Union-wide
Side Events
Disciplinary Sessions
Inter- and Transdisciplinary Sessions

Session programme

HS

HS – Hydrological Sciences

Programme group chairs: Bettina Schaefli, Elena Toth, Stefano Ferraris, Andreas Langousis, Chiara Corbari, Monica Riva, Maria-Helena Ramos, Andrea Castelletti, Josie Geris, Maurizio Mazzoleni, Stefan Haun, Femke Davids

MAL1/AS/CL/HS/OS
Alfred Wegener Medal Lecture by Michael L. Bender
Conveners: Jonathan Bamber, Alberto Montanari
Abstract
| Fri, 12 Apr, 12:45–13:45
 
Room E1
MAL14/HS
Henry Darcy Medal Lecture by Petra Döll
Conveners: Elena Toth, Maria-Helena Ramos
Abstract
| Thu, 11 Apr, 19:00–20:00
 
Room B
MAL17/HS
John Dalton Medal Lecture by Günter Blöschl
Conveners: Elena Toth, Maria-Helena Ramos
Abstract
| Tue, 09 Apr, 19:00–20:00
 
Room B
MAL37/HS ECS
HS Division Outstanding ECS Lecture by Serena Ceola
Conveners: Elena Toth, Maria-Helena Ramos
Abstract
| Wed, 10 Apr, 14:00–14:30
 
Room B
DM13/HS ECS
Division meeting for Hydrological Sciences (HS)
Conveners: Elena Toth, Maria-Helena Ramos
Tue, 09 Apr, 12:45–13:45
 
Room B
SAL2

On the linkage between humans, precipitation patterns, and floods

The growing frequency of extreme hydrologic events over multi-decadal timescales is becoming increasingly apparent at the global scale. In addition, the synchronous increase of population in flood prone areas intensifies further the impacts associated with these extreme flood events with significant societal, environmental and ecological consequences. A correct management of the impacts of extreme flood and storm events requires a greater understanding of the processes that drive them. A great challenge in such understanding is to discern whether shifts in processes, such as shifts in streamflows, also bears the signature of human activity, and if such signature is coincident (or not) with major shifts in rainfall patterns. This talk will provide an overview about this complex set of interactions, and will showcase some study cases where human drivers, rainfall patterns and floods have been analysed.

Share:
Co-organized as GM/HS
Conveners: Peter van der Beek, Daniel Parsons
Programme
| Wed, 10 Apr, 12:45–13:45
 
Room G2

HS1 – General Hydrology

HS1.1 – Innovative sensors and monitoring in hydrology

HS1.1.2

Effective management of water in the environment is a growing global imperative.
Expanding human populations, land use change and an apparent increase in the frequency and magnitude of extreme weather events, bring an added urgency to the need for effective measurement of discharge in the world’s rivers.
To effectively manage water resource availability and flood risk, while maintaining a water environment beneficial to ecology, requires accurate, reliable and timely river flow measurements. Increasingly, these measurements must also be delivered against a backdrop of diminishing resources, both human and financial.
The need therefore is for safe, resilient and cost-effective methods for the accurate and timely quantification of the discharge rate of the world’s rivers. These methods must provide consistency of results over time, through resilience to the impacts of major floods and other physical change factors, while retaining the sensitivity to allow accurate assessment of even the lowest of flows. To ensure the continued validity of long term records, new methods must be demonstrated to introduce no systematic bias to results.
This session focuses on innovative methods for measuring river discharge, and welcomes contributions with an emphasis on measuring the extremes, and dealing with difficult sites and conditions. Contributions are also invited which describe methods for effectively quantifying uncertainties associated with river discharge determinations.

Share:
Convener: Nick Everard | Co-conveners: Alexandre Hauet, Jérôme Le Coz
Orals
| Mon, 08 Apr, 10:45–12:30
 
Room 2.44
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall A
HS1.1.3 ECS

The advancement of hydrological research relies on innovative methods to determine states and fluxes at high a spatiotemporal resolution. The emergence of novel measurement techniques has been and will continue to be an important driver for the ability to analyze hydrological processes and to evaluate process based models. Recent advances in noninvasive techniques allow continuous contactless and integrative measurements of hydrological state variables and fluxes from the field to basin scale (e.g. cosmic-ray neutron probes, GNSS reflectometry, ground-based microwave radiometry, gamma-ray monitoring, terrestrial gravimetry, “MacGyver” field solutions).
In this session, we encourage submissions dealing with such new types of sensing methods, ranging from instrumental aspects, improved algorithms of signal conversion, data analysis to applications of the new methods for investigating hydrological processes, and the integration of noninvasive monitored data into models from the field to the catchment scale.
In addition, we invite presentation on new data storage or transmission solutions sending data from the field (e.g. LoRa, WIFI, GSM) or started initiatives (e.g., Open-Sensing.org) that facilitate the creation and sharing of novel sensors, data acquisition and transmission systems.

This session is co-organized by the MOXXI: Observations in the 21st century working group of the IAHS.

Share:
Co-organized as SSS12.9
Convener: Heye Bogena | Co-conveners: Rolf Hut, Andreas Güntner, Martin Schrön, Theresa Blume, John Selker, Flavia Tauro, Andy Wickert
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room 2.44
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall A
GI2.4 | PICO

Instrumentation and measurement technologies are currently playing a key role in the monitoring, assessment and protection of environmental resources. Climate study related experiments and observational stations are getting bigger and the number of sensors and instruments involved is growing very fast. This session deals with measurement techniques and sensing methods for the observation of environmental systems, focusing on climate and water. We welcome contributions about advancements on field measurement approaches, development of new sensing techniques, low cost sensor systems and whole environmental sensor networks, including remote observation techniques.
Studies about signal and data processing techniques targeted to event detection and the integration between sensor networks and large data systems are also very encouraged. This session is open for all works about an existing system, planning a completely new network, upgrading an existing system, improving streaming data management, and archiving data.

Share:
Co-organized as AS5.2/CL5.17/ESSI2.5/HS1.1.5
Convener: Misha Krassovski | Co-conveners: Sebastien Biraud, Anna Di Mauro, Andrea Scozzari, Francesco Soldovieri
PICOs
| Wed, 10 Apr, 16:15–18:00
 
PICO spot 4
CR2.3 | PICO

______________________________________________________________________________________________________________
Invited Speaker is Christian Hauck (University of Fribourg) with the title:
'Geophysical monitoring techniques to observe Alpine permafrost degradation – a 20-years perspective'
______________________________________________________________________________________________________________

Geophysical measurements offer important baseline datasets as well as validation for modelling and remote sensing products for cryospheric sciences. Applications include the dynamics of ice-sheets, alpine glaciers and sea ice, changes in snow cover properties of seasonal and permanent snow, snow/ice-atmosphere-ocean interactions, permafrost degradation, geomorphic processes and changes in subsurface materials.

In this session we welcome contributions related to a wide spectrum of geophysical- and in-situ methods, including advances in diverse techniques such as radioglaciology, active and passive seismology, acoustic sounding, GPS/GNSS reflectometry or time delay techniques, cosmic ray neutron sensing, drone applications, geoelectrics and NMR. Contributions may concern field applications as well as new approaches in geophysical/in-situ survey techniques or theoretical advances in the field of data analysis, processing or inversion. Case studies from all parts of the cryosphere such as snow, alpine glaciers, ice sheets, glacial and periglacial environments and sea ice are highly welcome. The focus of the session is to compare experiences in the application, processing, analysis and interpretation of different geophysical and in-situ techniques in these highly complex environments.

This session is offered as a PICO: an engaging presentation format that has been successfully tested for this session during the last three years at EGU. All selected contributions will present their research orally, and then further present their research using interactive screens. This results in rich scientific feedback and is an effective tool for communicating science with high visibility.

Share:
Co-organized as HS1.1.6/SM1.9
Convener: Nanna Bjørnholt Karlsson | Co-conveners: Franziska Koch, Reinhard Drews, Kristina Keating, Emma C. Smith
PICOs
| Fri, 12 Apr, 08:30–12:30
 
PICO spot 4

HS1.2 – Cross-cutting hydrological sessions

HS1.2.1

Liaising with stakeholders and policy-makers is becoming increasingly important for scientists to turn research into impactful action. In hydrological sciences, this is needed when implementing innovative solutions in areas such as river basin management, water allocation, impact-based hydrological forecasting, flood protection, drought risk management, climate change mitigation, ecohydrology and sustainable environmental solutions, among others.

The science-policy interface is not just as a way to increase the impact of our science, but it is also a scientific subject in itself. It presents several challenges to both scientists and policy-makers. They include understanding the different steps in the policy cycle: from setting the agenda to formulating, adopting, implementing, monitoring and evaluating polices. It is also crucial to know which facts and evidences are most needed at each step, so scientists can provide the best information at the right time and in the best way. Equally, appropriate science communication, where information is neither too complex nor infantilized, is key to open pathways to a more active and meaningful engagement.

The session will provide the opportunity for discussing with policy makers and addressing the necessary skills to facilitate the uptake of science in policy formulation and implementation: for instance, how science influences policy and policies impact science? How scientists can provide easily digestible pieces of evidence to policy-makers? What are the key gaps in joining science to feasible policy solutions in the water sector? How can we use knowledge to improve policy, and vice-versa?

We invite contributions that reflect on the needs of scientists and policy makers at different levels, from local, regional to EU and international levels. Hydrologists have long contributed to produce policy briefs and provide government advice on water-related issues. This session focuses on sharing these experiences (successes or failures), case studies, narratives and best practices at different phases of the policy-making process. It is also a platform for sharing tips and strategies to communicate scientific results and turn science into action.

Invited talk:
- "Flood management in a changing world: interactions between science and policy making", by Prof. Dr. Günter Bloeschl (Centre for Water Resource Systems, Vienna University of Technology)

Share:
Co-organized as EOS8.2
Convener: Maria-Helena Ramos | Co-conveners: Wouter Buytaert, Jutta Thielen-del Pozo, Elena Toth
Orals
| Wed, 10 Apr, 14:00–15:45
 
Room C
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall A
HS1.2.2 | PICO

This session welcomes abstracts that consider how to observe, model and analyse interactions of people and water, and the effects of social and environmental changes on hydrological systems. It is organised as part of the IAHS Panta Rhei hydrological decade 2013-2022; and focuses on gains in our understanding of dynamic human-water systems.
Examples of relevant areas include:

- Observations of human impacts on, and responses to, hydrological change.
- Interactions of communities with local water resources.
- Hydrological models that include anthropogenic effects.
- Creation of databases describing hydrology in human-impacted systems.
- Data analysis and comparisons of human-water systems around the globe and especially in developing and emerging countries.
- Human interactions with hydrological extremes, i.e. floods and droughts, and water scarcity.
- The role of gender, age, and cultural background in the impacts of hydrological extremes (floods and droughts), risk perception, and during/after crises and emergencies.

Share:
Convener: Giuliano Di Baldassarre | Co-conveners: Enrica Caporali, Heidi Kreibich, Tobias Krueger
PICOs
| Tue, 09 Apr, 08:30–10:15
 
PICO spot 5b
HS1.2.3

When hydrology became recognized and established as a science is debatable. Sure is that there exists a long tradition of theories on the natural occurrence, distribution, and circulation of water on, in, and over the surface of the Earth (Horton, 1931). As a hydrological community we are keen to further our science, which is evident from the growing number of sub-disciplines. It is therefore of utmost importance to understand what the roots of our science are, i.e. there is a need to develop a culture of historical hydrological literacy. While further developing its terminology, concepts and methods, teaching and research can benefit from considering the relevant collective scientific knowledge base. Moreover, a historical perspective in our science avoids a ‘contemporary bias’ of ideas and theories. Science is performed and influenced by humans, hence it is never free of value, personal interest or societal pressures. The historical context in which scientists work can therefore help to understand the development of the science, its current state and future directions.
With this session we aim to stimulate the discussion on how we, as a community, develop a historical literacy and integrate this in teaching and research to enhance our science. We solicit contributions that discuss how hydrological concepts have gradually evolved over time; how forgotten methods might have contemporary value; the value of historical datasets of experimental catchments and their management; remarkable contributions of scientists, institutes and organisations.

Keith Beven, Lancaster University, will provide a solicited presentation on: 'A history of dealing with preferential flow in hydrology (or not)'

Share:
Convener: Okke Batelaan | Co-conveners: Chantal Gascuel-Odoux, Laurent Pfister, Roberto Ranzi
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room C
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall A
HS1.2.7 | PICO

Hydrology relies strongly on heterogeneous data sets and a multitude of computational models. However, several challenges remain in order to obtain all information from the data and model results and, at the same time, carry out scientific work that is reproducible and repeatable.

Data collection is generally the first step in the scientific process, but collecting spatially and temporally dense data sets can be challenging, especially in extreme environments, such as dry, humid or cold areas. Therefore, environmental data sets are often sparse and do not allow us to fully understand the hydrological and associated environmental processes dominant in these areas. Therefore, innovative ideas are needed to build methods able to extract information from the available data and make use of the many signatures in the observations that are still to be explored.

On the other hand, an increasing amount of heterogenous data becomes available from diverse sources such as remote sensing, social media or citizen science. Platforms and tools are needed to interpret such data, identify and understand patterns, trends, and uncertainty and to draw conclusions and implications from data-driven research. New methods for data visualization can be a pivotal for our ability to make new sense of heterogeneous data and to communicate complex datasets and findings in an appropriate way to other researchers and the public.

Eventually, the full scientific process should be open, reproducible and repeatable. Many data sets contain a wide range of derived variables that cannot be easily re-computed from the raw data, either because the raw data is not available or because the computational steps are not adequately described. As a result, very few published results in hydrology are reproducible for the general reader. However, more and more software tools and platforms are becoming available to support open science, partly as a result of collaborations between software experts and hydrologists.

This session invites contributions on topics ranging from data collection and visualization to sharing model code and reproducible workflows, e.g.:

- Platforms and tools for improved data visualization, open science, scientific collaboration and/or communication with a larger audience
- Use of innovative data and data collection techniques, with a focus on data sparse environments
- Case studies illustrating challenges and solutions related to open science
- Innovative types of data and their visualizations

This session is organized in cooperation with the Young Hydrologic Society (youngHS.com).

Share:
Co-organized as EOS8.1/GM2.16
Convener: Remko C. Nijzink | Co-conveners: Jonathan Dick, Sebastian Gnann, Stan Schymanski, Lina Stein, Fi-John Chang
PICOs
| Fri, 12 Apr, 08:30–12:30
 
PICO spot 5b
HS1.2.9

Data assimilation is becoming more important as a method to make predictions of Earth system states. Increasingly, coupled models for different compartments of the Earth system are used. This allows for making advantage of varieties of observations, in particular remotely sensed data, in different compartments. This session focuses on weakly and strongly coupled assimilation of in situ and remotely sensed measurement data across compartments of the Earth system. Examples are data assimilation for the atmosphere-ocean system, data assimilation for the atmosphere-land system and data assimilation for the land surface-subsurface system. Optimally exploiting observations in a compartment of the terrestrial system to update also states in other compartments of the terrestrial system still has strong methodological challenges. It is not yet clear that fully coupled approaches, where data are directly used to update states in other compartments, outperform weakly coupled approaches, where states in other compartments are only updated indirectly, through the action of the model equations. Coupled data assimilation allows to determine the value of different measurement types, and the additional value of measurements to update states across compartments. Another aspect of scientific interest for weakly or fully coupled data assimilation is the software engineering related to coupling a data assimilation framework to a physical model, in order to build a computationally efficient and flexible framework.

We welcome contributions on the development and applications of coupled data assimilation systems involving models for different compartments of the Earth system like atmosphere and/or ocean and/or sea ice and/or vegetation and/or soil and/or groundwater and/or surface water bodies. Contributions could for example focus on data value with implications for monitoring network design, parameter or bias estimation or software engineering aspects. In addition, case studies which include a precise evaluation of the data assimilation performance are of high interest for the session.

Share:
Co-organized as AS4.26/BG1.28/NP5.6/OS4.24/SSS11.9
Convener: Harrie-Jan Hendricks Franssen | Co-conveners: Gabriëlle De Lannoy, Lars Nerger, Insa Neuweiler, Clemens Simmer, Rafael Pimentel, Chiara Corbari, Eric Wood (deceased)(deceased)
Orals
| Fri, 12 Apr, 10:45–12:30
 
Room 2.15
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall A
HS1.2.10

Hydrology is a rich multidisciplinary field encompassing a complex process network involving interactions of diverse nature and scales. Still, it abides to core dynamical principles regulating individual and cooperative processes and interactions, ultimately relating to the overall Earth System dynamics. This session focuses on advances in theoretical and applied studies in hydrologic dynamics, regimes, transitions and extremes along with their physical understanding, predictability and uncertainty. Moreover, it welcomes research on dynamical co-evolution, feedbacks and synergies among hydrologic and other earth system processes at multiple spatiotemporal scales. The session further encourages discussion on physical and analytical approaches to hydrologic dynamics ranging from traditional stochastic, information-theoretical and dynamical analysis to general frameworks addressing non-ergodic and thermodynamically unstable processes and interactions.
Contributions are welcome from a diverse community in hydrology and the broader physical geosciences, working with diverse approaches ranging from dynamical modelling to data mining and analysis with physical understanding in mind.

Share:
Co-organized as NP2.6
Convener: Rui A. P. Perdigão | Co-conveners: Julia Hall, Shaun Harrigan, Maria Kireeva
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall A
HS1.2.11

NOTE: We are delighted to have Prof. Emanuele Borgonovo, from Department of Decision Sciences, Bocconi University as our invited speaker.

Session Description:
Proper characterization of uncertainty remains a major challenge, and is inherent to many aspects of modelling such as structural development, hypothesis testing and parameter estimation, and the adequate characterization of forcing data and initial and boundary conditions. To address this challenge, methods for a) uncertainty analysis (UA) that seek to quantify uncertainty (and how it propagates through a system/model), and b) the closely-related methods for sensitivity analysis (SA) that evaluate the role and significance of uncertain factors (in the functioning of systems/models), have proved to be very helpful.
This session invites contributions that discuss advances, both in theory and/or application, in methods for SA/UA applicable to all Earth and Environmental Systems Models (EESMs). This includes all areas of hydrology, such as classical hydrology, subsurface hydrology and soil science. Topics of interest include (but are not limited to):

1) Novel methods for effective characterization of sensitivity and uncertainty
2) Single- versus Multi-criteria SA/UA
3) Novel methods for spatial and temporal evaluation/analysis of models
4) The role of data information and error on SA/UA (e.g., input/output error, model structure error, etc.)
5) Novel approaches and benchmarking efforts for parameter estimation and data inversion
6) Improving the computational efficiency of SA/UA (efficient sampling, surrogate modelling, parallel computing, model pre-emption, etc.)

Contributions addressing any or all aspects of sensitivity/uncertainty, including those related to structural development, hypothesis testing, parameter estimation, forcing data, and initial and boundary conditions are invited.

Share:
Convener: Amin Haghnegahdar | Co-conveners: Wolfgang Nowak, Cristina Prieto, Thomas Wöhling, Hoshin Gupta
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room C
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall A
SCS1 Media|ECS

Wed, 10 Apr, 12:45-14:00 / Room E1

Public information:
The dialogue between scientists, institutions, policymakers and the general public is widely recognised as an essential step towards a fair and sustainable society. Nowadays, more than ever in human history, international cooperation is an essential requirement for protecting the planet, advancing science and ensuring an equitable development of the global economy.
Despite its importance, the above dialogue can be a challenge for scientists, who often cannot find a productive connection with governments and politicians. Scientific associations are a key link between researchers and policy makers, as they have the potential to establish a durable and profitable connection with institutions.
The EGU elected the dialogue with society as one of its priority missions. At its General Assembly, the EGU is launching an innovative symposium format, Science and Society (SCS), to host scientific forums specifically dedicated to connecting with high-level institutions and engaging the public and policymakers.
The conversation with Ilaria Capua and Mario Monti will focus on science and politics with a global perspective, and the impact of populism on European integrity and therefore scientific research. The discussion will elaborate on optimal strategies to deliver topical and clear scientific messages to key institutions.
Ilaria Capua is a virologist best known for her research on influenza viruses and her efforts promoting open access to genetic information on emerging viruses. In 2006, Science reported on Capua’s effort towards open access science, stating that she had “renewed the debate about how to balance global health against scientists’ needs to publish and countries’ demands for secrecy". She has been a member of the Italian parliament from 2013 to 2016 and a fake news victim. She is currently a full professor at the University of Florida in Gainesville, Florida, US, and director of the UF One Health Center of Excellence.
Mario Monti served as a European Commissioner from 1995 to 2004, with responsibility for the internal market, services, customs, taxation and competition. He was Prime Minister of Italy from 2011 to 2013, leading a government of national unity to cope with the Italian debt crisis. Monti has also been Rector and is currently President of Bocconi University in Milan. His publications deal mainly with monetary and financial economics, public finance, European integration, competition policy. He is currently lifetime member of the Italian Senate.
During the conversation, Ilaria Capua and Mario Monti will present their vision with two 15-minute talks that will be followed by 20 minutes dedicated to questions from the audience and answers.

