capabilities of earthquake related phenomena also contributing in this way to build a global multi-parametric Earthquakes Observing System (EQuOS) to complement the existing GEOSS initiative.
To this aim this session is not addressed just to seismology and natural hazards scientists but also to geologist, atmospheric sciences and electromagnetism researchers, whose collaboration is particular important for fully understand mechanisms of earthquake preparation and their possible relation with other measurable quantities. For this reason all contributions devoted to the description of genetic models of earthquake’s precursory phenomena are equally welcome. Every 2 years selected papers presented in thsi session will be proposed for publication in a dedicated Special Issue of an international (ISI) scientific journal.

Share:
Co-organized as AS4.62/EMRP2.40/ESSI1.7/GI2.13/SM3.9, co-sponsored by JpGU
Convener: Valerio Tramutoli | Co-conveners: Mariano Lisi, Pier Francesco Biagi, Katsumi Hattori, Filippos Vallianatos
Orals
| Wed, 10 Apr, 08:30–12:30, 14:00–15:45
 
Room M2
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X3
TS5.1

The study of active faults and deformation of the Earth's surface has made, and continues to make, significant contributions to our understanding of earthquakes and the assessment of seismic related hazard.
Active faulting may form and deform the Earth's surface so that records are documented in young sediments and in the landscape. Field studies of recent earthquake ruptures help not only constraining earthquake source parameters but also the identification of previously unknown active structures. The insights gleaned from recent earthquakes can be applied to study past earthquakes. Paleoseismology and related disciplines such as paleogeodesy and paleotsunami investigations still are the primary tools to establish earthquake records that are long enough to determine recurrence intervals and long-term deformation rates for active faults. Multidisciplinary data sets accumulated over the years have brought unprecedented constraints on the size and timing of past earthquakes, and allow deciphering shorter-term variations in fault slip rates or seismic activity rates, as well as the interaction of single faults within fault systems. Based on the this rich, but very heterogeneous knowledge of seismogenic faults, a variety of approaches have been developed to tranfer earthquake-fault geology into fault models suitable for probabilistic SHA. This session thus aims at linking field geologists, crustal deformation modellers, fault modellers, and seismic hazard practitioners.

In this session, we welcome contributions describing and critically discussing different approaches to study active faults. We are particularly interested in studies applying new and innovative methodological or multidisciplinary approaches. We hope to assemble a broad program bringing together studies dealing with on-land, lake or offshore environments, and applying a variety of methods such as traditional paleoseismic trenching, high-resolution coring, geophysical imaging, tectonic geomorphology, and remote sensing, as well as the application of earthquake geology in seismic hazard assessments. In addition, we encourage contributors describing how to translate fault data or catalogue data into fault models for SHA , and how to account for faults or catalogue issues.

Share:
Co-organized as GM4.5/NH4.16/SM3.10
Convener: Esther Hintersberger | Co-conveners: Romain Le Roux-Mallouf, Silke Mechernich, Oona Scotti
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room K2
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X2
NH5.1 Media

Tsunamis can produce catastrophic damage on vulnerable coastlines, essentially following major earthquakes, landslides or atmospheric disturbances. After the disastrous tsunamis in 2004 and 2011, tsunami science has grown significantly, opening new fields of research for various domains, and also in regions where the tsunami hazard was previously underestimated.
Numerical modeling, complemented with laboratory experiments, are essential to quantify the tsunami hazard based. To this end, it is essential to rely on complete databases of past tsunami observations, including both historical events and results of paleotsunami investigations. Furthermore, a robust hazard analysis has to take into account uncertainties and probabilities with the more advanced approaches such as PTHA.
Because the vulnerability of populations, of infrastructures and of the built environment in coastal zones increases, integrated plans for tsunami risk prevention and mitigation should be encouraged in any exposed coastline, consistent with the procedures now in place in a growing number of Tsunami Warning System.
The NH5.1/OS2.22/SM3.11 Tsunami session welcomes contributions covering any of the aspects mentioned here, encompassing field data, regional hazard studies, observation databases, numerical modeling, risk studies, real time networks, operational tools and procedures towards a most efficient warning.
A focus on recent tsunami events all over the globe is encouraged (including Palu 28 September, Zakynthos 26 October, Tadine, New Caledonia, 5 December), as well as on the achievements of recent research projects.