Share:
Co-organized as EOS/ESSI/G6.6/GD/HS1.2.12
Conveners: Alberto Montanari, Jonathan Bamber
Wed, 10 Apr, 12:45–14:00
 
Room E1
SCS2 Media|ECS

Plastic pollution is recognized as one of the most serious and urgent problems facing our planet. Rates of manufacture, use and ultimately disposal of plastics continue to soar, posing an enormous threat to the planet’s oceans and rivers and the flora and fauna they support. There is an urgent need for global action, backed by sound scientific understanding, to tackle this problem.

This Union Symposium will address the problems posed to our planet by plastic pollution, and examine options for dealing with the threat.

Share:
Co-organized as HS1.2.13/OS4.36
Convener: Jessica Hickie | Co-conveners: Bruce Newport, Christopher Hackney, David Todd, Tim van Emmerik
Orals
| Mon, 08 Apr, 14:00–17:45
 
Room E1

HS2 – Catchment hydrology

HS2.1 – Catchment hydrology in diverse climates and environments

HS2.1.2

By accumulating precipitation at high elevations, snow and ice completely change the hydrologic response of a watershed. Water stored in the snow pack and in glaciers thus represents an important component of the hydrological budget in many regions of the world and a sustainment to life during dry seasons. Predicted impacts of climate change in headwater catchments (including a shift from snow to rain, earlier snowmelt, and a decrease in peak snow accumulation) will affect both water resources distribution and water uses at multiple scales, with potential implications for energy and food production.
Our knowledge about snow/ice accumulation and melt patterns is highly uncertain, because of both limited availability and inherently large spatial variability of hydrological and weather data in remote areas at high elevations. This translates into limited process understanding, especially in a warming climate. The objective of this session is to integrate specialists focusing on snow accumulation and melt within the context of catchment hydrology and snow as a source for glacier ice and melt, hence streamflow. The aim is to integrate and share knowledge and experiences about experimental research, remote sensing and modelling.

Specifically, contributions addressing the following topics are welcome:
- results of experimental research on snowmelt runoff processes and their potential implementation in hydrological models;
- development of novel strategies for snowmelt runoff modelling in various (or changing) climatic and land-cover conditions
- evaluation of observed in-situ or remote-sensing snow products (e.g. snow cover, albedo, snow depth, snow water equivalent) and their application for snowmelt runoff calibration, data assimilation or operational streamflow forecasting
- observational and modelling studies that shed new light on hydrological processes in glacier-covered catchments, e.g., impacts of glacier retreat on water resources and water storage dynamic or the application of techniques for tracing water flow paths.
Studies on cryosphere-influenced mountain hydrology, such as landforms at high elevation and their relationship with streamflow, water balance of snow/ice-dominated, high mountain regions, etc.
This session is linked closely to the session CR3.04/AS4.6/CL2.15/HS2.1.3 . While the focus of our session is on the monitoring and modelling of snow for hydrologic applications, session CR3.04/AS4.6/CL2.15/HS2.1.3 addresses monitoring and modelling of snow processes across scales.

Share:
Co-organized as CR3.11
Convener: Guillaume Thirel | Co-conveners: Francesco Avanzi, Doris Duethmann, Abror Gafurov, Juraj Parajka
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30
 
Room 2.95
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall A
CR3.04 | PICO

Snow cover characteristics (e.g. spatial distribution, surface and internal physical properties) are continuously evolving over a wide range of scales due to meteorological conditions, such as precipitation, wind and radiation.
Most processes occurring in the snow cover depend on the vertical and horizontal distribution of its physical properties, which are primarily controlled by the microstructure of snow (e.g. density, specific surface area). In turn, snow metamorphism changes the microstructure, leading to feedback loops that affect the snow cover on coarser scales. This can have far-reaching implications for a wide range of applications, including snow hydrology, weather forecasting, climate modelling, and avalanche hazard forecasting or remote sensing of snow. The characterization of snow thus demands synergetic investigations of the hierarchy of processes across the scales ranging from explicit microstructure-based studies to sub-grid parameterizations for unresolved processes in large-scale phenomena (e.g. albedo, drifting snow).

This session is therefore devoted to modelling and measuring snow processes across scales. The aim is to gather researchers from various disciplines to share their expertise on snow processes in seasonal and perennial snowpacks. We invite contributions ranging from “small” scales, as encountered in microstructure studies, over “intermediate” scales typically relevant for 1D snowpack models, up to “coarse” scales, that typically emerge for spatially distributed modelling over mountainous or polar snow- and ice-covered terrain. Specifically, we welcome contributions reporting results from field, laboratory and numerical studies of the physical and chemical evolution of snowpacks, statistical or dynamic downscaling methods of atmospheric driving data, assimilation of in-situ and remotely sensed observations, representation of sub-grid processes in coarse-scale models, and evaluation of model performance and associated uncertainties.

This session is linked closely to the session HS2.1.2/CR3.11. While the focus of our session is on monitoring and modelling snow processes across scales, session HS2.1.2/CR3.11 addresses monitoring and modelling of snow for hydrologic applications.

Share:
Co-organized as AS4.6/CL2.15/HS2.1.3
Convener: Nora Helbig | Co-conveners: Neige Calonne, Richard L.H. Essery, Henning Löwe, Vincent Vionnet
PICOs
| Mon, 08 Apr, 14:00–18:00
 
PICO spot 4
HS2.1.6

Water is a strategic issue in the Mediterranean region, mainly because of the rarefaction of the available resources, in quantity and/or quality. The Mediterranean climate and the surface hydrology are characterized by a strong variability in time and space and the importance of extreme events, droughts and floods. This irregularity is also met at a lower level in aquifers dynamics. During the last century, modifications of all kinds and intensities have affected surface conditions and water uses. The Mediterranean hydrology is then continuously evolving.
This session intends to identify and analyse the changes in the Mediterranean hydrology, in terms of processes, fluxes, location. It will gather specialists in observation and modeling of the various water fluxes and redistribution processes within the catchments.
Contributions addressing the following topics are welcome:
• Spectacular case studies of rapid changes in water resources;
• Using various sources of information for comparing past and present conditions;
• Differentiating climatic and anthropogenic drivers (including GCM reanalysis);
• Modelling hydrological changes (in surface and/or ground water);
• Impacts of extreme events on water systems.

Share:
Convener: Mehrez Zribi | Co-conveners: Lionel Jarlan, Said Khabba, María José Polo
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room B
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall A
HS2.1.9

The tropics are characterized by greater energy inputs, higher rainfall variability compared to temperate and boreal environments and higher rates of environmental change. This results in extreme spatial and temporal uncertainties, including unpredictable patterns in soil moisture replenishment and groundwater recharge. Most tropical regions are hot spots for climate change and play important role in regional and global water, carbon and nutrient cycles. These ecosystems are susceptible to perturbations that include, but are not limited to, frequent and severe droughts and periods of extreme intense rainfall events. This environmental variability together with local hydro(geo)logical, geomorphological, and ecosystem factors are directly influencing the water quality and quantity, generating the increase in soil salinity as well as overgrazing and a general over-exploitation by humans, especially in years where resource availabilities are low.
Although modelling and novel observational techniques have been applied to develop cutting-edge research, their application remains cost prohibitive in the tropics. A robust data collection in the tropics is not feasible due mostly to economic and political shortcomings and, therefore, hydro(geo)logical and soil-plant-atmosphere processes across different scales in the tropics remain still poorly understood.

We invite field experimentalists and modellers who work in both wet and dry tropics to present their research on:
• Innovative observational techniques using sensors, hydrochemical and stable isotope tracers, plot and monitoring networks, citizen science, radars, and unmanned aerial vehicles;
• Modelling studies that use novel theories and data developed and applied to tropical catchments and ecosystems for a better understanding of the water fluxes from the plot to regional scales.

Share:
Convener: Alicia Correa | Co-conveners: Christian Birkel, Jose Agustin Brena Naranjo, Magna Moura, Rodolfo Nóbrega, Grzegorz Skrzypek
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room 2.15
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall A

HS2.2 – From observations to concepts to models (in catchment hyrology)

HS2.2.1

Stable and radioactive isotopes as well as other natural and artificial tracers are useful tools to fingerprint the source of water and solutes in catchments, to trace their flow pathways or to quantify exchanges of water, solutes and particulates between hydrological compartments. Papers are invited that demonstrate the application and recent developments of isotope and other tracer techniques in field studies or modelling in the areas of surface / groundwater interactions, unsaturated and saturated zone, rainfall-runoff processes, nutrient or contaminant export, ecohydrology or other catchment processes.

Invited Speakers: James Kirchner, ETHZ, CH

Share:
Convener: Christine Stumpp | Co-conveners: Markus Weiler, Michael Rinderer
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30
 
Room B
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall A
HS2.2.3 | PICO

Hydrological connectivity describes the degree of connection between and across landscape elements through water flow, and determines the ease with which water and solutes may move across the landscape or through a river system. Connectivity occurs across a wide range of spatial scales, from macropores to landscapes, and has been recognized as a first-order control on runoff generation, travel times, and solute transport. The concept of hydrological connectivity has the potential to enhance our understanding of hydrological processes, to link processes across scales and between field and modelling studies, and to provide a unifying framework to organize hydrologic behavior.

This session consists of two blocks: 1) a block that focuses on subsurface hydrological connectivity, linking hillslopes to the stream network and 2) a block that focuses on ephemeral and intermittent streams, including how surface connectivity in intermittent stream networks is established. We hope that together, these studies will enhance our understanding and stimulate discussions on how the concept of hydrological connectivity can be used to link surface and subsurface flows at the catchment scale.

We encourage contributions on all aspects of hydrological connectivity at the catchment scale or ephemeral and intermittent streams, including field studies and modeling studies on how, when and where connectivity is established, how stream networks expand and contract, and how this can be described or modeled, as well as the effects of connectivity or stream network expansion on stream water quantity and quality and stream biodiversity.

This will be a PICO session, which combines the advantages of oral and poster presentations. In addition to the initial 2-minute presentation to introduce the work and raise interest, authors have the opportunity to interact with the audience through the use of the PICO screens, which allows one to show videos, animations and pictures.

Share:
Convener: Ilja van Meerveld | Co-conveners: E. Sauquet, Luisa Hopp, Daniele Penna, Francesc Gallart
PICOs
| Tue, 09 Apr, 14:00–15:45
 
PICO spot 5b
HS2.2.4

Invited speakers:

Luca Brocca from National Research Council, Research Institute for Geo-Hydrological Protection, Perugia, Italy, with the title "The missing information for hydrological modelling in agricultural areas: irrigation"

Martyn Clark from University of Saskatchewan, with the title "Modeling spatial patterns in hydrology: Neglected challenges."

Session Description: Hydrological models are formulations of hypotheses about natural systems' behavior. These formulations are constructed and refined to maximize the model fidelity, i.e., the agreement of the model with the reality. Models’ formulations (e.g., parameterizations) and set ups are based on both observations and qualitative expert knowledge encoded by means of mathematical or statistical tools. The interaction between data availability, expert knowledge and set of decisions that result in a working model is an important topic of discussion in scientific hydrological modeling. In this session, we welcome contributions which elaborate on the interaction between observations, expert knowledge and models with the aim of improving process understanding and the realism of our environmental models.

Potential contributions may include (but not limited to): (1) improving model structural adequacy given data and expert knowledge, (2) introducing new formulations for model components (constitutive functions) capturing the internal and external model fluxes or their overall behavior, (3) upscaling and applying the experimentalists' knowledge at catchment, basin or global scale, (4) investigating the added value of new sources of data, i.e., remotely sensed products, and new model set up or formulation to accommodate them, (5) novel methods that use the new sources of data to constrain or evaluate models, (6) better representation of often neglected processes in hydrological models such as human impacts, river regulations, irrigation, as well as vegetation dynamics, (7) better monitoring and seamless modeling of spatial patterns in hydrological and land surface models using hyper-resolution distributed earth observations, (8) identification and quantification of driving forces that generate spatial patters in these models, (9) and development of novel regionalization/regularization approaches and performance metrics for matching simulated hydrological states and fluxes with spatio-temporal data sources.

This session is organized as part of the grass-root modelling initiative on "Improving the Theoretical Underpinnings of Hydrologic Models" launched in 2016.

Share:
Convener: Shervan Gharari | Co-conveners: Björn Guse, Sina Khatami, Charles Luce, Luis Samaniego, Simon Stisen
Orals
| Fri, 12 Apr, 10:45–12:30, 14:00–15:45, 16:15–18:00
 
Room C
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall A
NH3.8

This session aims to discuss hydrology related to landslide occurrence both on local and regional scale. It focuses on the detailed analysis and modelling of hydrological processes on hillslope and catchment scale in order to improve our understanding and prediction of the spatio-temporal patterns of landslide triggering and slope deformation mechanisms.

Water circulation within a catchment and the resultant transient changes in both shallow and deep hydrological systems is the most common controlling and triggering factor of slope movements. However, incorporation of hydrological process knowledge in slope failure analysis, such as water-rock interaction, water storage, dynamic preferential flows or the influence of frost conditions to name a few, still lags behind. Also, the inclusion of regional hydrological information in rainfall thresholds analysis is underdeveloped. The research frontiers are connected with the complexity of real landslides such as the difficulty to monitor groundwater levels or soil moisture contents in unstable terrain and over large areas, the difficulty to understand the water pathways within heterogeneous regolith soils and fractured bedrock, which are the characteristic substratum where landslides occur, and the complexity of dynamically quantifying and predicting the hydrological exchange between a potentially unstable slope and its surroundings.

We invite research ranging from unsaturated zone, hillslope processes and regional hydrology which are applied to landslide research in a broad sense: ranging from soil slips to large scale deep-seated slope deformation. The session will give time to both laboratory and field monitoring studies, preferably quantitative, and based on novel measurement and modelling techniques. We invite pioneering research that includes hydrological information in local and regional hazard assessment. Moreover, we welcome studies that incorporate hydrological process knowledge in the geotechnical analysis and modelling setting the next step to improve landslide hazard analysis.

Share:
Co-organized as HS2.2.6
Convener: Thom Bogaard | Co-conveners: Paolo Frattini, Roberto Greco, Dominika Krzeminska, Jean-Philippe Malet
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room L1
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X3

HS2.3 – Water quality at the catchment scale

HS2.3.1

A large number of micropollutants and their transformation products (veterinary and human pharmaceuticals, personal care products, pesticides and biocides, chlorinated compounds, heavy metals, emerging contaminants such as PFASs) pose a risk for soil, groundwater and surface water. The large diversity of compounds and of their sources makes the quantification of their occurrence in the terrestrial and aquatic environment across space and time a challenging task. Effective strategies to protect water resources from micropollutants are still lacking because the basic processes that contribute to their persistence and mobility in the aquatic environments are poorly understood. Innovative experimental studies in conjunction with modeling are urgently needed to fill these knowledge gaps to asses risks and develop remediation schemes.
This session invites contributions that improve our quantitative understanding of the sources and pathways, mass fluxes, the fate and transport of micropollutants in the soil-groundwater-river continuum. Topics cover:
- Novel sampling and monitoring concepts and devices
- New analytical methods for micropollutants such as non-target screening
- Experimental studies and modelling approaches to quantify diffuse and point source inputs
- Novel monitoring approaches such as non-target screening as tools for improving processes understanding and source identification such as industries
- Comparative fate studies on parent compounds and transformation products
- Diffuse sources and (re-)emerging chemicals
- Biogeochemical interactions and impact on micropollutant behaviour

Share:
Convener: Matthias Gassmann | Co-conveners: Fritjof Fagerlund, Sylvain Payraudeau, Stefan Reichenberger, Tissa Illangasekare
Orals
| Wed, 10 Apr, 08:30–11:45
 
Room 2.95
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall A
HS2.3.2

Land use and climate change as well as legal requirements (e.g. the EU Water Framework Directive) pose new challenges for the assessment and sustainable management of surface water quality at the catchment scale. Sources and pathways of nutrients and pollutants have to be characterized to understand and manage the impacts of their enrichment in river systems. Additionally, water quality assessment needs to cover the chemical and ecological status to link the hydrological view to aquatic ecology.
Models can help to optimize monitoring schemes. However, insufficient temporal and/or spatial resolutions, a short duration of observations or not harmonized analytical methods restrict the data base for model application. Moreover, model-based water quality calculations are affected by errors in input data, model errors, inappropriate model complexity and insufficient process knowledge or implementation. Therefore there is a strong need for advances in water quality models and to quantify and reduce uncertainties in water quality predictions. Additionally, models should be capable of representing changing land use and climate conditions, which is a prerequisite to meet the increasing needs for decision making.

This session aims to bring scientist together who work on experimental as well as on modelling studies to improve the prediction and management of water quality constituents (with the focus on nutrients, organic matter, algae or sediments) at the catchment scale. Contributions are welcome that cover the following issues:

- Experimental and modelling studies on the identification of sources, hot spots and pathways of nutrients and pollutants at the catchment scale
- New approaches to develop efficient water quality monitoring schemes
- Innovative monitoring strategies that support both process investigation and model performance
- Advanced modelling tools integrating catchment as well as in-stream processes
- Observational and modelling studies at catchment scale that relate and quantify water quality changes to changes in land use and climate
- Measurements and modelling of abiotic and biotic interaction and feedback involved in the transport and fate of nutrients and pollutants at the catchment scale
- Catchment management: pollution reduction measures, stakeholder involvement, scenario analysis for catchment management

Share:
Convener: Paul Wagner | Co-conveners: Andrew Wade, Ype van der Velde, Nicola Fohrer
Orals
| Mon, 08 Apr, 14:00–18:00
 
Room 2.95
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall A
HS2.3.3

Agriculture intensification causes worldwide increase of rivers, lakes and groundwater aquifers pollution. Pollutants may originate from various sources related to different types of agriculture activities including cultivation, aquaculture, livestock and dairy farms and related food-processing industries, and partitioning their respective contribution to water bodies remains challenging. Degradation of water quality is associated with both macronutrients and micro-pollutants originating from the inefficient use of chemical and organic fertilizers, and transport and persistence of pesticides and antibiotics. Therefore, identification of spatial and seasonal variations of pollutant sources and loads at the catchment scale is critical for better understanding human and environmental impacts of agro-contaminants, and eventually improving land management practices to protect water quality.

This session is focused on the use of hydro(geo)chemical and stable isotope tracers in quantifying agro-contaminant sources and transport but other related studies are also welcome. We especially encourage submissions in the following topics:
• Application of multi-isotope tracer techniques to constrain sources
• Catchment-scale pollution budget and predictive modelling
• Nonpoint agriculture source pollution partitioning at different catchment scales
• Identifying sources of macronutrients and micropollutants: macronutrients, herbicides, fungicides and insecticides, antibiotics, rare earth elements
• Distinguishing agro-contaminants from other pollution sources at the catchment scale
• Agriculture land use and agro-contaminants diversification

Public information:
Poster attendance time: Tuesday, 9 April 2019, 14:00–15:45 | Hall A
!Join us! Active poster sessions: a poster walk-through is organized at 14:15, poster authors will have 1–2 minutes to present their poster.

Share:
Convener: G. Imfeld | Co-conveners: Joseph Adu-Gyamfi, Lee Heng, Yong Li, Grzegorz Skrzypek
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room 2.15
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall A
HS2.3.4

Historical and contemporary mining activities generate significant volumes of contaminated waste that can have wide-ranging implications, including potential lethal and sub-lethal effects on aquatic biota, adverse effects on surface waters used for drinking water and irrigation, and overall degradation of water bodies used for recreation and other purposes. Contaminants are dispersed in river catchments by a variety of physical, chemical and biological pathways and processes. This session is devoted to research that aims to characterize and quantify: (1) source areas which contribute contaminant mass, (2) transport processes which move contaminants from source areas to and through affected water bodies such as streams, rivers, lakes, wetlands, and groundwater, (3) biogeochemical processes which attenuate and/or transform contaminants, and (4) the interaction of contaminants with biota and ecosystems. Submissions from a variety of subfields are welcome, including research into mine water treatment and mine waste remediation practices. We also welcome submissions that focus on a variety of contaminant types including, but not limited to, metals, metalloids, rare earth elements and sulfate.

The following invited speakers have been confirmed: Professor Karen Hudson-Edwards (Camborne School of Mines, University of Exeter, UK) and Dr Rory Cowie (Mountain Studies Institute, Colorado, USA).

Share:
Convener: Patrick Byrne | Co-conveners: Giovanni De Giudici, Will Mayes, Patrizia Onnis, Robert Runkel
Orals
| Wed, 10 Apr, 14:00–15:45
 
Room 2.25
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall A
HS2.3.5 | PICO

Bayesian approaches have become increasingly popular in water quality modelling, thanks to their ability to handle uncertainty comprehensively (data, model structure and parameter uncertainty) and as flexible statistical and data mining tools. Furthermore, graphical Bayesian Belief Networks can be powerful decision support tools that make it relatively easy for stakeholders to engage in the model building process. The aim of this session is to review the state-of-the-art in this field and compare software and procedural choices in order to consolidate and set new directions for the emerging community of Bayesian water quality modellers.

In particular, we seek contributions from water quality research that use Bayesian approaches to, for example but not exclusively:
• quantify the uncertainty of model predictions
• quantify especially model structural error through, for example, Bayesian Model Averaging or structural error terms
• address the problem of scaling (e.g. disparity of scales between processes, observations, model resolution and predictions) through hierarchical models
• model water quality in data sparse environments
• compare models with different levels of complexity and process representation
• use statistical emulators to allow probabilistic predictions of complex modelled systems
• integrate prior knowledge, especially problematizing the choice of Bayesian priors
• produce user-friendly decision support tools using graphical Bayesian Belief Networks
• involve stakeholders in model development and maximise the use of expert knowledge
• use machine-learning and data mining approaches to learn from large, possibly high-resolution data sets.

Keynote speaker:
Prof Peter Reichert: “The need for Bayesian approaches in water research and management.”
Eawag, Swiss Federal Institute of Aquatic Science and Technology; Department of Systems Analysis, Integrated Assessment and Modelling

Share:
Convener: Miriam Glendell | Co-conveners: Tobias Krueger, James E. Sample
PICOs
| Wed, 10 Apr, 14:00–15:45
 
PICO spot 4
HS2.3.6

Surface water quality deterioration is typically assessed and managed at the catchment scale. Management decisions rely on process knowledge and understanding of cause-effect relationships to be effective. However, the dynamics of solute and particulate concentrations integrate a multitude of hydrological and biogeochemical processes interacting at different temporal and spatial scales, which are difficult to assess using local field experiments. Hence, time series of water quality observed at the outlet of catchments can be highly beneficial to understand these processes. Long-term, high-frequency as well as multiple-site datasets can be used to inform experimental and modelling studies and formulate hypotheses on dominant ecohydrological and geochemical processes moving “from pattern to process”. Recent advances in this field have used concentration-discharge relationships to infer the interplay between hydrological and biogeochemical controls, both in the terrestrial part of catchments and in the river network. Long-term time series of nutrient input-output relationships help understand nutrients legacy effects and catchments response times. High-frequency observations allow understanding the fine structure of concentration dynamics, including flowpath contributions during runoff events and ecological controls on diel cycles. When multiple catchments are monitored, it is possible to relate metrics from concentration time series to catchment descriptors.
This session aims to bring together studies using data-driven analysis of river concentration time series to infer solute and particulate export mechanisms. We strongly encourage studies that use findings from data-driven analysis to build conceptual and process-based models. Presentations of the following topics are invited:
- Interpretation of C-Q relationships
- Long-term changes of nutrient inputs, outputs and apparent nutrient travel times
- Co-variance of solute and particulate concentrations and their ecohydrological controls
- Instream processes and river network effects on solute concentrations
- Utilizing time series of compound-specific isotopic fingerprints
- Time series analysis of emerging contaminants such as pesticides or micropollutants

Share:
Convener: Andreas Musolff | Co-conveners: Benjamin Abbott, Rémi Dupas, Stefanie Lutz, Camille Minaudo
Orals
| Fri, 12 Apr, 14:00–15:45
 
Room 2.95
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall A
CR7.2 Media

Snow and ice can capture and store contaminants both local and global in origin. The decrease in glacier cover, snow cover and sea ice in response to climate affects cycling of airborne impurities in polar and alpine environments, accelerating and enhancing their release. In this context snow and ice act as a secondary source for numerous organic and inorganic atmospheric contaminants that were deposited on their surface during recent decades, including persistent organic pollutants, radioactive species, microplastics, pesticides, and heavy metals. The release of contaminants from snow and ice to glacier forefields, rivers and seas might pose a hazard to these ecosystems and to human health, particularly under accelerated melt conditions.

Identification and assessment of this hazard relies, for each contaminant class, on the understanding of processes that control their accumulation, release and downstream transport. The physical and chemical forms in which contaminants are removed from the atmosphere and hydrosphere may further affect their interactions with mineral substances and biota. Existing studies suggest that the contaminant release process is not linear, and that interactions between meltwater, supraglacial debris and glacial microbiology may be crucial in the accumulation and transport of contaminants in glacier catchments. For example, evidence is mounting that cryoconite can efficiently accumulate radionuclides from anthropogenic sources to potentially hazardous levels in glaciers around the world. At the same time, the high biological activity present in cryoconite could enhance the degradation of organic pollutants, with important implications for remediation. A portion of contaminants released from glaciers may also be stored in their proglacial zones as shown by the very high concentrations of radionuclides found by several recent studies. The effects of contaminant transport on the pro-glacial environment and downstream communities remain uncertain, but improved understanding of the impacts of contaminants in land ice, sea ice, and snow is clearly warranted.

The session aims to contribute to the development of this emerging and interdisciplinary field, welcoming presentations from across cryospheric, hydrological, and biogeochemical sciences, and other research areas.

Share:
Co-organized as BG1.49/HS2.3.7
Convener: Caroline Clason | Co-conveners: Ewa Poniecka, Przemyslaw Wachniew
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X4

HS2.4 – Hydrologic variability and change at multiple scales

HS2.4.1

Hydrological extremes (droughts and floods), have major impacts on society and ecosystems and are expected to increase in frequency and severity with climate change. Although both at the extreme end of the hydrological spectrum, floods and droughts are governed by different processes, which means that they operate on different spatial and temporal scales and that different analysis methods and indices are needed to characterise them. But there are also many similarities and links between the two extremes that are increasingly being studied.

This general session on hydrological extremes aims to bring together the two communities in order to learn from the similarities and differences between flood and drought research. We aim to increase the understanding of the governing processes of both hydrological extremes, find robust ways of modelling and analysing floods and droughts, assess the influence of global change (including climate change, land use change, and other anthropogenic influences) on floods and droughts, and study the socio-economic and environmental impacts of hydrological extremes. We welcome submissions of insightful studies of floods or droughts, and especially encourage abstracts that cover both extremes.

This session is jointly organised by the Panta Rhei Working Groups “Understanding Flood Changes”, “Changes in Flood Risk”, and “Drought in the Anthropocene” and will further stimulate scientific discussion on change detection and attribution of hydrological extremes and the feedbacks between hydrological extremes and society. The session is linked to the European Low Flow and Drought Group of UNESCO´s IHP-VIII FRIEND-Water Program, which aims to promote international drought research. Excellent submissions of early-career researchers that are deemed important contributions to the session topics will be classified as solicited talks, as a "label of excellence".

Share:
Convener: Anne Van Loon | Co-conveners: Gregor Laaha, Louise Slater, Jan Szolgay, Lena M. Tallaksen
Orals
| Mon, 08 Apr, 08:30–12:30, 14:00–15:45
 
Room B
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall A
HS2.4.2

The space-time dynamics of floods are controlled by atmospheric, catchment, river system and anthropogenic processes and their interactions. The natural oscillatory behaviour of floods (between flood-rich and flood-poor periods) superimpose with anthropogenic climate change and human interventions in river morphology and land uses. In addition, flood risk is further shaped by continuous changes in exposure and vulnerability. Despite more frequent exploratory analyses of the changes in spatio-temporal dynamics of flood hazard and risk, it remains unclear how and why these changes are occurring. The scope of this session is to report when, where, how (detection) and why (attribution) changes in the space-time dynamics of floods occur. Of particular interest is what drivers are responsible for observed changes. Presentations on the impact of climate variability and change, land use changes and morphologic changes in streams, as well as on the role of pre-flood catchment conditions in shaping flood hazard and risk are welcome. Furthermore, contributions on the impact of socio-economic and structural factors on past and future risk changes are invited. This session is jointly organised by the Panta Rhei Working Groups “Understanding Flood Changes” and “Changes in Flood Risk”. The session will further stimulate scientific discussion on flood change detection and attribution. Specifically, the following topics are of interest for this session:

- Decadal oscillations in rainfall and floods

- Process-informed extreme value statistics

- Interactions between spatial rainfall and catchment conditions shaping flood patterns

- Detection and attribution of flood hazard changes: atmospheric drivers, land use controls and river training, among others

- Changes in flood risk: urbanisation of flood prone areas, implementation of risk mitigation measures, changes of economic, societal and technological drivers, flood vulnerability, among others.

- Future flood risk changes and adaptation and mitigation strategies

Share:
Convener: William Farmer | Co-conveners: Heidi Kreibich, Luis Mediero, Alberto Viglione, Sergiy Vorogushyn
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room 2.31
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall A
HS2.4.4

Catchments are systems that often consist of an organized architecture of typical patterns of topography, soils, vegetation and flow networks. These patterns are largely the geomorphic, and biologic response to temporally and spatially variable environmental conditions or human interference. This organization of catchment components controls the storage and release of water and nutrients. Consequently, understanding catchment organization is critical for:

- Creating catchment models that balance necessary complexity with possible simplicity,
- Understanding the degree of similarity between catchments, with the prospect of developing hydrological theories that are transferable in space and/or time,
- Increasing our understanding of catchment processes and behavior across various spatial and temporal scales, and
- Predicting the future evolution of catchment properties and hydrologic response in a non-stationary environment.

In this session we bring together catchment hydrologists and stream-/ecohydrologists who study these topics at different scales. We present experimental and modeling studies that analyze the role of catchment storage, catchment mixing and hyporheic exchange fluxes and determine how they control hydrologic and hydrochemical catchment response in time and space.

Solicited Speakers: Federica Remondi, ETH Zürich
Gonzalo Miguez-Macho, Universidade de Santiago de Compostela, Spain

Share:
Convener: Martijn Westhoff | Co-conveners: Ingo Heidbüchel, Wouter Berghuijs, Tobias Schuetz, Ida Westerberg
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room 2.25
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall A
HS2.4.5

Estimates of water availability and flooding risks remain one of the central scientific and societal challenges of the 21st century. The complexity of this challenge arises particularly from transient boundary conditions: Increasing atmospheric greenhouse gas concentrations lead to global warming and an intensification of the water cycle and finally to shifts in the temporal and spatial distribution of precipitation and terrestrial water availability. Likewise, large-scale land use changes impact and alter regional atmospheric circulation, thereby local precipitation characteristics and again terrestrial water availability. Also the feedbacks between the interlinked terrestrial and atmospheric processes on different spatial and temporal scales are still poorly understood.
This session therefore invites contributions addressing past, present and prospective changes in regional hydrological behaviour due to either (or joint) climate- and/or land use changes. We especially welcome contributions on the development of novel methods and methodologies to quantify hydrological change. Further aspects of this topic comprise particularly:

- Robustness of hydrological impact assessments based on scenarios using downscaled climate model – hydrology model modelling chains.

- Quantification of regional land use change predictions and impact of past, present and future land use changes on water and energy fluxes in meso- to large-scale catchments.

- Joint or coupled modelling of water and energy fluxes between the atmosphere and the land surface/subsurface and analyses of feedback mechanisms.

- Climate change/land use change signal separation techniques and quantification of future land use change vs. climate change induced hydrological change.

- Adequate handling of climate change and land use change data and their uncertainty for the forcing of hydrological models.

- Case studies of regional hydrological behaviour in climate sensitive and flood or drought prone regions worldwide.

Share:
Convener: Stefan Hagemann | Co-conveners: Axel Bronstert, Harald Kunstmann, Rajib Maity
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room B
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall A
HS2.4.6

In the current context of global change, assessing the impact of climate variability and changes on hydrological systems and water resources is increasingly crucial for society to better-adapt to future shifts in water resources as well as extreme conditions (floods and droughts). However, hitherto, important sources of uncertainties have been neglected in forecasting climate impacts on hydrological systems, especially uncertainties associated with internal/natural climate variability, whose contribution to near-future changes could be as important as forced anthropogenic climate changes at the regional scales. Internal climate modes of variability (e.g. ENSO, NAO, AMO) and their impact on the continent are not properly reproduced in the current global climate models, leading to large underestimations of decadal climate and hydroclimatic variability at the global scale. At the same time, hydrological response strongly depends on catchment properties, whose interactions with climate variability are little understood at the decadal timescales. These factors altogether reduce significantly our ability to understand long-term hydrological variability and to improve projection and reconstruction of future and past hydrological changes on which improvement of adaption scenarios depends.
We welcome abstracts capturing recent insights for understanding past or future impacts of large-scale climate variability on hydrological systems and water resources as well as newly developed projection and reconstruction scenarios. Results from model intercomparison studies are encouraged.

Share:
Convener: Bastien Dieppois | Co-conveners: David Hannah, Nicolas Massei, Jean-Philippe Vidal
Orals
| Wed, 10 Apr, 10:45–12:30
 
Room 2.25
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall A

HS2.5 – Global and (sub)continental hydrology

HS2.5.1

Global, continental and other large scale hydrological research is very important in many different contexts. Examples include increasing understanding of the climate system and water cycle, assessment of water resources in a changing environment, hydrological forecasting and water resource management.

We invite contributions from across the atmospheric, meteorological and hydrological communities. In particular, we welcome papers that address advances in:

(i) understanding and predicting the current and future state of our global and large scale water resources;

(ii) use of global earth observations and in-situ datasets for large scale hydrology and data assimilation techniques for large scale hydrological models;

(iii) understanding and modelling of extremes: droughts, floods;

(iv) representing/evaluating different components of the terrestrial water cycle fluxes and storage (e.g. soil moisture, snow, groundwater, lakes, floodplains, evaporation, river discharge) and their impact on current/future water resources and atmospheric modelling.

Share:
Convener: Inge de Graaf | Co-conveners: David Hannah, Shannon Sterling, Ruud van der Ent, Reed Maxwell
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room B
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall A
HS2.5.2 | PICO

Large samples of catchments can provide insights into hydrological processes that cannot be obtained from small samples. This session aims to showcase recent data- and model-based efforts on large-sample hydrology, which advance the characterisation, understanding and modelling of hydrological diversity. We welcome abstracts from a wide range of fields, including catchment hydrology, land-surface modelling, eco-hydrology, groundwater hydrology and hydrometeorology, which seek to explore:

1. Landscape characterisation - hydrological processes are shaped by the interplay of landscape attributes such as topography, climate, vegetation, soil, geology: how to better understand this interplay using available data sets?
2. Generalisation from the catchment to continental scale: how can we use large samples of catchments to refine process understanding and modelling at the regional to global scale?
3. Hydrological similarity and catchment classification, including across borders
4. Quantification and synthesis of data quality and uncertainty, including across borders
5. Identification and characterisation of dominant hydrological processes with limited data: how far can we get using hydrological signatures?
6. Human intervention and land cover changes: how to characterise and account for these processes in large-sample studies?
7. Revisiting hypotheses testing: testing the generality of existing hypotheses (particularly those originally formulated on small samples of catchments) using large samples

We encourage abstracts addressing any of these challenges, in particular those aiming at reducing geographical gaps (i.e., contributing to a more balanced spatial distribution of large-sample data sets) and making use of global data sources (e.g., remote-sensed data or re-analyses) to facilitate comparison between catchments from different parts of the globe. Our invited speaker for 2019 is Vazken Andreassian.

In addition to this session, we will organise a splinter meeting to discuss and coordinate the production of large-sample data sets. Following a similar meeting at EGU 2018, it will be entitled “Large sample hydrology: facilitating the production and exchange of data sets worldwide”, its location and date will be indicated in the final programme.

The session and the splinter meeting will be organised in the framework of the Panta Rhei Working Group on large-sample hydrology.

Share:
Convener: Gemma Coxon | Co-conveners: Nans Addor, Camila Alvarez-Garreton, Keirnan Fowler, Pablo Mendoza
PICOs
| Wed, 10 Apr, 08:30–10:15
 
PICO spot 5b
HS2.5.3 | PICO

Since early work on the assessment of global, continental and regional-scale water balance components, many studies use different approaches including global models, remote sensing, observation data or combination of these. They attempted to estimate the amount of water that evapotranspires, runs-off into the Ocean or is retained in water storages on the terrestrial part of the Earth. However, previous estimates in literature e.g. on global scale river discharge differ largely due to the methodology and datasets used for calculation such that a robust assessment of the global and continental water balance components is challenging both in a historical period and future projections. This session is seeking for contributions that are focusing on the
i) assessment of global, continental and regional scale water balance components, such as precipitation, river discharge to the oceans (and/or inland sinks), evapo(transpi)ration, groundwater recharge, water use, change in water storage from the land and / or Ocean part of the Earth,
ii) presenting innovative approaches of such assessments,
iii) presenting the uncertainty of estimated water balance components.
We encourage submissions using different methodological approaches, such as (but not limited to) observation data driven analyses, global scale hydrological and land surface models (GHMs, LSMs), integrated atmosphere, Ocean-Land modeling (Earth System Models), remote-sensing approaches, isotope analyses, thermodynamic borders and meteorological/climate approaches such as energy balance driven water balance. Contributions could focus on any of the water balance components or in an integrative manner, for either Land, Ocean or both. Assessments of uncertainty of water balance components are highly welcome.

Share:
Convener: Hannes Müller Schmied | Co-conveners: Stephanie Eisner, Rohini Kumar, Ted Veldkamp, Yoshihide Wada, Gerrit H. de Rooij
PICOs
| Wed, 10 Apr, 10:45–12:30
 
PICO spot 5b
G3.5 Media

Geodesy is becoming increasingly important for observing the hydrological cycle and its effects on solid Earth shape. Signals in geodetic data have revealed water's influence on other geophysical processes including earthquakes, volcanos, land subsidence, mountain uplift, and other aspects of long- and short-term vertical land motion. GPS and InSAR measurements, for example, respectively provide high temporal and spatial resolution to study natural hydrologically-related deformation and monitor anthropogenic groundwater extraction and recharge, and GRACE is helping to track changes in the global terrestrial water storage. Signals of loading from changes in surface and groundwater storage are seen from basin to continental scale. Additionally, novel use of GPS reflectometry is operational for monitoring soil moisture and snow depth at continuous GPS stations in the western USA and Canada. We encourage contributions describing new observations and models of hydrological signals in geodetic time series and/or imaging. These include but are not limited to studies exploring deformation induced by loading, aquifer extraction/recharge, poroelastic deformation and stress changes, techniques for removing hydrological signals from geodetic datasets, monitoring water resources, or teleconnections between hydrologic and other geophysical phenomena.

Share:
Co-organized as HS2.5.5/NH1.13/SM5.7
Convener: William Hammond | Co-conveners: Kristel Chanard, Francesca Silverii, Nicola DAgostino
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room D1
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X3
G3.3

A wide range of processes in the earth system directly affect geodetic observations. This session invites a wide array of contributions which showcase the use of geodesy for Earth science and climate applications, providing crucial insights into the state and change of the earth system and/or understanding its processes.

Data driven quantification of water mass fluxes through boundaries of Earth’s different regions and spheres provides important insights to other geoscience communities and informs model validation and improvement. Changes in regional sea level and ocean circulation are observed by altimetry and gravimetry. Natural and anthropogenic alterations of the terrestrial water cycle lead to changes in river runoff, precipitation, evapotranspiration, and water storage which may cause surface deformation sensed by GNSS stations and InSAR measurements as well as mass/gravity changes observed by satellite/ground gravimetry. Mass changes in the ice sheets and glaciers are detectable by both geometrical and gravimetric techniques. And other novel applications of geodetic techniques are emerging in many fields.

In addition, individual sensor recordings are often affected by high-frequency variability caused by, e.g., tides in the solid Earth, oceans, and atmosphere and their corresponding crustal deformations affecting station positions; non-tidal temperature and moisture variability in the troposphere modifying microwave signal dispersion; rapid changes in the terrestrially stored water caused by hydrometeorologic extreme events; as well as swift variations in relative sea-level that are driven by mass and energy exchange of the global oceans with other components of the Earth system, which all might lead to temporal aliasing in observational records. 

This session invites a wide array of contributions which showcase the use of geodesy for Earth science and climate applications. This session aims to cover innovative ways to use GRACE, GRACE-FO and other low Earth orbiters, GNSS techniques, InSAR, radar altimetry, and their combination with in-situ observations. We welcome approaches which tackle the problem of separating signals of different geophysical origin, by taking advantage of model output and/or advanced processing and estimation techniques. Since the use of geodetic techniques is not always straightforward, we encourage authors to think of creative ways to make their findings, data and software more readily accessible to other communities in hydrology, ocean, cryospheric, atmospheric and climate sciences. With author consent, highlights from the oral and poster session will be tweeted with a dedicated hashtag during the conference in order to increase the impact of the session.

Share:
Co-organized as AS5.12/CL5.19/CR2.7/ESSI1.3/HS2.5.6/OS1.12
Convener: Roelof Rietbroek | Co-conveners: Bert Wouters, Wei Feng, Vincent Humphrey, Anna Klos, Carmen Blackwood, Henryk Dobslaw, Krzysztof Sośnica
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room D2
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X3

HS3 – Hydroinformatics

HS3.1

Hydroinformatics has emerged over the last decade to become a recognised and established field of independent research within the hydrological sciences. Hydroinformatics is concerned with the development and hydrological application of mathematical modelling, information technology, high-performance computing, systems science and computational intelligence tools. It provides the computer-based decision-support systems that are now entering more and more into the offices of consulting engineers, water authorities and government agencies. Tools for capturing data, on both a mega-scale and a milli-scale, are immense and still emerging. As a result we have to face the challenges of Big Data: large data sets, both in size and complexity. Methods and technologies for data handling, visualization and knowledge acquisition are more and more often referred to as Data Science.