Share:
Co-organized as OS2.22/SM3.11
Convener: Hélène Hébert | Co-conveners: Alberto Armigliato, Miquel Canals, Ira Didenkulova, Finn Løvholt
Orals
| Thu, 11 Apr, 08:30–12:30, 14:00–18:00
 
Room 1.61
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X3

SM4 – Seismic Imaging Across Scales (from near-surface to global scale, incl. methodological developments)

SM4.1

Seismic tomography is a powerful tool for imaging the Earth’s interior and inferring its structure, composition, dynamics and evolution. Over the last decades, our images have sharpened, thanks to the growth of global and dense regional networks (on land and in the oceans), the extraction of new observables, advances in modelling techniques and increased computational power. We are now not only resolving unprecedented details on local and regional scales, but also moving towards whole-Earth tomography, including the inner core.

We welcome contributions on methods and applications of seismic tomography from the crust to the core and at scales from local to regional to global, including studies of new observables, developments in forward modelling and inversion techniques, innovative approaches to uncertainty quantification, and seismological and interdisciplinary efforts aimed at obtaining new insights into Earth's dynamics and evolution. While we welcome all studies aimed at constraining Earth structure, we particularly invite contributions that utilise passive sources.

Share:
Co-organized as GD3.7
Convener: Sergei Lebedev | Co-conveners: Ana MG Ferreira, Kasra Hosseini, Paula Koelemeijer
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room -2.21
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X2
SM4.2

This session will cover applied and theoretical aspects of geophysical imaging, modelling and inversion using both active- and passive-source seismic measurements as well as other geophysical techniques (e.g., gravimetry, magnetic and electromagnetic) to investigate the Earth’s crust and uppermost mantle. We invite contributions focused on methodological developments, theoretical aspects, and applications. Studies across the scales and disciplines are particularly welcome.

Among others, the session may cover the following topics:
- Active- and passive-source imaging using body- and surface-waves;
- Full waveform inversion developments and applications;
- Advancements and case studies in 2D and 3D active-source imaging;
- Interferometry and Marchenko imaging;
- Seismic attenuation and anisotropy;
- Developments and applications of multi-scale and multi-parameter inversion;
- Joint inversion of seismic and complementary geophysical data;
- Applications of new acquisition systems.

Share:
Co-organized as EMRP2.62/GD2.7
Convener: Cedric Schmelzbach | Co-conveners: Matthew Agius, Stefan Buske, Michal Malinowski, Milena Marjanovic
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room D3
Posters
| Attendance Fri, 12 Apr, 16:15–18:00
 
Hall X2
SM4.4

Geophysical imaging techniques such as seismic, (complex) electrical resistivity, electromagnetic, and ground-penetrating radar methods are widely used to characterize structures and processes in the shallow subsurface. Advances in experimental design, instrumentation, data acquisition, data processing, numerical modeling, and inversion constantly push the limits of spatial and temporal resolution. Despite these advances, the interpretation of geophysical images often remains ambiguous. Persistent challenges addressed in this session include optimal data acquisition strategies, (automated) data processing and error quantification, appropriate spatial and temporal regularization of model parameters, integration of prior information and non-geophysical measurements into the imaging process, joint inversion, Bayesian inference, as well as the quantitative interpretation of tomograms through suitable petrophysical relations.

In light of these topics, we invite submissions concerning a broad spectrum of near-surface geophysical imaging methods and applications at different spatial and temporal scales. Novel developments in the combination of complementary measurement methods and process-monitoring applications are particularly welcome.

Invited speaker: Frederick D. Day-Lewis (U.S. Geological Survey)

Share:
Convener: Florian Wagner | Co-conveners: Frédéric Nguyen, Anja Klotzsche, James Irving, Andreas Kemna
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room -2.21
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X2
SM4.5

The aims of the session are (1) to discuss methodological and instrumental advances in geophysical imaging of volcanoes and (2) to explore new knowledge provided by these studies on the internal structure and physical processes of volcanic systems. We invite contributors from all geophysical areas, such as seismology, electromagnetics/geoelectrics, gravimetry/magnetics, muon tomography, remote sensing, and other geophysical observations applied to volcanic systems ranging from near-surface hydrothermal activity to magmatic processes at depth.