The aim of this session is to provide an active forum in which to demonstrate and discuss the integration and appropriate application of emergent computational technologies in a hydrological modelling context. Topics of interest are expected to cover a broad spectrum of theoretical and practical activities that would be of interest to hydro-scientists and water-engineers. The main topics will address the following classes of methods and technologies:

* Predictive and analytical models based on the methods of statistics, computational intelligence and data science: neural networks, fuzzy systems, support vector machines, genetic programming, cellular automata, chaos theory, etc.
* Methods for the analysis of complex data sets, including remote sensing data: principal and independent component analysis, feature extraction, time series analysis, data-infilling, information theory, etc.
* Specific concepts and methods of Big Data and Data Science such as data thinning, data fusion, information integration
* Optimisation methods associated with heuristic search procedures: various types of genetic and evolutionary algorithms, randomised and adaptive search, ant colony, particle swarm optimisation, etc.
* Applications of systems analysis and optimisation in water resources
* Hybrid modelling involving different types of models both process-based and data-driven, combination of models (multi-models), etc.
* Data assimilation and model reduction in integrated modelling
* Novel methods of analysing model uncertainty and sensitivity
* Appropriate software architectures for linking different types of models and data sources
* Opportunities and challenges in using high-performance computing for terrestrial systems modelling.

Applications could belong to any area of hydrology or water resources: rainfall-runoff modelling, flow forecasting, sedimentation modelling, analysis of meteorological and hydrologic data sets, linkages between numerical weather prediction and hydrologic models, model calibration, model uncertainty, optimisation of water resources, etc.

Share:
Convener: Dimitri Solomatine | Co-conveners: Ghada El Serafy, Amin Elshorbagy, Dawei Han, Adrian Pedrozo-Acuña, Wolfgang Kurtz, Jessica Keune
Orals
| Mon, 08 Apr, 08:30–12:30, 14:00–15:45
 
Room C
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall A
HS3.2

Many environmental and hydrological problems are spatial or temporal, or both in nature. Spatio-temporal analysis allows identifying and explaining large-scale anomalies which are useful for understanding hydrological characteristics and subsequently predicting hydrological events. Temporal information is sometimes limited; spatial information, on the other hand has increased in recent years due technological advances including the availability of remote sensing data. This development has motivated new research efforts to include data in model representation and analysis.

Geostatistics is the discipline that investigates the statistics of spatially extended variables. Spatio-temporal analysis is at the forefront of geostatistical research these days, and its impact is expected to increase in the future. This trend will be driven by increasing needs to advance risk assessment and management strategies for extreme events such as floods and droughts, and to support both short and long-term water management planning. Current trends and variability of hydrological extremes call for novel approaches of spatio-temporal and/or geostatistical analysis to assess, predict, and manage water related and/or interlinked hazards including the assessment of uncertainties.

The aim of this session is to provide a platform and an opportunity to demonstrate and discuss innovative applications and methodologies of spatio-temporal and/or geostatistical analysis in a hydrological context. The session is targeted at both hydrologists and statisticians interested in the spatial and temporal analysis of hydrological events, extremes, and related hazards, and it aims to provide a forum for researchers from a variety of fields to effectively communicate their research.

Given the broad scope of this session, the topics of interest include the following non-exclusive list of subjects:

1. Spatio-temporal methods for the analysis of hydrological, environmental and climate anomalies and/or related hazards.
2. New and innovative geostatistical applications in spatial modeling, spatio-temporal modeling, spatial reasoning and data mining.
3. Spatio-temporal and/or geostatistical methods with reduced computational complexity suitable for large-size hydrological problems.
4. Spatio-temporal dynamics of natural events (e.g. morphological changes, spatial displacement phenomena, other).
5. Generalization and optimization of spatial models including monitoring networks optimization.
6. Applications of copulas on the identification of spatio-temporal relationships.
7. Spatial switching and/or ensemble of models.
8. Spatial analysis and predictions using Gaussian and non-Gaussian models.
9. Spatial and spatio-temporal covariance application revealing links between hydrological variables and extremes.
10. Prediction on regions of unobserved or limited data where gridded and point simulated data from physical-based models is available.
11. Generalized extreme value distributions used to model extremes for spatial event analysis.
12. (Geostatistical) characterization of uncertainties.
13. Bayesian Geostatistical Analysis.

Share:
Convener: Emmanouil Varouchakis | Co-conveners: Gerald A Corzo P, Svenja Fischer, A.B. Bardossy, Andreas Schumann, Ross Woods, Dionissios Hristopulos
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30
 
Room C
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall A
HS3.3

Citizen Observatories, crowdsourcing, and innovative sensing techniques are used increasingly in water resources monitoring, especially when dealing with natural hazards. These innovative opportunities allow scientists to benefit from citizens’ involvement, by providing key local information for the identification of natural phenomena. In this way new knowledge for monitoring, modelling, and management of water resources and their related hazards is obtained.

This session is dedicated to multidisciplinary contributions, especially those that are focused on the demonstration of the benefit of the use of Citizen Observatories, crowdsourcing, and innovative sensing techniques for monitoring, modelling, and management of water resources.

The research presented might focus on, but not limited to, innovative applications of Citizen Observatories, crowdsourcing, innovative and remote sensing techniques for (i) water resources monitoring; (ii) hazard, exposure, vulnerability and risk mapping; (iii) development of disaster management and risk reduction strategies. Research studies might also focus on the development of technology, modelling tools, and digital platforms within research projects.

The session aims to serve a diverse community of research scientists, practitioners, end users, and decision makers. Submissions that look into issues related to the benefits and impacts of innovative sensing on studies of climate change, anthropogenic pressure, as well as ecological and social interactions are highly desired. Early stage researchers are strongly encouraged to present their research.

Share:
Convener: Linda See | Co-conveners: Thaine H. Assumpção, Wouter Buytaert, Serena Ceola, Maurizio Mazzoleni
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall A
NP4.3

This session aims to bring together researchers working with big data sets generated from monitoring networks, extensive observational campaigns and detailed modeling efforts across various fields of geosciences. Topics of this session will include the identification and handling of specific problems arising from the need to analyze such large-scale data sets, together with methodological approaches towards semi or fully automated inference of relevant patterns in time and space aided by computer science-inspired techniques. Among others, this session shall address approaches from the following fields:
• Dimensionality and complexity of big data sets
• Data mining in Earth sciences
• Machine learning, including deep learning and other advanced approaches
• Visualization and visual analytics of big data
• Informatics and data science
• Emerging big data paradigms, such as datacubes

Share:
Co-organized as AS5.20/CL5.25/ESSI2.3/GD8.5/HS3.5/NH11.11/SM7.8
Convener: Mikhail Kanevski | Co-conveners: Peter Baumann, Sandro Fiore, Kwo-Sen Kuo, Nicolas Younan
Orals
| Mon, 08 Apr, 10:45–12:30, 14:00–18:00
 
Room L3
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X4
NP5.1

Many situations occur in Geosciences where one wants to obtain an accurate description of the present, past or future state of a particular system. Examples are prediction of weather and climate, assimilation of observations, or inversion of seismic signals for probing the interior of the planet. One important aspect is the identification of the errors affecting the various sources of information used in the estimation process, and the quantification of the ensuing uncertainty on the final estimate.

The session is devoted to the theoretical and numerical aspects of that broad class of problems. A large number of topics are dealt with in the various papers to be presented: algorithms for assimilation of observations, and associated mathematical aspects (particularly, but not only, in the context of the atmosphere and the ocean), predictability of geophysical flows, with stress on the impact of initial and model errors, inverse problems of different kinds, and also new aspects at the crossing between data assimilation and data-driven methods. Applications to specific physical problems are presented.


Solicited Speakers
Olivier Pannekoucke (Météo-France, Toulouse)
Manuel Pulido (University of Reading)

Share:
Co-organized as AS5.18/HS3.6/OS4.21
Convener: Olivier Talagrand | Co-conveners: Javier Amezcua, Natale Alberto Carrassi, Amos Lawless, Mu Mu, Wansuo Duan, Stéphane Vannitsem
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room L2
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X4
NP4.1

This interdisciplinary session welcomes contributions on novel conceptual approaches and methods for the analysis of observational as well as model time series and associated uncertainties from all geoscientific disciplines.

Methods to be discussed include, but are not limited to:
- linear and nonlinear methods of time series analysis
- time-frequency methods
- predictive approaches
- statistical inference for nonlinear time series
- nonlinear statistical decomposition and related techniques for multivariate and spatio-temporal data
- nonlinear correlation analysis and synchronisation
- surrogate data techniques
- filtering approaches and nonlinear methods of noise reduction

We particularly encourage submissions addressing the problem of uncertainty of geoscientific time series and its treatment in the context of statistical and dynamical analysis, including:
- representation of time series with uncertain dating (in particular paleoclimatic records from ice cores, sediments, speleothems etc.)
- uncertainties in change point / transition detection
- uncertainty propagation in time series methods like correlation, synchronization, spectral analysis, PCA, networks, and similar techniques
- uncertainty propagation in empirical (i.e., data-derived) inverse models

Share:
Co-organized as AS5.17/CL5.24/HS3.7/NH11.5/SM7.7
Convener: Reik Donner | Co-conveners: Andrea Toreti, Niklas Boers, Bedartha Goswami, Aljoscha Rheinwalt
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room L3
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X4

HS4 – Hydrological Forecasting

HS4.1 – Forecasting hydrological extremes: (flash) floods, droughts and water scarcity

HS4.1.1 Media

Drought and water scarcity are important issues in many regions of the Earth, requiring innovative hydro-meteorological monitoring, modelling and forecasting tools to evaluate the complex impacts on the availability and quality of water resources. While drought describes a natural hazard, water scarcity is related to long-term unsustainable use of water resources and associated socio-economic aspects. Both phenomena are, however, closely linked, with the complex interrelationship requiring careful attention.
While an increase in the severity and frequency of droughts can lead to water scarcity situations, particularly in regions that are already water stressed, overexploitation of available water resources can exacerbate the consequences of droughts. In the worst case, this can lead to long-term environmental and socio-economic impacts. Particular attention should, therefore, be paid to the feedbacks between these two phenomena, including the potential impacts of climate change. It is therefore necessary to improve both monitoring and sub-seasonal to seasonal forecasting for droughts and water availability, and to develop innovative indicators and methodologies that translate the information provided into effective drought early warning and risk management.
This session will address statistical, remote sensing and physically-based techniques, aimed at monitoring, modelling and forecasting hydro-meteorological variables relevant to drought and/or water scarcity. These include, but are not limited to, precipitation, snow cover, soil moisture, streamflow, groundwater levels and extreme temperatures. The development and implementation of drought indicators meaningful to decision making processes, and ways of presenting and explaining them to water managers, policy makers and other stakeholders, are further issues to be addressed.
The session aims to bring together scientists, practitioners and stakeholders in the fields of hydrology and meteorology, as well as in the field of water resources and/or risk management; interested in monitoring, modelling and forecasting drought and water scarcity, and in analyzing their interrelationships, hydrological impacts, and the feedbacks with society. Particularly welcome are applications and real-world case studies in regions subject to significant water stress, where the importance of drought warning, supported through state-of-the-art monitoring and forecasting of water resources availability is likely to become more important in the future.

Share:
Co-organized as NH1.31
Convener: Brunella Bonaccorso | Co-conveners: Carmelo Cammalleri, Athanasios Loukas, Micha Werner
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room B
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall A
HS4.1.2 Media

Many water management sectors are already having to cope with extreme weather events, climate variability and change. For this purpose, climate services provide science-based and user-specific information on possible impacts. Such information can be based on weather forecasts or on climate projections. In this context, predictions on sub-seasonal, seasonal to decadal timescales are an emerging and essential part of hydrological forecasting. With horizons ranging from months to a decade, these probabilistic forecasts are used in industries such as transport, energy, agriculture, forestry, health, insurance, tourism and infrastructure.

This session aims to cover the advances in climate and hydrological forecasting, and their implications on forecasting extreme events and servicing water users. It welcomes, without being restricted to, presentations on:

- Making use of climate data for hydrological modelling (downscaling, bias correction, temporal disaggregation, spatial interpolation and other technical challenges),
- Methods to improve forecasting of hydrological extremes,
- Improved representations of hydrological extremes in a future climate,
- Seamless forecasting, including downscaling and statistical post- and pre-processing,
- Propagation of climate model uncertainty to hydrological models and impact assessment,
- Lessons learnt from forecasting and managing present day extreme conditions,
- Effective methods to link stakeholder interests and scientific expertise,
- Operational climatic forecasting systems.

The session will bring together research scientists and operational managers in the fields of hydrology, meteorology and climate with the aim of sharing experiences and initiating discussions on this emerging topic. We encourage presentations from initiatives such as the H2020 IMPREX, BINGO, S2S4E and CLARA projects, and from WWRP/WCRP S2S projects that utilise the recently established S2S project database, and all hydrological relevant applications.

Share:
Co-organized as CL3.12
Convener: Christopher White | Co-conveners: Louise Arnal, Tim aus der Beek, Louise Crochemore, Bart van den Hurk
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room 2.15
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall A
HS4.1.3

Intense rainfall and/or orographic precipitation events in small and medium size catchments can trigger flash floods, which are characterized by very short response times and high specific peak discharges. Under appropriate topographic conditions, such rainstorms also cause debris flows or shallow landslides mobilizing large amounts of unconsolidated material. Although significant progress has been made in the last decade in the management of flash floods related risks, these events remain poorly understood and their predictability is limited by a high non-linearity in the hydrological response, related to threshold effects and structured heterogeneity at all scales. In addition, predicting the initiation and runout of rainfall-induced landslides and their interactions with hydrological and hydraulic processes is still affected by large uncertainties. Therefore, improving the flash floods understanding, forecasting and risk management capacities requires multi-disciplinary approaches, as well as innovative measurements and modelling approaches as these events often occur in ungauged basins.

This session welcomes contributions illustrating current advances and approaches in monitoring, modelling, forecasting and warning flash floods and associated geomorphic processes. Contributions documenting the societal responses and impacts, and analysing risk management systems are also welcome. The session will cover the following main scientific themes:
- Development of new measurement techniques adapted to flash floods monitoring and quantification of the associated uncertainties
- Use of remote sensing data, weather radar, and lightning for improving forecasting models input data
- Development of modelling tools for predicting and forecasting flash floods and/or rainfall-induced landslides in gauged and ungauged basins
- Use of new criteria such as specific “hydrological signatures” for model and forecast evaluation
- Identification of processes leading to flash flood events and/or rainfall-induced landslides from data analysis and/or modelling, and of their characteristic space-time scales
- Evolutions in flash-flood characteristics possibly related to changing climate.
- Observation, understanding and prediction of the social vulnerability and social response to flash floods and/or associated landsliding
- Flash flood and/or rainfall-induced landslide risk assessment using multi-disciplinary approaches and warning systems, and evaluation of the relevance of those systems.

Share:
Co-organized as NH1.32
Convener: Olivier Payrastre | Co-conveners: Isabelle Braud, Jonathan Gourley, Marcel Hürlimann, Massimiliano Zappa
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room 2.25
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall A
AS4.35

Several large ensemble model simulations, either from Global Climate Models (GCM), Earth System Models (ESM), or Regional Climate Models (RCM), have been generated over the recent years. These ensembles, typically simulating historical climate and making future projections, are powerful because they can be used to accurately estimate forced changes in the climate system and to determine the magnitude and realism of simulated internal climate variability. They can further be applied to investigate how climate change signals may emerge from internal variability over time. Combining large ensemble simulations also provides long time series to investigate the dynamics of hydro-meteorological extremes and to assess compound events (e.g., successive or simultaneous extreme events) under conditions of climate change.

This session invites studies using large GCM, ESM, or RCM ensembles looking at the following topics: 1) forced changes in internal variability and reinterpretation of observed record; 2) development of new approaches to attribution of observed events or trends; 3) impacts of natural climate variability; 4) assessment of extreme event occurrence in historical and future climate; 5) development of projections for compound events; 6) comparison of large ensembles including uncertainty assessment; and 7) novel methods for efficient analyses and post-processing of large ensembles.

We welcome research across the components of the Earth system and particularly invite studies that apply novel methods or cross disciplinary approaches to leverage the potential of large ensembles.

Share:
Co-organized as CL3.08/HS4.1.4
Convener: Nicola Maher | Co-conveners: Sebastian Milinski, Emma Aalbers, Ralf Ludwig
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room E2
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X5
NH1.1

Today, it is almost certain that global climate change will affect the frequency and severity of extreme meteorological and hydrological events. It is necessary to develop models and methodologies for the better understanding, forecasting, hazard prevention of weather induced extreme events and assessment of disaster risk. This session considers extreme events that lead to disastrous hazards induced by severe weather and climate change. These can, e.g., be tropical or extratropical rain- and wind-storms, hail, tornadoes or lightning events, but also floods, long-lasting periods of drought, periods of extremely high or of extremely low temperatures, etc. Papers are sought which contribute to the understanding of their occurrence (conditions and meteorological development), to assessment of their risk and their future changes, to the ability of models to reproduce them and methods to forecast them or produce early warnings, to proactive planning focusing to damage prevention and damage reduction. Papers are also encouraged that look at complex extreme events produced by combinations of factors that are not extreme by themselves. The session serves as a forum for the interdisciplinary exchange of research approaches and results, involving meteorology, hydrology, hazard management and/or applications like insurance issues.

Share:
Co-organized as AS1.15/HS4.1.5
Convener: Athanasios Loukas | Co-conveners: Maria-Carmen Llasat, Uwe Ulbrich
Orals
| Fri, 12 Apr, 08:30–12:30, 14:00–15:45
 
Room L6
Posters
| Attendance Fri, 12 Apr, 16:15–18:00
 
Hall X3

HS4.2 – Improving and quantifying forecasting methodologies and uncertainties

HS4.2.1

Ensemble hydro-meteorological prediction systems have higher forecasting skills than their deterministic counterparts, which in turn can improve risk assessment decision-making in operational water management. Ensemble forecasts are now common many operational settings, such as flood and drought forecasting, and can be used in applications from forecasting extreme events to optimisation of water resources allocation. However, moving from deterministic forecasting systems to a probabilistic framework poses new challenges but it also opens new opportunities for the developers and users of ensemble forecasts to improve their systems.

This session brings together scientists, forecasters, practitioners and stakeholders interested in exploring the use of ensemble hydro-meteorological forecast techniques in hydrological applications: e.g., flood control and warning, reservoir operation for hydropower and water supply, transportation and agricultural management. The session will also explore new forecast products and systems in terms of their implementation and practice for real-time forecasting.

Contributions will cover, but are not restricted to, the following topics:
- The design of ensemble prediction systems
- Requirements and techniques to improve the skill of hydro-meteorological ensemble forecasting systems
- Methods to bias correct and calibrate ensemble forecasts
- Methods to assess the quality or benchmark the performance of ensemble forecasts
- Approaches to deal with forecast scenarios in real-time
- Strategies for balancing human expertise and automation in ensemble forecasting systems
- Challenges of the paradigm shift from deterministic to ensemble forecasts
- Methods and products that include forecaster knowledge to improve the interpretation of ensemble forecasts
-Use of cost/loss scenarios for optimising systems
- Approaches for efficient training (including role-playing games) on the use and value of ensemble predictions.

The session welcomes new experiments and practical applications showing successful experiences, as well as problems and failures encountered in the use of uncertain forecasts and ensemble hydro-meteorological forecasting systems. Case studies dealing with different users, temporal and spatial scales, forecast ranges, hydrological and climatic regimes are welcome.

Solicited speaker Niko Wanders from Utrecht University: From seasonal forecasting to water management decisions: challenges and opportunities

The session is part of the HEPEX international initiative: www.hepex.org

Share:
Co-organized as AS4.5/NH1.33, co-sponsored by HEPEX
Convener: Fredrik Wetterhall | Co-conveners: Rebecca Emerton, Kolbjorn Engeland, Tomasz Niedzielski, Jan Verkade
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room 2.31
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall A
HS4.2.2

This session will address the understanding of sources of predictability and quantification and reduction of predictive uncertainty of hydrological extremes in operational hydrologic forecasting. Including uncertainty estimation in operational forecasting systems is becoming a more common practice. However, a significant research challenge and central interest of this session is to understand the sources of predictability and development of approaches, methods and techniques to enhance predictability (e.g. accuracy, reliability etc.) and quantify and reduce predictive uncertainty in general. Providing uncertainty estimates for integrated catchment models involving forecasting models, either as a cascade or as alternative models, can prove particularly challenging and are an issue of interest to the session. Data assimilation or pre-/post-processing in real-time can provide important ways of improving the quality (e.g. accuracy, reliability) and reducing the uncertainty of hydrological forecasts. Methods that help update forecasts in real-time to reduce bias and increase accuracy, and case study demonstrations of their use, are of interest to this session.
The models involved with the methods for predictive uncertainty, data assimilation, post-processing and decision-making may include catchment models, runoff routing models, groundwater models, coupled meteorological-hydrological models as well as combinations of these. Demonstrations of the sources of predictability and subsequent reduction in predictive uncertainty at different scales through improved representation of model process (physics, parameterization, numerical solution, data support and calibration) and error, forcing and initial state are of special interest to the session.
Contributions are expected to address the following issues:
(i) Sources of predictability (model, forcing, initial conditions)
(ii) Quantification and reduction of predictive uncertainty
(iii) Real-time data assimilation
(iii) Untangling sources of uncertainty in the meteorological-hydrological forecasting chain
(iv) Effect of (improved) representation of model process on forecast quality and predictive uncertainty
(v) Methods for preparing meteorological predictions as input to real-time hydrological probability forecasts
(vi) Verification (methods) of hydrologic forecasts
(vii) Case studies of the above

Solicited speaker is Maurizio Mazzoleni (from Uppsala University) who will give a talk about Real-time assimilation of crowdsourced observations in hydrological and hydraulic models.

Share:
Co-organized as NH1.34
Convener: Oldrich Rakovec | Co-conveners: Hamid Moradkhani, Albrecht Weerts
Orals
| Tue, 09 Apr, 14:00–15:30
 
Room 2.31
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall A
NH1.7

Prediction skill of hydro-meteorological forecasting systems has remarkably improved in recent decades. Advances in both weather and hydrology models, linked to the availability of more powerful and efficient computational resources, allowed the development of even more complex systems based on the combination of spatially distributed physically-based hydrologic- and hydraulic models with deterministic and/or ensemble meteorological forecasting systems. Coupled atmosphere-hydrological modeling aims at describing the full atmospheric-terrestrial regional water cycle, i.e. extending from the top of the atmosphere, through the boundary layer, via the land surface and subsurface till lateral flow in the groundwater and in the river beds. Fully two-way coupled model systems thereby give the possibility to study long range feedbacks between groundwater, soil moisture redistribution and precipitation. Via improved and completed process descriptions fully coupled modeling may also increase the performance of hydrometeorological predictions of various spatial and temporal scales.
The objective of the session is to create a valuable opportunity for the interdisciplinary exchange of ideas and experiences among atmospheric-hydrological modelers and members of both hydrology- and Earth System modeling communities. Contributions are invited dealing with the complex interactions between surface water, groundwater and regional climate, with a specific focus on those presenting work on the development or application of one-way (both deterministic and ensemble) or fully-coupled hydrometeorological prediction systems for floods/flash-floods, droughts and water resources. Presentations of inter-comparisons between one-way and fully-coupled hydrometeorological chains are encouraged, such as contributions on novel one-way and fully-coupled modeling systems that bridge spatial scales through dynamic regridding or upscaling/downscaling methodologies. Also, presentations addressing data assimilation in coupled model systems are welcome. Likewise abstracts are invited on field experiments and testbeds equipped with complex sensors and measurement systems allowing multi-variable validation of such complex modeling systems.

Share:
Co-organized as AS4.4/HS4.2.3
Convener: Harald Kunstmann | Co-conveners: Martin Drews, Stefan Kollet, Alfonso Senatore
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room M2
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X3
NP5.3

Statistical post-processing techniques for weather, climate, and hydrological forecasts are powerful approaches to compensate for effects of errors in model structure or initial conditions, and to calibrate inaccurately dispersed ensembles. These techniques are now an integral part of many forecasting suites and are used in many end-user applications such as wind energy production or flood warning systems.

Many of these techniques are now flourishing in the statistical, meteorological, climatological, hydrological, and engineering communities. The methods range in complexity from simple bias correction up to very sophisticated distribution-adjusting techniques that take into account correlations among the prognostic variables.

In this session, we invite papers dealing with both theoretical developments in statistical post-processing and evaluation of their performances in different practical applications oriented toward environmental predictions.

Share:
Co-organized as AS1.8/CL5.22/HS4.2.4
Convener: Stéphane Vannitsem | Co-conveners: Stephan Hemri, Maxime Taillardat, Daniel S. Wilks
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room M1
Posters
| Attendance Fri, 12 Apr, 16:15–18:00
 
Hall X4

HS4.3 – Operational and impact forecasting, preparedness and decision making

HS4.3.1 | PICO

This interactive PICO session aims to bridge the gap between science and practice in operational forecasting for different water-related natural hazards. Operational (early) warning systems are the result of progress and innovations in the science of forecasting. New opportunities have risen in physically based modelling, coupling meteorological and hydrological forecasts, and ensemble forecasting. However, once a system is operational, the development often continues more in the field of applied research or consultancy. Furthermore, development of these types of systems is usually performed within one field of expertise. Forecasting warning research can be more effective when these efforts and experiences are combined.

The focus of this session will be on bringing the expertise from different fields together as well as exploring differences, similarities, problems and solutions between forecasting systems for varying natural hazards. Real-world case studies of system implementations - configured at local, regional and national scales - will be presented, including trans-boundary issues. An operational warning system can include monitoring of data, analysing data, making forecasts, giving warning signals and suggesting response measures.

Contributions addressing the following topics are welcome:
- Applications of forecasting warning systems for water-related natural hazards, such as: flood, drought, tsunami, landslide, hurricane etc.
- Applications of forecasting warning systems for other hazards, such as: pollution
- Operational data validation and calibration
- Operational warning methods and procedures
- Real time control for hazards
- The operational system as a tool for improved risk management and decision making
- Performance of operational forecasts, event analysis
- Serious games and training with operational systems
- Structure of operational forecasting systems
- Techniques/applications to better communicate forecasts with users - such as visualization tools and impact assessments
- Impact-based forecasts for early action, response and control.

Share:
Co-organized as NH1.35
Convener: Ilias Pechlivanidis | Co-conveners: Céline Cattoën-Gilbert, Michael Cranston, Femke Davids, Marc van den Homberg, Gabriela Guimarães Nobre
PICOs
| Thu, 11 Apr, 14:00–18:00
 
PICO spot 5b
ITS4.7/NH1.26/AS4.48/CL2.08/HS4.3.3/NP9.9 Media

The occurrence of extremes such as droughts, flash floods, hailstorms, storm surges and tropical storms can have significant and sometimes catastrophic consequences to society. However, not all low probability weather/climate events will lead to “high impacts” on human or natural systems or infrastructure. Rather, the severity of such events depend also intrinsically on the exposure, vulnerability and/or resilience to such hazards of affected systems, including emergency management procedures. Similarly, high impact events may be compounded by the interaction of several, e.g., in their own right less severe hydro-meteorological incidents, sometimes separated in time and space. Or they may similarly result from the joint failures of multiple human or natural systems. Consequently, it is a deep transdisciplinary challenge to learn from past high impact events, understand the mechanisms behind them and ultimately to project how they may potentially change in a future climate.

The ECRA (European Climate Research Alliance) Collaborative Programme on “High Impact Events and Climate Change” aims to promote research on the mechanisms behind high impact events and climate extremes, simulation of high impact events under present and future climatic conditions, and on how relevant information for climate risk analysis, vulnerability and adaptation may be co-created with users, e.g., in terms of tailored climate services. For this aim, this Interdisciplinary and Transdisciplinary Session invites contributions that will serve to (i) better understand the mechanisms behind high impact events from a transdisciplinary and interdisciplinary perspective, e.g. case studies and the assessment of past high impact events, including detection and attribution; (ii) project changes to high impact events through, e.g. high resolution climate and impacts modelling (including economic modelling); (iii) produce climate information at the relevant scales (downscaling); and co-create climate services with users to help deal with the risk and/or impacts of high-impact events, e.g. risk analysis and climate adaptation. Abstracts that highlight recent advances from a transdisciplinary perspective for example through the innovation of climate services will be particularly encouraged. Authors and contributors to this session will be offered to present their work in a Special Issue of the journal “Sustainability”.

Share:
Co-organized as NH1.26/AS4.48/CL2.08/HS4.3.3/NP9.9
Convener: Martin Drews | Co-conveners: Peter Braesicke, Hilppa Gregow, Kristine S. Madsen
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room L7
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X3

HS5 – Water policy, management and control

HS5.1 – Water policy and management

HS5.1.1 | PICO

Growing human population, urbanization, and changing availability of freshwater resources are expected to impact on urban and rural water systems in the next years, with emphasis on changing demand magnitude, peaks, and spatial and temporal patterns, and related water availability, supply capabilities and operations.
This context, coupled with the technological development and diffusion of advanced metering technologies, intelligent sensors, increasing data availability, and automatic or real-time control of water distribution networks, is opening up new opportunities to advance methods and applications for water demand and supply network analysis, modelling, and management. Along with such technological developments, transdisciplinary approaches that include economic, societal and environmental components are key to ultimately support and innovate traditional planning and management operations of water resources in urban and rural systems, at various temporal and spatial scales.
This session aims to provide an active forum to discuss and exchange knowledge of consolidated and emerging transdisciplinary approaches, frameworks, methods, tools, and technologies contributing to the state-of-the-art water demand and supply network analysis, modelling, and management, and demonstrate their potential or proved impact onto real-world applications.
Topics and applications could belong to any area of urban and rural water systems management, with a special focus on transdisciplinary approaches, including technological advances (e.g., monitoring sensors, intelligent sensors, big-data analysis and information retrieval, anomaly detection, and cybersecurity), behavioural analysis and societal aspects, descriptive and predictive models of water demand, experimental approaches to demand management, water demand and supply optimization.

Share:
Convener: Andrea Cominola | Co-conveners: Alvar Escriva-Bou, Ana Mijic, Riccardo Taormina, Rita Ugarelli, Thomas Thaler, Sharlene L. Gomes, Eric Lindquist
PICOs
| Thu, 11 Apr, 08:30–10:15
 
PICO spot 5b
HS5.1.2

Globally, we are facing massive challenges on how we manage our catchments, in both rural and urban areas, in the next decades. With a changing climate and increased pressure on our land resources we need to ensure we manage the water in our catchments more sustainably and even more so during hydro-climatic extremes. Nature-based solutions (NBS) are 'living' solutions inspired by and continuously supported by nature or natural processes. NBSs are designed to address various societal challenges in a resource efficient and adaptable manner to provide simultaneously economic, social and environmental benefits (European Commission 2015). Therefore NBS can be used within both rural and urban areas to mitigate catchment flood risk, provide drought resilience, protect and enhance endangered freshwater ecosystems and reduce diffuse pollution. However, there are still challenges in implementing NBS for reasons such as lack of evidence surrounding the effectiveness (e.g. at larger scales) and for delivering multiple benefits.

Therefore this session focuses on key research and policy questions associated with NBS. For example, how do we develop locally adapted solutions in catchments and urban areas? What are the impacts of these measures at larger scales (e.g. sub-catchment/ catchment scale)? How can we address multi-disciplinary benefits? How can we do more for less? Importantly, how can we provide the evidence base around the concept of Nature Based Solutions for managing hydrological extremes and water resource management? Examples of studies that cover either the management of flooding, drought, water quality or ecology (both in the rural, peri-urban and urban context) using NBS approaches are at the heart of this session. Management measures could include techniques such as Green Infrastructure, Natural Water Retention Measures, Natural Flood Management, Catchment Restoration, Ecological Engineering or Blue-Green Infrastructure. We invite (but not limit to) abstracts that demonstrate good quality hydrological experiments around NBS; that develop new or improve existing modelling approaches/decision support tools; that investigate and quantify the multiple benefits; and which explore the challenges of implementation (e.g. stakeholder uptake/economics/cost benefit).

Share:
Co-organized as NH1.12
Convener: Mark Wilkinson | Co-conveners: Mary Bourke, Paul Quinn, Christian Reinhardt-Imjela
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room 2.15
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall A
HS5.1.3

Semi-arid regions are facing the challenge of managing water resources under conditions of climate change, extreme events (flash floods, drought), increasing scarcity, and concerns about water quality. Already, the availability of fresh water in sufficient quality and quantity is one of the major factors limiting socio-economic development. Especially, in terms of hydrology semi-arid regions are characterized by very complex hydro- and hydrogeological systems that frequently exhibit extreme behavior. The complexity of the water cycle contrasts strongly with the often poor data availability, which limits the number of analysis techniques and methods available to researchers.
Discussing frameworks that provide water assessment, management, and allocation solutions for water and data scarce regions is the focus of this session. Specifically, this session emphasizes on recent advances in science as well as on practical application, including:
- The development, analysis, and application of new data collection techniques, such as environmental sensor networks, satellite imagery and participatory data collection methods, but also human capacity development;
- New understanding of hydrological processes that are characteristic for semi-arid regions, such as large scale droughts and other extremes;
- Innovative water management strategies, such as the storage of reclaimed water or excess water from different sources in Managed Aquifer Recharge (MAR)
- Methodologies for assessing the impact and cost-effectiveness of selected response measures toward an optimal water allocation.
- Best water scarcity and droughts indicators for the estimation of desertification risks across a range of scales
- Specific targets regarding water efficiency, to allow for sustainable ecosystem services in the river basins.
- Programs of measures to deal with desertification impact on the management & planning of water resources and on the economic development.
- Studies on the social implications of different water allocation strategies.
Public information:
Publication of contents in a special issue is foreseen. Contributions from previous years were published in the Special Issue “Advanced Tools for Integrated Water Resources Management” (Science of the Total Environment (STOTEN, Elsevier, doi:10.1016/j.scitotenv.2016.12.051), and in the STOTEN Book Series “ Advances in Chemical Pollution, Environmental Management and Protection” (https://tinyurl.com/y8f9favj).

Share:
Convener: Jan Friesen | Co-conveners: Laura Foglia, Ralf Ludwig, Leonor Rodriguez-Sinobas
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room 2.15
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall A

HS5.2 – Water, society, and change

HS5.2.1

Water plays a critical role in sustaining human health, food security, energy production, and ecosystem services. Population growth, climate change, and socio-economic and land use developments increasingly threaten water quality and quantity. The success of water resources policy and management is dependent on the integrative understanding of coupled human environmental systems and a careful consideration of uncertainty. Only through such integrative understanding is it possible to generate practical, scientifically sound, and socially acceptable solutions that are sustainable. The careful consideration of the implication of uncertainty is necessary if solutions are to be not just acceptable and sustainable, but also robust over a wide range of plausible future developments. This session provides a forum for discussing the advances in water resources systems analysis, planning and management under uncertainty for informing the planning, policymaking, and management of water resources in a changing world.

Share:
Convener: Jan Kwakkel | Co-conveners: Marjolijn Haasnoot, Julien Harou, Patrick Reed, Kaveh Madani, Timothy Foster, Greg Characklis, Manuel Pulido-Velazquez
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room 2.95
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall A
HS5.2.2

The research field of socio-hydrology emerged recently as an attempt to better understand the dynamic interactions and feedbacks within diverse coupled human-water systems and its implications for the assessment and management of water resources and associated risks. While acknowledging that the human impact on natural processes has reached unprecedented levels, the socio-hydrological perspective provides for a comprehensive understanding of integrated water systems and aims to identify adequate solutions for water supply, management, and adaptation to risk.
Socio-hydrology offers novel entry points for a more fertile engagement between hydrological and social sciences across different scales ranging from the plot level to entire watersheds. Its interdisciplinary nature encompasses (and integrates) various methodological approaches and epistemologies: from the air (remote sensing), on the ground (empirical field studies) and in the laboratory (modelling) and from positivist thinking common in natural and engineering sciences and constructivist thinking common in social sciences and behavioural economics.

The session therefore aims to trigger a discourse on understanding such systems at a diversity of scales with mutual recognition of different epistemologies within natural and social sciences. Examples of feedbacks include, but not limited to, economic forces such as agricultural or industrial production, diffusion or adoption of technology and knowledge such as water harvesting, community awareness such as emergence of environmental movements, values and norms etc. We welcome contributions from researchers from social and natural sciences who are keen to look beyond their research perspective and who like to discuss their research findings in a broader context of coupled human water systems, i.e. the subject matter of socio-hydrology.

Abstracts are solicited on topics that deal with planetary water boundary concepts, integrated assessment models (IAMs), water history and archaeology, sustainability of engineered river basins, water valuation (both monetary and non-monetary), urbanizing deltas etc. with a focus on understanding feedbacks and the spatial and temporal dynamics between human society (from individuals to global levels) and their environment and/or simulating plausible co-evolutionary dynamics that emerges into the future. Resulting policy insights for a sustainable future are equally welcomed. Coupled systems can be human-flood systems, human-infrastructure systems, human-irrigation systems, human-agricultural systems, human-delta systems etc. Papers of theoretical, conceptual or applied nature are solicited that 1) contribute to the understanding of complex human-water relations and their management, 2) discuss the benefits and shortcomings based on empirical, conceptual or model-based research and disciplinary perspective; and 3) shed light on the added value of socio-hydrological modelling for risk-based decision making and adaptation design.

This session is jointly developed with the framework of the Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) under the working group of “Socio-hydrological modeling and synthesis”.

Public information:
This session proudly hosts the HS Division Outstanding Early Career Scientists Award presentation by Serena Ceola. She was awarded for her outstanding contributions to the understanding of the interplay of river dynamics, fluvial ecology and human activities.

Share:
Convener: Britta Höllermann | Co-conveners: Giuliano Di Baldassarre, Marcus Nüsser, Saket Pande, Murugesu Sivapalan, Ted Veldkamp, Jeroen Aerts, Marleen de Ruiter
Orals
| Wed, 10 Apr, 14:00–18:00
 
Room B
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall A

HS5.3 – Water systems analysis and operations

HS5.3.1

Society today demands sustainable technical solutions that reconcile the needs of society with those of nature . These solutions must coordinate between different and often competing demands within a sub-system (irrigation, ecological flow, power generation) and the variety of different uses of environmental resources across systems (e.g., power from water, wind, sun, or waves). Advances in modeling, optimization, and control will play an essential role in providing these solutions.

This session is intended for contributions on the technical aspects of modelling and control of environmental systems for a future, where complex real time coordination between different sub-systems will be the rule rather than the exception.

Examples of topics suitable for this session are:

• models of both environmental systems and of management practices that can be used to study the effects of new control algorithms;
• models and algorithms for adaptive and resilient operational management of environmental systems;
• innovative solutions that exploit synergies and avoid potential conflicts for multi-resource and multi-sector systems.


The session is associated with Panta Rhei working group "Natural and man-made control systems in water resources" and welcomes contributions addressing the above mentioned points, especially in the context of hybrid power systems and water resource systems used for irrigation, drainage, water supply (potable water, industrial water, cooling water) and transport of goods.

Share:
Co-organized as ERE2.8
Convener: Ronald van Nooijen | Co-conveners: Andreas Efstratiadis, Alla Kolechkina
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall A
HS5.3.2

Highly varying hydro-climatological conditions, multi-party decision-making contexts, and the dynamic interconnection between water and other critical infrastructures create a wealth of challenges and opportunities for water resources planning and management. For example, reservoir operators must account for a number of time-varying drivers, such as the downstream users’ demands, short- and long-term water availability, electricity prices, and the share of power supplied by wind and solar technologies. In this context, adaptive and robust management solutions are paramount to the reliability and resilience of water resources systems. To this purpose, emerging work is focusing on the development of models and algorithms that adapt short-term decisions to newly available information, often issued in the form of weather or streamflow forecasts, or extracted from observational data collected via pervasive sensor networks, remote sensing, cyberinfrastructure, or crowdsourcing.
In this session, we solicit novel contributions related to improved multi-sectoral forecasts (e.g., water availability and demand, energy and crop prices), novel data analytics and machine learning tools for processing observational data, and real-time control solutions taking advantage of this new information. Examples include: 1) approaches for incorporating additional information within control problems; 2) methods for characterizing the effect of forecast uncertainty on the decision-making process; 3) integration of information with users’ preferences, behavioral uncertainty, and institutional setting; 4) studies on the scalability and robustness of optimal control algorithms. We welcome real-world examples on the successful application of these methods into decision-making practice.

Share:
Convener: Matteo Giuliani | Co-conveners: Stefano Galelli, Julianne Quinn, Amaury Tilmant
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room 2.31
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall A

HS5.4 – Water, energy and/or food nexus

HS5.4.2

The transition to a low-carbon economy and programs of nuclear power phase-out will require the development of innovative methods to integrate renewable sources of energy while minimizing the additional pressure on closely connected ecosystems.

Hydropower is a mature and cost-competitive renewable energy source, which helps stabilize fluctuations between energy demand and supply. Depending on the relative capacities of the intermittent renewables and hydropower facilities, integration may require changes in the way hydropower facilities operate to provide balancing, reserves or energy storage. Moreover, non-power constraints on the hydropower system, such as irrigation water deliveries, environmental constraints, recreation, and flood control tend to reduce the ability of hydropower to integrate variable renewable. In this context, energy production relies on reliable short and long term predictions of the temporal availability and the quality of natural resources (water, wind, solar power etc).