This year's session is focused on the contribution of geophysical imaging to better understand volcanological processes. We particularly welcome studies where complementary imaging techniques, as well as multi-disciplinary datasets, are integrated to investigate subsurface hydrothermal and magmatic processes.

Share:
Co-organized as GD6.13/GMPV5.19
Convener: Ivan Koulakov | Co-conveners: Luca De Siena, Volker Rath, Marina Rosas-Carbajal
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room -2.91
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X2
SM4.6

The past few years have seen an increase in the application of machine learning methods for seismic data analysis. This is due to the increased adoption and visibility of freely available and easy-to-use machine learning toolkits, faster computation, reduced cost of data storage, and the very large sets of continuous geophysical and laboratory experimental data. The combination of these factors means that now is the time to consider machine learning as one of the key strategies modeling tools in both improving routine data processing and for better understanding the underlying geophysical processes.

Already, significant progress has been made in seismic waveform detection and classification of seismic waves for automatic onset picking. Such advances are allowing us to vastly speed up and improve the accuracy of previously laborious processing flows. In other notable recent applications, waveforms and ground motions, from both laboratory and natural datasets, are being used to understand the precursory physics of sudden- and slow-slip and to predict aftershock locations within supervised learning frameworks.

In this session, we will see machine learning focussed presentations covering topics such as seismic waveform processing, earthquake cataloging, earthquake classification, and earthquake cycle behavior from numerical and laboratory experiments.

In particular we would like to highlight invited talks from
Beroza et al.: Earthquake Monitoring with Deep Learning
Hulbert et al.: Probing Fault Physics Applying Machine Learning
De Hoop et al.: Unsupervised learning for identification of seismic signals
and
Kriegerowski et al.: Deep learning for localizing and detecting earthquake swarm activity based on full waveforms: Chances, challenges and questions

Share:
Convener: Léonard Seydoux | Co-conveners: Jonathan Bedford, Fabio Corbi, Jens Dittrich, Piero Poli
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room -2.91
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X2
GD3.6

Many mantle structures have recently been observed by seismologists including the lithosphere-asthenosphere boundary (LAB), a possible transition near ~1000 km depth, small scale heterogeneities in the transition zone and in the lowermost mantle (ULVZ, D"), plumes, stagnating slabs, mantle anisotropy... However their origin is still unclear and geodynamical modelling can help propose plausible scenarios. Furthermore, geodynamic models and tomographic images often investigate different physical parameters, and propose views of the mantle at separate scales. Combining information from both fields is therefore necessary to understand and link mantle processes across scales. We encourage every contribution that can feed the dialogue between seismologists and geodynamicists.

Sollicited speakers: Harriet C.P Lau (Harvard University), Manuele Faccenda (University of Padova)

Share:
Co-organized as SM4.8
Convener: Thomas Bodin | Co-conveners: Stephanie Durand, Bernhard Schuberth, Benoit Tauzin, Martina Ulvrova
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room -2.21
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X2
GD3.1

Dynamic processes shape the Earth and other planets throughout their history. Processes and lifetimes of magma oceans establish the initial conditions on the development of rocky planets and their early atmospheres. The dynamics of the mantle, the composition and mineral physics shape the present-day observable structure of the Earth's mantle and planetary bodies visible through seismic observations.
This session aims to provide a multidisciplinary view on the processes and structures of the Earth and planets. We welcome contributions that address the structure, dynamics, composition and evolution of their mantle, and their interactions with the outer layers, on temporal scales ranging from the present day to billions of years, and on spatial scales ranging from microscopic mineralogical samples, kilometer-size seismic structures to global planetary models.

Share:
Co-organized as PS1.11/SM4.9
Convener: Paul Tackley | Co-conveners: Christine Thomas, Sébastien Merkel, Stephanie C. Werner
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room D1
GD3.2 | PICO

Dynamic processes shape the Earth and other planets throughout their history. Processes and lifetimes of magma oceans establish the initial conditions on the development of rocky pl