This session solicits contributions that describe, characterize, or model distributed renewable energy sources at different spatial and temporal scales that are relevant for the electricity systems, their interactions, their planning and management. Spatial scales range from point scale (i.e. stand-alone system) to national and international scales. Temporal scales range from minutes to decades. Special attention will be devoted to the interactions between the energy-water system and the climate and hydrological variables that govern production in space and time. Of particular interest are case studies and other contributions of hydrology and power grid modernization initiatives to understand these complex interdependencies. The development of new modeling approaches to analyze interactions with climate-policy and power grid management options, socio-economic mitigation measures and land use are welcome, including experimental work to understand how energy production affects ecosystems.

We hope that the contributions to this session will highlight how hydrology and closely related methods can contribute to address urgent challenges in this field.
Questions of interest include:
- How to predict water availability for hydropower production?
- How to predict and quantify the space-time dependences and the positive/negative feedbacks between wind/solar energies, water cycle and hydropower?
- How to predict and quantify the influence of climate change on climate-related energies and the energy demand?
- How to quantify the relevant impacts on the hydropower sector?
- What energy-source transitions occur in view of climate and global change? How can they be modelled? How do energy, land use and water supply interact during transitions?
- How socio-economic aspects can be taken into account when modelling renewable energy sources?
- What policy requirements or climate strategies are needed to manage and mitigate risks in the transition?
- Quantification of energy production impacts on ecosystems such as hydropeaking effects on natural flow regimes, quantification of residual flow impacts on river ecosystems.

Share:
Co-organized as ERE2.9
Convener: Baptiste François | Co-conveners: Benoit Hingray, E. Sauquet, Casey Brown, Emmanouil Anagnostou
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room C
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall A
HS5.4.3

Developing a sustainable future requires the optimal integration and synergising of energy, agriculture and water sectors. As developing economies grow with rapid urbanisation, access to modern energy and water services should grow sustainably. Quantitative tools for planning and assessing national and basin scale infrastructure planning are essential for this. Issues of access and the challenges of biophysical and socioeconomic dynamics involved therein are often poorly reflected in plans. Integrated Assessment Modeling (IAMs) can allow for studying interactions between the economy, water use, energy use, and the environment. IAMs enable investigating long-term transition pathways in the context of climate change and shared socioeconomic pathways.

Most IAMs, however, are mainly global and at best regional, and as such do not adequately represent socio-hydrological mechanisms at smaller scale. On the other hand, basin scale studies often poorly reflect national and regional drivers. One of the main bottlenecks is the intrinsic difficulty in bridging the high-level system-oriented approach of IAMs with the strong dependency of the efficacy of plans on local socioeconomic and hydrological drivers. We invite contributions connecting fundamental and applied research for policy making, concepts and case studies to better understand how IAMs can be better utilised in infrastructure decisions at regional, country or basin scales.

Keys: Integrated Assessment Modelling, Water-Energy-Food Nexus, Infrastructure Decisions, Urbanization, Climate Change

Share:
Co-organized as ERE8.2
Convener: Edo Abraham | Co-conveners: Saket Pande, Zarrar Khan
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room 2.25
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall A

HS5.5 – Water quality management

HS5.5.1

Global and regional water management is facing major challenges to reach targeted water quality goals. Globally major socio-economic developments are triggering a new water quality challenge, particularly in developing and transition countries. Increasing population and expanding public water supplies that fail to adequately address the treatment of wastewater flows, lead to significant water quality deterioration. Regionally the diffuse transfer of pollutants from land to water presents a major challenge, being co-dependent on changing weather patterns such as the frequency and magnitude of storms, the periodicity of droughts, land modifications and response time lags; leading to water quality degradation, risk to human and ecosystem health, food security, and the economy.

The United Nations Sustainable Development Goal 6 requires countries to monitor progress towards ‘ensuring sustainable management of water and sanitation for all' and set-up appropriate monitoring systems and indicators. SDG6 requires defining base lines, trends and targets to review the effectiveness of pollution mitigation measures. While high frequency monitoring and/or long time series have improved our process-based understanding of pollutant losses to water at catchment level, the patterns in water quality due to source management could be confounded by the effect of larger climate and weather cycles. Moreover, in many data poor locations, policy and management can only be informed by the interpretation of lower resolution data.

To this end, Bayesian approaches have become increasingly popular in water quality modelling, thanks to their ability to handle uncertainty comprehensively (data, model structure and parameter uncertainty) and as flexible statistical and data mining tools. Furthermore, graphical Bayesian Belief Networks can be powerful decision support tools that make it relatively easy for stakeholders to engage in the model building process and draw on all available information from expert knowledge to high resolution data sets.

This session focuses on global and regional water quality research and assessments concerning methods and data sets required to evaluate sustainable development measures. We invite submissions on: (i) methods to assess signals and trends in water quality, (ii) assessment of hydrological and biogeochemical processes on pollutant transfer and their relationship to climate effects, time lags and/or adaptive management changes, (iii) development of new modelling and data-driven frameworks identifying hotspots of water quality degradation posing a risk to human and ecosystem health, water and food security, and (iv) model and data based evaluations of strategies to improve water quality.

Keynote speaker:
Prof Peter Reichert: “The need for Bayesian approaches in water research and management.”
Eawag, Swiss Federal Institute of Aquatic Science and Technology; Department of Systems Analysis, Integrated Assessment and Modelling

Share:
Convener: Martina Flörke | Co-conveners: Ilona Bärlund, Rémi Dupas, Per-Erik Mellander, M. T. H. van Vliet
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room 2.95
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall A
ITS2.5/HS5.5.2/ERE8.3/GM8.6

Synergistic approaches to respond to water, food and energy increasing needs, incorporating the need to hinder impacts on the environmental (land) and socio-economic realities, are essential to attain the UN Sustainable Development Goals 2, 6, 7 and 15. Such nexus approach is highly challenging given the substantial and highly contextual interdependencies between sectors. It becomes more daunting if we consider the need to adapt to climate change.

In response to this global development challenge, this session brings together the community of engineers, scholars, scientists and decision makers, with a common interest on novel frameworks and methodologies for an integrated water resources management taking into account its connections to energy production, land use and impacts and societal implications in a context of climate change adaptation. We discuss improved approaches for water related nexus, which not only considers the effects in the geophysical system (water, sediment, landscape) but also further implications related to socio-economic and ecological spheres. The works presented contain conceptual and applied models with references to energy production, engineering response, management, nature protection, agriculture and society. New approaches to analyse and manage superficial water storage, essential to sustain and stabilize water supply, food and energy production, reduce hydro-climatological hazards, and adapt to climate change, are discussed as well.

More generally, the session presents integrated models for assessment and optimization which identify co-benefits and trade-offs between different Sustainable Development Goals at several spatial and temporal scales: global, regional and basin; and short, middle and long- term perspectives, respectively. Contributions integrate the impacts of climate change into long-term planning, dynamic adaptation or simulation models.

Share:
Co-organized as HS5.5.2/ERE8.3/GM8.6
Convener: Mário J Franca | Co-conveners: Edward A. Byers, Andrey V. Mitusov, Gretchen Gettel, Germán Santos, Francesco Gardumi, Michelle van Vliet
Orals
| Mon, 08 Apr, 14:00–18:00
 
Room L7
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall A

HS6 – Remote Sensing and Data Assimilation

HS6.3

The monitoring of river water levels, river discharges, water bodies extent, storage in lakes and reservoirs, flooding and floodplain dynamics plays a key role in assessing water resources, understanding surface water dynamics, characterizing and mitigating water related risks and enabling integrated management of water resources and aquatic ecosystems.

While in situ measurement networks play a central role in the monitoring effort, remote sensing techniques are expected to contribute in an increasing way, as they can provide homogeneous and near real time measurements over large areas, from local to basin wide, regional and global.

In this context, remote sensing represents a value source of data and observations that may alleviate the decline in field surveys and gauging stations, especially in remote areas and developing countries. The implementation of remotely-sensed variables (such as digital elevation model, river width, flood extent, water level, land cover, etc.) in hydraulic modelling promises to considerably improve our process understanding and prediction and during the last decades, an increasing amount of research has been undertaken to better exploit the potential of current and future satellite observations. In particular, in recent years, the scientific community has shown how remotely sensed variables have the potential to play a key role in the calibration and validation of hydraulic models, as well as provide a breakthrough in real-time monitoring applications. However, except for a few pioneering studies, the potential of remotely sensed data to enhance water-related modelling and applications has not yet been fully enough explored, and the use of such data for operational decision-making is far from being consolidated. In this scenario, the forthcoming satellite missions dedicated to global water surfaces monitoring will enhance the quality, as well as the spatial and temporal coverage, of remotely sensed data, thus offering new frontiers and opportunities to enhance the understanding of flood dynamics and our capability to map their extents.

We encourage presentations related to flood monitoring, water level, storage and discharge etc through remotely sensed data including:

- Remote sensing data for flood hazard and risk mapping;
- Remote sensing techniques to monitor flood dynamics;
- The use of remotely sensed data for the calibration, or validation, of hydrological or hydraulic models;
- Data assimilation of remotely sensed data into hydrological and hydraulic models;
- Improvement of river discretization and monitoring by means of satellite based observations;
- River flows estimation by means of remote sensed observations;
- River and flood dynamics estimation from satellite (especially time lag, flow velocity, etc.)

Share:
Co-organized as NH6.19
Convener: Guy J.-P. Schumann | Co-conveners: Alessio Domeneghetti, Ben Jarihani, Angelica Tarpanelli, Jérôme Benveniste
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room C
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall A
HS6.4

We invite presentations concerning soil moisture estimation, including remote sensing, field experiments, land surface modelling and data assimilation. The technique of microwave remote sensing has made much progress toward its high potential to retrieve surface soil moisture at different scales. From local to landscape scales several field or aircraft experiments (e.g. SMAPex) have been organised to improve our understanding of active and passive microwave soil moisture sensing, including the effects of soil roughness, vegetation, spatial heterogeneities, and topography. At continental scales a series of several passive and active microwave space sensors, including SMMR (1978-1987), AMSR(2002-), ERS/SCAT (1992-2000) provided information on surface soil moisture. Current investigations in L-band passive microwave with SMOS (2009-) and the new SMAP mission (Q1 2015) and in active microwave with Metop/Ascat series (2006-) open new possibilities in the quantification of the soil moisture at regional and global scales. Comparison between soil moisture simulated by land surface models, in situ observations, and remotely sensed soil moisture is also relevant to characterisation of regional and continental scale soil moisture dynamic (e.g., ALMIP2, GSWP3).

We encourage presentations related to soil moisture remote sensing, including:
- Field experiment, theoretical advances in microwave modelling and calibration/validation activities.
- Root zone soil moisture retrieval and soil moisture assimilation in land surface models as well as in Numerical Weather Prediction models.
- Inter-comparison and inter-validation between land surface models, remote sensing approaches and in-situ validation networks.
- Evaluation and trend analysis of soil moisture data record products such as the soil moisture CCI product or soil moisture re-analysis products (e.g. MERRA-Land, ERA-Land).
- Application of satellite soil moisture products for improving hydrological applications such as flood prediction, drought monitoring, rainfall estimation.

Invited Speaker: Wolfgang Wagner from Vienna University of Technology with the title "Resolving the Daily Water Cycle over Land with a Geosynchronous C-band Radar Satellite"

Share:
Convener: Luca Brocca | Co-conveners: Patricia de Rosnay, Yann Kerr, Jian Peng, Niko Verhoest
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room B
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall A
HS6.5

Ensuring long-term water sustainability for increasing human populations is a common goal for water resource managers. Measuring evapotranspiration (ET) at watershed or river-reach scales, upland or urban areas is required to estimate how much water can be apportioned for human needs while maintaining healthy vegetation and habitat for wildlife.
Consequently, much research has been devoted to this topic. However although there have been many advances in meteorological equipment and observations, more universal recognition of the impact of climate and land cover changes on evaporation and hydrology, and the increased accessibility of many parts of the world, evaporation from much of the globe remains elusive to quantify. This is particularly true in areas with few meteorological observations, in regions where precipitation is particularly hard to predict such as in arid and semi-arid or mountain environments. ET measurements are often made on local scales, but scaling up has been problematic due to spatial and temporal variability.
There are challenges associated with handling temporal variability over complex agro-climatic regions and in places with strong effects of unpredictable climate oscillations. For instance, crop/plant coefficients vary seasonally, particularly for riparian, upland vegetation, and urban greenery; traditional approaches of ET estimation commonly neglect the heterogeneity of microclimate, density, species, and phenology that have often led to gross overestimates of plant water use.
In this session, we want to focus on quantifying evapotranspiration dynamics in diverse climates and environments as a tool for improving hydrologic assessments and predictions at a catchment scale. Remote sensing products in many cases are the only spatially distributed information available to account for seasonal climate and vegetation variability and are thus extremely valuable data sources for ET estimation on larger scales.
We invite researchers to contribute theoretical and empirical ET model applications for a variety of dryland vegetation associations and other sensitive environments. We welcome studies that estimate ET using both prognostic and diagnostic approaches from process-based models that rely on the integration of precipitation and soil-vegetation dynamics to a more direct estimation of ET using e.g. remote sensing based data streams. Applications in drought-prone forests, rangelands, mountain and urban areas at a range of spatial and temporal scales are encouraged.

Share:
Co-organized as BG1.44/ESSI1.12/GI3.12
Convener: Pamela Nagler | Co-conveners: Claire Brenner, Chris Jarchow, Hamideh Nouri, Gabriel Senay, Natalie Ceperley, Mathew Herrnegger
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room B
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall A
HS6.7 | PICO

Remote sensing techniques are widely used to estimate and monitor the relationship between vegetation dynamics and the water cycle. Measurements of vegetation water content, transpiration and water stress contribute to a better global understanding of the water movement in the soil-plant system, which is critical for the detection and monitoring of droughts and their impact on biomass. With the number of applications and (planned) missions increasing, this session aims to bring researchers together to discuss the current state in the remote observation of the interactions between vegetation and hydrology. We aim to (1) discuss novel research and findings, (2) exchange views on what should be done to push the field forward, and (3) identify current major challenges.

We encourage authors to submit presentations on:
• Modelling studies,
• Remote sensing data analyses,
• New hypothesis,
• Enlightening opinions.

Share:
Co-organized as BG1.36
Convener: Mariette Vreugdenhil | Co-conveners: Joris Timmermans, Tim van Emmerik, Julia K. Green, Leon T. Hauser, Philip Marzahn, Brianna Pagán, Arturo Sanchez-Azofeifa
PICOs
| Mon, 08 Apr, 08:30–12:30
 
PICO spot 5b
HS6.8

Drones (also Unmanned Aerial Vehicles/Systems (UAV/UAS), Remotely Piloted Aircraft Systems) have revolutionised the ability to collect ultra-high spatial resolution spatial data at the scale of millimetres to centimetres. This has allowed a new scale of mapping and process research in the geosciences. Drones and associated sensors can be cost-effective compared with high spatial resolution airborne and satellite data, providing flexibility in deployment. The development curve of miniaturized drone sensors and data processing software / hardware solution has been transformative, but has not perhaps satisfied scientists’ expectations. Many geoscientists are grappling with quality, stability and reliability in the collection and calibration of data from sensors that have over-promised but under-delivered in practice, or are simply not suited to particular applications. Drone hardware and software has provided tools to process the data, but many tools are black-box, and the resulting observations have quality issues that can impact the questions that are being answered by geoscientists in mapping and process studies. This PICO session will share peoples’ knowledge of the issues and limits of sensors and processing workflows, focusing on communicating and sharing solutions for addressing and advancing our understanding of how ultra-high spatial resolution drone data can (and cannot) be collected, calibrated, processed and then used to answer research questions in the geosciences. Specific themes we wish to promote include:
- Work quantifying sensor quality, stability and reliability in the collection of data, with a focus on sharing information around quantifying limits, providing solutions and communicating best (or limits on) use of data,
- Best practice in the calibration of data (particularly spectral and thermal sensors), and relating this to levels of processing/calibration/validation required to answer geoscience questions,
- Collection and processing of LiDAR and photogrammetry Structure from Motion (SfM) data and the use of fine-resolution digital elevation models (DEMs) in the geosciences,
- Limitations and opportunities in using drones for mapping studies in the geosciences,
- Limitations and opportunities in using drones for process studies in the geosciences,
- Related work that focuses on solutions to issues experienced in using drone data in the geosciences.
- Examples of applications that are affected or overcome issues related to sensor quality, calibration and data pre-processing (orthomosaicing, radiometric correction, vignette correction, BRDF correction, conversion of digital numbers to at-surface reflectance).


We are pleased to announce a keynote presentation from Dr Patrice Carbonneau (University of Durham).

Share:
Co-organized as GM2.13
Convener: Kasper Johansen | Co-conveners: Nik Callow, Andrew Cunliffe, Ben Jarihani
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall A
GI4.5

The IR (MWIR 3-5micron and LWIR 7-12micron) sensing technologies have reached a significant level of maturity and has become a powerful method of Earth surface sensing.
Thermal sensing is currently used for characterize land surface Temperature (LST) and Land Surface Emissivity (LSE) and many other environmental proxy variables, which part of them can have a further relevance when assimilated into hydrological and climatological models.
The usefulness of IR sensing has been experimented in many environmental applications and also in the spatio-temporal domain for spatial patterns identification.
The session welcomes communications based on the actual of next future IR imagery from broadband to multi/hyperspectral applied to proximal or remote sensing (ECOSTRESS, ASTER, Sentinel3, Landsat etc. and airborne sensors) in the following specific objectives:
- IR instruments solution
- Instrument radiometric calibration procedures
- Algorithms retrieval for Temperature and Emissivity
- Soil properties characterization
- Evapo-Transpiration, water plants stress and drought
- IR targets identification
- Archaeological prospection
- Urban areas and infrastructure investigation
- Geophysical phenomena characterization
- IR synergy with optical imagery

LINKED TO THIS SESSION IS A REMOTE SENSING JOURNAL SPECIAL ISSUE "Proximal and Remote Sensing in the MWIR and LWIR Spectral Range" WITH DEADLINE DECEMBER 2019.

https://www.mdpi.com/journal/remotesensing/special_issues/EGU_TIR

SUBMISSIONS TO THIS SESSION AND TO THE RS JOURNAL SPECIAL ISSUE ARE WELCOME

Share:
Co-organized as AS5.9/HS6.9/NH6.17/SSS12.14
Convener: Stefano Pignatti | Co-conveners: Eyal Ben Dor, Maria Fabrizia Buongiorno, Angelo Palombo, Francesco Marchese, Nicola Genzano, Vasco Mantas, George Xian
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room 0.96
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X1

HS7 – Precipitation and Climate

HS7.1

The hydrological response to precipitation at the catchment scale is the result of the interplay between the space-time variability of precipitation, the catchment geomorphological / pedological / ecological characteristics and antecedent hydrological conditions. Therefore, (1) accurate measurement and prediction of the spatial and temporal distribution of precipitation over a catchment and (2) the efficient and appropriate description of the catchment properties are important issues in hydrology. This session focuses on the following aspects of the space-time variability of precipitation:
- Novel techniques for measuring liquid and solid precipitation at hydrologically relevant space and time scales, from in situ measurements to remote sensing techniques, and from ground-based devices to spaceborne platforms.
- Novel approaches to better identify, understand and simulate the dominant microphysical processes at work in liquid and solid precipitation.
- Applications of measured and/or modelled precipitation fields in catchment hydrological models for the purpose of process understanding or predicting hydrological response.

Share:
Co-organized as AS4.24
Convener: Alexis Berne | Co-conveners: Tim Bellerby, Hidde Leijnse, Taha Ouarda, Eric Wood (deceased)(deceased)
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room 2.31
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall A
HS7.2

The assessment of precipitation variability and uncertainty is crucial in a variety of applications, such as flood risk forecasting, water resource assessments, evaluation of the hydrological impacts of climate change, determination of design floods, and hydrological modelling in general. Within this framework, this session aims to gather contributions on research, advanced applications, and future needs in the understanding and modelling of precipitation variability, and its sources of uncertainty.
Specifically, contributions focusing on one or more of the following issues are particularly welcome:
- Novel studies aimed at the assessment and representation of different sources of uncertainty versus natural variability of precipitation.
- Methods to account for different accuracy in precipitation time series, e.g. due to change and improvement of observation networks.
- Uncertainty and variability in spatially and temporally heterogeneous multi-source precipitation products.
- Estimation of precipitation variability and uncertainty at ungauged sites.
- Precipitation data assimilation.
- Process conceptualization and modelling approaches at different spatial and temporal scales, including model parameter identification and calibration, and sensitivity analyses to parameterization and scales of process representation.
- Modelling approaches based on ensemble simulations and methods for synthetic representation of precipitation variability and uncertainty.
- Scaling and scale invariance properties of precipitation fields in space and/or in time.
- Physically and statistically based approaches to downscale information from meteorological and climate models to spatial and temporal scales useful for hydrological modelling and applications.

Share:
Co-organized as AS1.33/CL2.09/NH1.22/NP5.7
Convener: Simone Fatichi | Co-conveners: Alin Andrei Carsteanu, Roberto Deidda, Andreas Langousis, Chris Onof
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room 2.44
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall A
HS7.3 | PICO

Hydroclimatic conditions and the availability of water resources in space and time constitute important factors for maintaining an adequate food supply, the quality of the environment, and the welfare of inhabitants, in the context of sustainable growth and economic development. This session is designed to explore the impacts of hydroclimatic variability, climate change, and the temporal and spatial availability of water resources on: food production, population health, the quality of the environment, and the welfare of local ecosystems. We particularly welcome submissions on the following topics:

Complex inter-linkages between hydroclimatic conditions, food production, and population health, including: extreme weather events, surface and subsurface water resources, surface temperatures, and their impacts on food security, livelihoods, and water- and food-borne illnesses in urban and rural environments.

Quantitative assessment of surface-water and groundwater resources, and their contribution to agricultural system and ecosystem statuses.

Spatiotemporal modeling of the availability of water resources, flooding, droughts, and climate change, in the context of water quality and usage for food production, agricultural irrigation, and health impacts over a wide range of spatiotemporal scales

Intelligent infrastructure for water usage, irrigation, environmental and ecological health monitoring, such as development of advanced sensors, remote sensing, data collection, and associated modeling approaches.

Modelling tools for organizing integrated solutions for water, precision agriculture, ecosystem health monitoring, and characterization of environmental conditions.

Water re-allocation and treatment for agricultural, environmental, and health related purposes.

Impact assessment of water-related natural disasters, and anthropogenic forcings (e.g. inappropriate agricultural practices, and land usage) on the natural environment; e.g. health impacts from water and air, fragmentation of habitats, etc.

Share:
Co-organized as CL4.41/ERE8.7/NH1.21/NP9.5
Convener: George Christakos | Co-conveners: Alin Andrei Carsteanu, Andreas Langousis, Hwa-Lung Yu
PICOs
| Mon, 08 Apr, 14:00–18:00
 
PICO spot 5b
HS7.4 Media

Hydroclimatic variability is an emerging challenge with increasing implications on water resources management, planning, and the mitigation of water-related natural hazards. The above variability, along with the continuous development of water demands, and aging water supply system infrastructure make the sustainability of water use a high priority for modern society. In fact, the Global Risk 2015 Report of the World Economic Forum highlights global water crises as being the biggest threat facing the planet over the next decade.
To mitigate the above concerns we need to shed light on hydroclimatic variability and change. Several questions and mysteries are still unresolved regarding natural fluctuations of climate, anthropogenic climate change and associated variability, and changes in water resources. What is a hydroclimatic trend? What is a (long term) cycle? How can we distinguish between a trend and a cycle? Is such discrimination technically useful? How do human activities affect rainfall, hydrological change and water resources availability? How to set priorities and take action to ensure sustainability in light of variability and change?
The objective of this session is to explore hydrological and climatic temporal variability and their connections and feedbacks. More specifically, the session aims to:
1. investigate the hydrological cycle and climatic variability and change, both at regional and global scales;
2. explore the interplay between change and variability and its effect on sustainability of water uses;
3. advance our understanding of the hydrological cycle, benefiting from hydrological records and innovative techniques; and
4. improve the efficiency, simplicity, and accurate characterization of data-driven modeling techniques to quantify the impacts of past, present and future hydroclimatic change on human societies.
This session is sponsored by the International Association of Hydrological Sciences (IAHS) and the World Meteorological Organization – Commission for Hydrology (WMO CHy) and it is also related to the scientific decade 2013–2022 of IAHS, entitled “Panta Rhei - Everything Flows”.

Share:
Co-organized as CL2.29/NP3.7, co-sponsored by IAHS and WMO
Convener: Serena Ceola | Co-conveners: Christophe Cudennec, Demetris Koutsoyiannis, Harry Lins, Alberto Montanari
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room 2.15
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall A
HS7.5

Precipitation is the main driver for a number of hydrologic and geomorphic hazards (such as floods, landslides and debris flows), which pose a significant threat to modern societies on a global scale. The continuous increase of population and urban settlements in hazard-prone areas in combination with evidence of changes in precipitation patterns lead to a continuous increase of the risk associated with precipitation-induced hazards. To improve resilience and to design more effective mitigation strategies, we need to better understand the aspects of vulnerability, risk, and triggers that are associated with these hazards.

This session aims to gather contributions dealing with various precipitation induced hazards that address the aspects of vulnerability analysis, risk estimation, impact assessment, mitigation policies and communication strategies. Specifically, we aim to collect contributions from the academia, the industry (e.g. insurance) and government agencies (e.g. civil protection) that will help identify the latest developments and ways forward for improving the resilience of communities at local, regional and national scales, and proposals for improving the interaction between different entities and sciences.

Contributions focusing on, but not limited to, novel developments and findings on the following topics are particularly encouraged:

- Physical and social vulnerability analysis and impact assessment of precipitation-related hazards.
- Advances in the estimation of socioeconomic risk from precipitation-induced hazards.
- Characteristics of precipitation patterns leading to high-impact events.
- Evidence on the relationship between precipitation patterns and socioeconomic impacts.
- Hazard mitigation procedures.
- Communication strategies for increasing public awareness, preparedness, and self-protective response.
- Impact-based forecast and warning systems

Share:
Co-organized as NH1.20
Convener: Efthymios Nikolopoulos | Co-conveners: Francesco Marra, Nadav Peleg, Isabelle Ruin
Orals
| Wed, 10 Apr, 14:00–15:45
 
Room 2.15
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall A
HS7.6 | PICO

This session addresses two sub-topics: the small scale variability of precipitation, and the atmospheric water cycle. It adopts a PICO format which aims at employing the most modern and captivating environment of scientific exchange (i.e., a 2-minute oral presentation, nicknamed "2-minute madness", followed by an interactive poster presentation on dedicated touch-screens, https://egu2019.eu/guidelines/pico_presenter_guidelines.html).

Precipitation variability: from drop scale to lot scale

The understanding of small scale spatio-temporal variability of precipitation from seconds in time and drop scale in space to 5 minutes in time and 1 km in space is essential for larger scale studies, including more and more hydrological applications, especially in highly heterogeneous areas (mountains, cities). Nevertheless grasping this variability remains an open challenge. An illustration of the range of scales involved is the ratio between the effective sampling areas of the commonly used point measurement devices (rain gauges and disdrometers) and weather radars, which is greater than 10^7! This session will bring together scientists and practitioners that aim at bridging this scale gap and improving the understanding of small scale precipitation variability, both liquid and solid, as well as its consequences at larger scales.
Contributions addressing one or several of the following issues are especially targeted:
- Novel measurement devices, combinations of devices (both in situ and remote sensors), or experimental set ups enabling to grasp small scale precipitation variability;
- Novel modelling or characterization tools of small scale precipitation variability relying on a wide range of approaches (e.g. scaling, (multi-)fractal, statistic, deterministic, numerical modelling);
- Precipitation drop (or particle) size distribution and its small scale variability, including its consequences for rain rate retrieval algorithms for radars and other remote sensors;
- Physical processes leading to the small-scale rainfall variability
- Examples of hydrological applications where small scale precipitation variability input is required.


The atmospheric water cycle: feedbacks, management, land-use and climate change

Traditionally, hydrologists have always considered precipitation and temperature as input to their models and evaporation as a loss. However, more than half of the evaporation globally comes back as precipitation on land. Land-use changes alter, not only, the local water cycle, but through atmospheric water and energy feedbacks also effect the water cycle in remote locations.
This session aims to:
- show applied studies using fundamental characteristics of the atmospheric branch of the hydrologic cycle on different scales. These fundamentals include, but are not limited to, atmospheric circulation, humidity, residence times, recycling ratios, sources and sinks of atmospheric moisture, energy balance and climatic extremes.
- investigate the remote and local atmospheric feedbacks from human interventions such as irrigation and deforestation on the water cycle, precipitation and climate, based on observations and coupled modelling approaches.
- explore the implications of atmospheric feedbacks on the hydrologic cycle for land and water management. Can we favourably alter atmospheric hydrology and precipitation by means of ground based interventions of changing land cover, and thus changing evaporation, albedo and surface roughness?

Share:
Co-organized as AS4.23/NP3.4
Convener: Auguste Gires | Co-conveners: Ruud van der Ent, Remko Uijlenhoet, Katharina Lengfeld, Lan Wang-Erlandsson
PICOs
| Mon, 08 Apr, 08:30–10:15
 
PICO spot 4
HS7.7 | PICO

Over the last decades, a significant body of empirical and theoretical work has revealed the departure of statistical properties of hydrometeorological processes from the classical statistical prototype, as well as the scaling behaviour of their variables in general, and extremes in particular, in either state, space and/or time. This PICO session (i.e., a 2-minute oral presentation, nicknamed "2-minute madness", followed by an interactive poster presentation on dedicated touch-screens) aims at presenting the latest developments on:
- Coupling stochastic approaches with deterministic hydrometeorological predictions, in order to better represent predictive uncertainty;
- Stochastic-dynamic approaches that are more consistent with the hydrometeorological reality than both deterministic and statistical models separately;
- Variability at climatic scales and its interplay with the ergodicity of space-time probabilities;
- Linking underlying physics and scaling stochastics of hydrometeorological extremes;
- Development of parsimonious representations of probability distributions of hydrometeorological extremes over a wide range of scales and states;
- Understanding and using parsimonious parametrizations of extremes in risk analysis applications and hazard prediction.
The suggested session description is submitted to the HS division of EGU and is sponsored by the International Commission on Statistical Hydrology of the International Association of Hydrological Sciences (ICSH-IAHS, former STAHY).

Share:
Co-organized as NH1.23, co-sponsored by IAHS-ICSH
Convener: Jose Luis Salinas Illarena | Co-conveners: Marco Borga, Auguste Gires, Rui A. P. Perdigão, Alberto Viglione
PICOs
| Tue, 09 Apr, 10:45–12:30
 
PICO spot 5b
HS7.8

Urban hydrological processes are characterised by high spatial variability and short response times resulting from a high degree of imperviousness. Therefore, urban catchments are especially sensitive to space-time variability of precipitation at small scales. High resolution precipitation measurements in cities are crucial to properly describe and analyse urban hydrological response. At the same time, urban landscapes pose specific challenges to obtaining representative precipitation and hydrological observations.
This session focuses on high resolution precipitation and hydrological measurements in cities and on approaches to improve modelling of urban hydrological response:
- Novel techniques for high resolution precipitation measurement in cities and approaches for merging remote sensing data with in situ measurements to obtain representation of urban precipitation fields;
- Novel approaches to hydrological field measurements in cities, including data obtained from citizen observatories;
- Novel approaches to modelling urban catchment properties and hydrological response, from physics-based models, fully and semi-distributed modelling to stochastic and statistical conceptualisation;
- Applications of measured precipitation fields in urban hydrological models to improve prediction of flood response and real-time control of stormwater systems for pollution load reduction;
- rainfall modelling for urban applications, including stochastic rainfall generators.

Share:
Co-organized as NH1.24/NP3.5
Convener: Marie-Claire ten Veldhuis | Co-conveners: Hannes Müller-Thomy, Susana Ochoa Rodriguez, Daniel Schertzer
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room 2.15
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall A

HS8 – Subsurface Hydrology

HS8.1 – Subsurface Hydrology – General sessions

HS8.1.1

Development and application of decision support systems to aquifers and underground reservoirs requires reliable and physically based methods to understand main mechanisms and infer key parameters controlling the fate of the underground environment where rocks, liquids, gases and microbes sit in close proximity and interaction. Underground environments are complex and extremely heterogeneous exhibiting variations on a multiplicity of scales. Addressing heterogeneity in all its manifestations is the focus of exciting and intense forefront research and industrial activities. A wide range of innovative methods have recently emerged, from laboratory experiment to field tests, that are capable of quantifying the extent and the interaction between physical, chemical and biological properties of complex structures at different scales, including: (hydro)geophysical methods, innovative sensors or microscopic imaging techniques. In many situations the information conveyed by each measurement may be far from complete so that one is confronted with the problem of fusing data of various nature to achieve the desired level of knowledge. There is the need to understand how data contribute to the reconstruction of the porous medium and the manner in which measurements from different sources can be merged. This problem can be tackled by new stochastic models able to consider processes arising at different scales. This is opening new avenues for the interpretation of observed processes.

The objective of this session is to discuss significant improvement in our understanding of subsurface processes based on innovative methods allowing the quantification of relevant phenomena and their underling mechanisms such as flow, transport, chemically driven or biologically mediated processes in heterogeneous porous and fractured media. In particular, this session is aimed at providing an opportunity for specialists to exchange information and to introduce various existing and novel alternative stochastic models of subsurface flow and transport to the general hydrological community, with critical and timely applications to environmental and industrially relevant settings. Focus is placed on recent key developments in new experimental protocols, novel theoretical aspects and associated computational tools, fate of new contaminants, and field/laboratory applications dealing with accurate and efficient prediction and quantification of uncertainty for flow, conservative and reactive transport processes in the subsurface, in the presence of multiple information at different scales, ranging from the pore level to the intermediate and basin scales.

Share:
Convener: Monica Riva | Co-conveners: Clement Roques, Daniel Fernandez-Garcia, Pietro De Anna, Xavier Sanchez-Vila, Maria V. Klepikova, Alberto Guadagnini
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room 2.44
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall A
HS8.1.4

This session combines presentations on recent developments in understanding, measuring, and modeling subsurface flow and transport. We aim to include solute/vapor transport processes in both the saturated (groundwater) and unsaturated (vadose) zones, as well as across boundaries (coupled surface/ground water systems) at different scales.

The correct quantification of transport processes, which occur at different spatial and temporal scales, is challenging. It strongly influences predicted spreading, dilution and mixing rates. However, dispersion, mixing and chemical reactions are local phenomena that strongly depend on the interplay between large-scale system heterogeneity and smaller-scale processes. Much effort has been placed in the fundamental understanding of these processes since they are of practical relevance to identify the fate of contaminants in surface and subsurface water that can affect human health and the environment.

The aim of this session is to discuss the effect of flow heterogeneity on transport at different scales, from pore scale up to catchment scale - including theory, modeling, laboratory and field experiments as well as applications. Our contributions deal with the questions: Is macrodispersivity a meaningful parameter? Under which conditions does spatially variable flow enhance mixing and chemical reactions? What is the role played by diffusive processes in modeling transport in porous media? How to upscale dispersion and reactive transport from pore to field-scale? What is the relation between ADE models and dynamic structures of catchment hydrology like travel time distributions? What are appropriate methods to characterize the relevant properties? What are the recent improvements in transport measurement technologies?

The session is co-sponsored by the Groundwater Commission of IAHS.

Share:
Convener: Alraune Zech | Co-conveners: Felipe de Barros, Marco Dentz, Aldo Fiori, Antonio Zarlenga
Orals
| Wed, 10 Apr, 14:00–15:45
 
Room 2.95
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall A
HS8.1.6 Media

Particles (inorganic particles, biocolloids, plastics) in environmental systems are of great concern because of their potential adverse effects on ecosystem functions, wildlife and human health. They may also alter the transport properties of dissolved contaminants and change the hydraulic properties of subsurface systems. On the other hand, engineered particles and biocolloids play an important role in site remediation and aquifer restoration.
This interdisciplinary session fosters the exchange among scientists from hydrogeology, microbiology, ecotoxicology, engineering, and analytical chemistry in order to provide a general picture of the occurrence and fate of natural and engineered particles in aquatic and terrestrial systems.
We are expecting contributions in the following fields:
• occurrence, fate and transport of biocolloids, nanoparticles and other particles (microplastics, soot, ...) in aquatic and terrestrial systems
• methods to detect, characterize, and quantify particles in aquatic and terrestrial systems
• advanced experimental methods to test the behaviour of particles in aquatic and terrestrial systems (mesocosms, non-invasive imaging, ...)
• interactions between biocolloids, particles and solid surfaces
• biocolloid biodegradation in the presence of solids
• toxicity of products generated from biological disruption of pollutants in the presence of biocolloids
• adverse effects of nanoparticles on microorganisms
• effects of climate change on biocolloid and nanoparticle migration
• public health risks associated with water and air polluted with biocolloids and nanoparticles

Share:
Convener: Constantinos Chrysikopoulos | Co-conveners: Thomas Baumann, Markus Flury, Meiping Tong
Orals
| Fri, 12 Apr, 08:30–12:40
 
Room 2.25
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall A
HS8.1.7

Dissolution, precipitation and chemical reactions between infiltrating fluid and rock matrix alter the composition and structure of the rock, either creating or destroying flow paths. Strong, nonlinear couplings between the chemical reactions at mineral surfaces and fluid motion in the pores often leads to the formation of intricate patterns: networks of caves and sinkholes in karst area, wormholes induced by the acidization of petroleum wells, porous channels created during the ascent of magma through peridotite rocks. Dissolution and precipitation processes are also relevant in many industrial applications: dissolution of carbonate rocks by CO2-saturated water can reduce the efficiency of CO2 sequestration, mineral scaling reduces the effectiveness of heat extraction from thermal reservoirs, acid rain degrades carbonate-stone monuments and building materials.

With the advent of modern experimental techniques, these processes can now be studied at the microscale, with a direct visualization of the evolving pore geometry. On the other hand, the increase of computational power and algorithmic improvements now make it possible to simulate laboratory-scale flows while still resolving the flow and transport processes at the pore-scale.

We invite contributions that seek a deeper understanding of reactive flow processes through interdisciplinary work combining experiments or field observations with theoretical or computational modeling. We seek submissions covering a wide range of spatial and temporal scales: from table-top experiments and pore-scale numerical models to the hydrological and geomorphological modelling at the field scale. We also invite contributions from related fields, including the processes involving coupling of the flow with phase transitions (evaporation, sublimation, melting and solidification).

Share:
Convener: Piotr Szymczak | Co-conveners: Sylvain Courrech du Pont, Linda Luquot
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room 2.15
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall A
HS8.1.8

In catchment hydrology, subsurface flow is a well-recognized process but is still challenging to capture. Different terms exist to characterize subsurface flow, such as shallow subsurface runoff, interflow, subsurface stormflow, lateral flow or soil water flow. This reflects the different underlying concepts derived from various experimental and modeling studies in different environmental settings and for different spatial and temporal scales. Subsurface flow is responsible for the transport of nutrients and pollutants from the terrestrial to the aquatic ecosystems, which underlines its importance for the adjacent surface water bodies in terms of both water quantity and quality. This makes an accurate process understanding of subsurface flow essential.
Significant knowledge has been gained from experimental studies at the point and hillslope scales. These studies have identified controlling factors for subsurface flow (e.g., initial soil moisture, preferential flow paths, drainable porosity, precipitation inputs, soil properties, bedrock topography or stratification of soils). However, the importance at the catchment scale, and how these findings can be implemented in catchment scale rainfall-runoff models, remain poorly understood. This is mostly due to the nonlinearity of subsurface flow and due to a lack of knowledge in understanding where subsurface flow is generated within a catchment and when. Furthermore, simulation of subsurface runoff in catchment rainfall-runoff models is frequently based on calibration and validation for single rainfall-runoff events. However, such often isolated events, assuming steady state conditions are not sufficient to capture the whole range of initial conditions and especially the thresholds for generating subsurface runoff. Thus, continuously measured proxies to assess the accuracy of the simulated subsurface runoff are needed. New in-situ high-frequency measurements of tracers can help to bridge the gap between hillslope and point scale measurements and simulated catchment scale responses and thus improve the accuracy of these models.
This session aims to address the current state of the art for measurement, assessment and modeling of subsurface runoff processes. We welcome experimental and modeling studies on the following topics: (i) (Non-)Invasive methods for the investigation and monitoring of subsurface flow in space and time and its connection to the stream network; (ii) linking spatial patterns of subsurface flow with soil and lithological heterogeneity, including stratification of soils; (iii) assessment of the role of subsurface runoff for catchment response; and (iv) validation approaches to assess the accuracy of the simulated subsurface runoff using biogeochemical proxies (e.g. stable isotopes, dissolved silica, nitrate, dissolved organic carbon, trace elements etc).

Share:
Convener: Peter Chifflard | Co-conveners: Natalie Orlowski, Michael Rinderer, Taro Uchida, Ilja van Meerveld
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall A
HS8.1.9 | PICO

This session deals with the use of geophysical methods for the characterisation of subsurface properties, states, and processes in contexts such as hydrology, agriculture, contaminant transport, etc. Geophysical methods potentially provide subsurface data with an unprecedented spatial and a high temporal resolution in a non-invasive manner. However, the interpretation of these measurements is far from straightforward in many contexts and various challenges still remain. Amongst these, the need for improved quantitative use of geophysical measurements in model conceptualisation and parameterisation, and the need to move quantitative hydrogeophysical investigations beyond the column and field scale towards the catchment scale. Therefore, we especially encourage submissions addressing advances in i) the acquisition, inversion and interpretation of geophysical data and other minimally invasive methods in a (contaminant) hydrological context, ii) model-data fusion including new concepts for joint and coupled inversion, and iii) petrophysical understanding linking hydrological and geophysical properties.

Share:
Convener: Ulrike Werban | Co-conveners: Remi Clement, Sarah Garré, Philippe Leroy, Damien Jougnot
PICOs
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
PICO spot 5b

HS8.2 – Subsurface Hydrology – Groundwater

HS8.2.1

Groundwater is world's most important, best protected and most exploited freshwater resource. It is intensively used by man; it is the prime source for drinking water supply and irrigation, hence critical to the global water-food-energy security nexus. But also for sustaining low flow requirements and ecological values of groundwater dependent ecosystems, the contribution by groundwater flow is essential. Groundwater therefore needs to be managed wisely, protected and especially sustainably used. These requirements are also expressed in Integrated Water Resources Management concepts, as e.g. in the European Water Framework Directive. Under a changing environment, climate, land use, population growth, etc., this task becomes a challenge especially in the light of limited data availability and consequential uncertainties. From arid over humid to arctic regions, in every type of climate changing environmental conditions become apparent and have very different local to regional hydrological effects.
In this session, we invite contributions which identify new consequences of a changing environment for future management, protection, and sustainable use of groundwater by applying integrative modelling, including water quantity and quality investigations as well as field observational studies. Methodologies, strategies, case studies and quantitative techniques for dealing with uncertainty or limited data availability are particularly welcome. We encourage studies describing how groundwater resources benefit from an Integrated Water Resources Management approaches. Furthermore, contributions describing case studies and innovative techniques for adaptive management and protection of groundwater resources such as artificial recharge and conjunctive use are desired.

Share:
Convener: Fabien Magri | Co-conveners: Irina Engelhardt, Martin Sauter, Joseph Guttman
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room 2.15
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall A
HS8.2.2

Fractured and karstified aquifers are recognized as one of the most difficult aquifers to characterize and model.
Analysis of flow and transport processes in fissured and karstified aquifers must account for strong local heterogeneities in the hydraulic parameter field of the aquifer systems and typically sparse and uncertain field data for system characterization. The regulation and sustainable management of these systems is therefore still a challenge in hydrogeology. Both depend to a large degree on available characterization techniques and the ability to make predictions with mathematical models which should be practically applicable and represent the investigated system.
This session welcomes contributions covering all aspects of hydrogeology of fissured and/or karstified aquifers. It includes conceptual models of fissured and karstified aquifers and fundamental research of flow and transport at various spatial and temporal scales. We particularly welcome abstracts that provide links between innovative conceptual or numerical models and field data to fill the gap between model requirements and field data provision.
Topics to be discussed are, for example, the hydraulic functioning of fractures, the analysis of karst drainage systems, scaling issues and how to represent nature as closely as possible with mathematical models. This includes also the development and application of genesis models, for example, to reconstruct the groundwater flow field within these complex aquifer systems. Furthermore, this session focuses on the interpretation and prediction of hydraulic, chemical and isotopic responses of the groundwater flow system to environmental impacts, groundwater exploitation and potential contamination sources. We are also interested in methods to assess the vulnerability of fractured and karstified aquifers. Any new idea for prediction and sustainable management of this type of groundwater resources are addressed in this session.

Share:
Convener: Georg Kaufmann | Co-conveners: Steffen Birk, Franci Gabrovsek, Eric Zechner
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room 2.25
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall A
HS8.2.3

Thermal and mechanical processes in aquifers are of increasing interest for hydrogeological analysis for development of innovative field and laboratory experiments. Both in research and in practice, accurate characterization of subsurface flow and heat transport, observations of induced or natural variations of the thermal regime. The seasonal and long-term development of thermal and mechanical conditions in aquifers, and heat transfer across aquifer boundaries are focus points. This also includes the role of groundwater in the context of geothermal energy use for predicting the long-term performance of geothermal systems (storage and production of heat), and integration in urban planning. There are many ongoing research projects studying heat as a natural or anthropogenic tracer, and which try to improve thermal response testing in aquifers. Such techniques are of great potential for characterizing aquifers, flow conditions, and crucial transport processes, such as mechanical dispersion. Understanding the interaction of hydraulic, thermal and mechanical processes is a major challenge in modern hydrogeology. Deep underground constructions, tunnels, CO2 storage, hydro- and enhanced geothermal applications are prominent subjects. We invite contributions that deliver new insight into advances in experimental design, reports from new field observations, as well as demonstration of sequential or coupled modeling concepts. The session aims to provide an overview of the current and future research in the field, covering any temporal or spatial scale, and seeks to address both separate and coupled processes.

Share:
Co-organized as ERE5.3
Convener: Martin Bloemendal | Co-conveners: Peter Bayer, Olivier Bour, Kathrin Menberg
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room 2.25
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall A
HS8.2.4

The session aims to bring together scientists studying different aspects related to groundwater circulation and management.
Understanding of gravitational groundwater flow requires knowledge of the prevailing flow system from the local to a regional scale. Moreover, problems connected to groundwater management underline the importance of sustainable development of groundwater.
In this context, the session intends to analyze issues connected to groundwater management and its protection from qualitative and quantitative degradation (e.g. overexploitation, climate change and its consequences on groundwater, and groundwater contamination …) in the context of groundwater flow understanding.
Papers related to methods of defining groundwater flow, preventing, controlling and mitigating negative environmental impacts related to groundwater are also welcome.

Share:
Convener: Manuela Lasagna | Co-conveners: Daniela Ducci, Jim LaMoreaux, John Molson, Judit Mádl-Szőnyi
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room B
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall A
HS8.2.5

About one third of the world´s population lives within 100 km of the oceanic coast. On the one hand, this implies a potential pollution threat of near-coast environments through submarine groundwater discharge (SGD) by e.g. nutrients, organic compounds and heavy-metals. On the other hand, the freshwater bodies are commonly used for water supply, which potentially incurs the intrusion or up-coning of saltwater (SWI). Increasing pressure on these freshwater sources due to climate change, population growth, and industrial and agricultural water demands will endanger a secure water supply in many parts of the world.
We envisage a session which includes different aspects of groundwater dynamics (exfiltration and infiltration) and quality in coastal zones and oceanic islands. The focus is set on 1) the application of new and advanced techniques to detect and investigate SGD and SWI, to improve our process understanding but likewise 2) on resulting consequences and potentials.
The session will also consider contributions on inland salinization, e.g. caused by water logging, basin brines and salt deposits.

Sub-topics could be, but are not limited to:
• Numerical modeling and experiments of variable-density groundwater flow
• Remote sensing and Geophysical techniques for freshwater-saltwater settings, including terrestrial, air- and space-borne methods
• Tracking the spatial and temporal development of salinization through field observations and monitoring techniques
• Hydrogeochemical processes at the freshwater/saltwater interface
• Management of fresh groundwater resources on islands and in the coastal zone in times of climate change and increasing water demand
• (Pilot) studies on mitigative and adaptive measures to combat salinization, e.g. Aquifer Storage and Recovery (ASR) in the coastal zone

Share:
Convener: Ulf Mallast | Co-conveners: Georg Houben, Christian Siebert, Pieter van Beek
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room 2.31
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall A
HS8.2.7 | PICO

Urban aquifers are considered to play a vital role in ensuring sustainable development of cities. As they provide fresh water and renewable energy sources urban aquifers are key factors in the management of urban areas. However, growing population of cities worldwide and human activities are intensifying the pressure over urban groundwater. Actually, a wide variety of human/urban related activities may impact urban groundwater flow, quality and temperature, among others:

• The use of shallow aquifers for geothermal energy (hydrochemical impacts)
• The interaction with underground constructions (quantity and quality related impacts)
• The leakage from sewers and the discharge of wastewaters (introduction in the urban water bodies of different kinds of pollutants and micropollutants)
• The increase of urbanized areas and sealed surfaces (modification of the groundwater recharge)
• The pumping of groundwater (affection to the groundwater quantity and quality, especially in coastal aquifers).

In this context, it is essential to identify and quantify all aspects that may influence the quantity and quality of urban groundwater and investigate methods for minimizing their impacts (e.g., artificial groundwater recharge, improvement of the “natural” recharge in urban areas, reuse of pumped groundwater with dewatering purposes, redesign of geothermal systems, etc). Similarly, it is important to investigate management strategies for use of urban water resources in a sustainable manner.
This session welcomes works focused on quantity and quality aspects of urban waters and in general, all studies concerning any aspect related with urban groundwater resources.

Share:
Convener: Estanislao Pujades | Co-conveners: Guillaume Attard, Anna Jurado Elices, Victor Vilarrasa
PICOs
| Thu, 11 Apr, 10:45–12:30
 
PICO spot 5b

HS8.3 – Subsurface Hydrology – Vadose zone hydrology

HS8.3.3

Modeling soil and vadose zone processes is vital for estimating physical states, parameters and fluxes from the bedrock to the atmosphere. While the media soil, air and water physically affect biogeochemical processes, transport of nutrients and pollutants, their implications on ecosystem functions and services, and terrestrial storage capacities are vital to the understanding of global, land use and climate change. This session aims to bring together scientists advancing the current status in modelling soil processes from the pore to the catchment and continental scale. We welcome contributions with a specific focus on soil hydrological processes but also those that address the role of soil structure on land surface processes, soil biogeochemical processes and their interactions with hydrology, transport of pollutants, soil vegetation atmosphere modelling and root-soil processes.

Share:
Co-organized as AS4.8/CL5.21/SSS13.24
Convener: Roland Baatz | Co-conveners: Martine van der Ploeg, Nima Shokri, Jacopo Dari, Anne Verhoef
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room 2.95
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall A
HS8.3.6

The continuum approach is a classical framework to describe and understand the soil—water dynamics and the soil effective—stress state in unsaturated soils. This approach is greatly dependent on the soil—water constitutive laws, viz soil—water retention curve, relative hydraulic conductivity, and those derived by these two principal ones. They link the real soil and its model. Advancements along their development and the comprehension of their role stand at the intersection of experimental measurements, mathematical representation and modelling, numerical solutions, theoretical understandings and practical applications. The growing possibility of monitoring soil moisture with rather simple tools has allowed to perform many field experiments devoted to understand the links between environmental variables and soil moisture. Also, climate change research has boosted this field of knowledge. Many terrestrial critical zone observatories have been installed, therefore new information both at the local and at the catchment scale is now available. Many open issues still exist in understanding the role of soil moisture in the environment, in combination with other factors such as soil and air temperature, air humidity, carbon and nitrogen availability, etc. Also, it is necessary the study of the structure of time and spatial variability of soil moisture itself, for example to combine the different scales of measurements. Usually soil moisture is measured at the local scale, but hydrogeophysics allows to have larger scale measurements and micrometeorological tools such as eddy covariance provide even larger scale estimation of gas and energy fluxes. The cosmic ray have increasing applications and the remote sensing images are powerful tools, therefore interesting issues regard the spatial upscaling, and the sampling frequency.

We invite contributions related to the understanding of the soil--water constitutive laws and to soil moisture monitoring, both finalised to understand the effects of its time and spatial variability, and to study soil moisture itself.

Scientists working both in the biogeosciences, and in soil sciences field are encouraged to participate, for example with study related to the implications of soil moisture on carbon and nitrogen dynamics, as well as on root and plant growth. The growing possibility of monitoring soil moisture with rather simple tools has allowed to perform many field experiments devoted to understand the links between environmental variables and soil moisture. Also, climate change research has boosted this field of knowledge. Many terrestrial critical zone observatories have been installed, therefore new information both at the local and at the catchment scale is now available.

Share:
Co-organized as BG2.39/SSS7.11
Convener: Stefano Barontini | Co-conveners: Davide Canone, Fatma Wassar, Amro Negm, Benye Xi
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room 2.95
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall A
HS8.3.8

The interactions between plants and their environment in biogeochemical cycles have drawn substantial attention in the domains of soil science, hydrology, plant physiology, ecology and climatology in recent years. This interest stems from the need for improved predictability of plant-related transfer processes to face fundamental environmental and agricultural issues, like for instance crop drought tolerance, contaminant transport, and the impact of global change on plant-mediated resource and energy fluxes in terrestrial systems.
Emerging experimental techniques and system modeling tools have deepened our insights into the functioning of water and nutrient transport processes in the soil-root system. Yet, quantitative approaches connectable across disciplines and scales nowadays constitute step stones to foster our understanding of fundamental biophysical processes at the frontier of soil and roots.

This session targets researchers investigating plant-related resource transfer processes from the rhizosphere to the field scale, and aims at gathering scientists from multiple disciplines ranging from soil physics to plant physiology. This includes:
- Novel experimental techniques assessing below-ground plant processes
- Measuring and modeling soil and plant water fluxes across scales
- Bridging the gap between biology and soil physics through numerical modeling
- Plant water and nutrient uptake under abiotic stress
- Impact of plant uptake on solute transport in soil
- etc…

Invited speakers:
Prof. Dr. Andrea Carminati from the Chair of Soil Physics, University of Bayreuth, Germany.
Prof. Dr. Paul Hallett from the Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom

Public information:
Invited speakers:
1) Prof. Dr. Andrea Carminati from the Chair of Soil Physics, University of Bayreuth, Germany.
2) Prof. Dr. Paul Hallett from the Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom

Share:
Co-organized as SSS4.15
Convener: Mathieu Javaux | Co-convener: Mohsen Zare
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room 2.95
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall A
HS8.3.9

The proper management of water resources is a key aspect of soil conservation in arid and semiarid environments, where any irrigation activity is structurally and deeply related to the understanding of soil hydrological behavior. In these areas, irrigation should be regarded to as an axle for oases and an effective defense against desertification. Its importance goes beyond the technological aspects, often being traditional irrigation a cultural heritage, which requires to be faced with an (at least) interdisciplinary approach which involves also humanities. On the other hand, improper practices may dramatically contribute to soil degradation. As an example irrigation may lead to soil salinization, with dramatic fallout on agricultural productivity, and overgrazing may lead soil to compaction, with negative effects on the soil capability of water buffering.

This session welcomes contributions ranging from the understanding of the soil hydrological behavior and of the mass fluxes, through the soil, in arid and water—scarce environments and also under stress conditions (e.g. water shortage, compaction, salinization), to the interaction between soil hydrology and irrigation, and to the design of irrigation systems in arid districts and oases. Particular attention will be given to the maintenance and improvement of traditional irrigation techniques as well as to precision irrigation techniques, also with local community involvement. Interdisciplinary contributions, which deal with different aspects and functions of the link between soil hydrology and irrigation techniques in arid environments, are encouraged.

Share:
Co-organized as EOS8.3/SSS10.13
Convener: Marco Peli | Co-conveners: Mahmoud Bali, Stefano Barontini, Davide Canone, Fatma Wassar
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall A
SSS4.13

Soil is a heterogeneous and structured environment that is characterised by variable geometry, composition and stability, across spatial scales spanning several orders of magnitude. The physical structure of solid and pore space results in a complex distribution of oxygen, water films and gradients of solutes spanning distances as small as a few micrometers, all of which have a profound effect on the ecological and hydrological functioning of soil.
The soil structure is determined by an interplay of physical, chemical and biological mechanisms, the quantitative role of which is still poorly understood. Soil structure is difficult to study as it is a 3D opaque matrix. To shed light into soil structure, the concept of aggregate has often been used and defines “pieces” of soil structure, that remain bounded under disrupting forces. Microaggregates (250µm) are larger soil units, composed by microaggregates and primary particles, bound together by biological agents, such as roots, fungal hyphae or even earthworm activity. Cutting edge imaging techniques are as well used to observe “in situ” associations of mineral and organic material at micro- and macro-scales and the resulting ever changing pore space, which is partly destroyed when focusing on aggregates, even though it has a fundamental role in soil ecology and functioning.

In this session we integrate the description of structure and its dynamics, using new imaging techniques, with the ecological, functional and physical consequences of the spatial arrangement of soil constituents. A strong interdisciplinary approach is thus required, merging soil physicists, chemists and ecologists. The ultimate aim is to understand how soil structure, from micro-architecture to macropores, emerges from interactions within soil and how it determines the outcome of soil processes, in order to create models of soil functioning that integrate structure dynamics.
This session is divided into two oral blocks, one focusing more on the micro-scale in relation to microbial activities and the other accounting for micro- and macro-scale in relation to soil ecology of larger organisms and soil functioning. Carsten Mueller is the solicited speaker of the first oral block and Matthias Rillig is solicited for the second oral block.

Share:
Co-organized as HS8.3.10
Convener: Ulrich Weller | Co-conveners: Amandine Erktan, Naoise Nunan, Claire Chenu, Kai Uwe Totsche
Orals
| Wed, 10 Apr, 14:00–18:00
 
Room G1
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall X1
SSS7.2

Cracks, fractures and macropores are typical features of natural soils and fissured rock formations, and promote preferential flow and mass transfer. Lithological heterogeneity (e.g., soil layering, lateral and vertical bedding, channels, etc.) adds its contribution to preferential flow at larger scales. In addition to these physical factors, chemical and geochemical processes (e.g., organic matter) may promote typical hydraulic behaviors leading to preferential flow (e.g., hydrophobicity and finger flow). This session focuses on experimental and theoretical challenges and state of the art of methods to characterize, measure and model preferential flows, and their effects on water infiltration into the soil, flow in the vadose zone, and their implications for the water-soil-plant-atmosphere continuum. The session also welcomes studies on the impact of preferential flows on mass transfer in the vadose zone of fractured porous media and heterogeneous soils. Preferential flows are expected to regulate the access of pollutants and solutes to soil reactive particles, and thus the efficiency of pollutant removal by soils and the geochemical processes that govern soil evolution and weathering processes (e.g., precipitation / dissolution processes). On larger scales, some landforms, such as mine waste covers are known to have highly heterogeneous properties, and yet quantifying and modelling water and solute movement in these systems is often required for regulatory and management purposes.
The proposed session will welcome studies including but limited to the following topics:
• Tracking preferential flows and mass transfers in soils using high-tech tracer techniques including MRI, tomography CAT, etc.
• Visualization or abstraction of the pore and fracture structure (pore size distribution, pore connectivity, type of macroporosity) or field heterogeneity (lithological and geological heterogeneity) and implications for preferential flow
• Linking preferential flow pattern with soil geochemical properties (e.g. organic matter and hydrophobicity)
• Coupling the physical processes of preferential flows and geochemical processes for understanding solute sorption and solute desorption, and mineral precipitation and dissolution
• Fracture network geometry and connectivity, its influence on volume-effective flow and mass transport dynamics, and on matrix-fracture interaction processes
• Recent theoretical developments for modeling preferential flows across scales – with scaling efforts from the pore and fracture to the Darcian and landscape scales
• Quantification and modelling of water flow and solute transport within heterogeneous substrates and complex geological structures such as mine wastes (e.g. tailings and waste rocks), mine waste covers and rocky/gravelly substrate

Share:
Co-organized as HS8.3.13
Convener: Laurent Lassabatere | Co-conveners: Majdi Abou Najm, Jannes Kordilla, Mandana Shaygan, Thomas Baumgartl
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room -2.20
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X1
SSS8.5 Media

The world annual consumption of pesticides has amounted to 2.7 × 106 tons in recent years. Agricultural land is the first recipient of pesticides after its application; even if the pesticides are applied in accordance with the regulations, only a minor amount reaches its objectives, while the rest represent possible environmental contaminants and short or long-term harvest products, with a wide range of possible negative impacts. For many pesticides or their degradation products, soils become the non-point source of groundwater contamination (leaching of soluble compounds and compounds linked to colloids) and / or surface water (runoff of soluble compounds, compounds bound to colloids and soil particles, transport from groundwater). On the other hand, these pesticides represent a potential risk for soil biota, such as nematodes, microorganisms and plants.
The purpose of the session is to share the knowledge generated by researchers whose interest lies in the role of soil in the destination and the behavior of emerging contaminants, including pesticides.
This session will include contributions from different areas:
1. Development, validation and application of analytical methods for pesticides and their degradation / transformation products in water, soil, sediment, air and food samples for direct consumption or fresh consumption.
2. Studies of adsorption, desorption, physical transport, synergies, etc. between soil and organic pollutants of agricultural production (pesticides, pharmaceutical products, other emerging pollutants, which favor their environmental availability.
3. Field tests, monitoring and modeling of environmental destinations of pesticides.
4. Effects of mixtures of pesticides and pesticides on non-target organisms and interactions of various classes of pesticides detected in the natural environment.
5. Evaluation of risks of environmental contamination by pesticides.
6. Assessments regarding climate change on the fate and behavior of pesticides.
The scientific session “Soils as a non-point source of contamination by pesticides or their degradation products” will provide an opportunity to research teams working in different parts of the world to discuss their findings within the settings of a large conference.

Share:
Co-organized as BG2.67/HS8.3.15
Convener: Virginia Aparicio | Co-conveners: Mikhail Borisover, Glenda Garcia-Santos, Violette Geissen, Manfred Sager
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room -2.20
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X1
SSS7.5

The analysis of infiltration, especially when infiltration experiments are used to estimate soil hydraulic properties, is becoming increasingly important for the geosciences community. Indeed, infiltration process is an important component of the hydrological cycle; it refers to the entry into the soil of water and all substances transported by it. Thus, estimates of soil infiltrability are mandatory key tasks to be performed on a number of hydrologic, agronomic, ecological or environmental studies. Under natural conditions, infiltration is characterized by high spatial variability resulting from a high degree heterogeneity of both soil texture and structure. On the other hand, local infiltration experiments are sensitive to space-time variability of the unsaturated soil properties. High-resolution infiltration measurement is crucial to properly describe and analyze soil water properties needed to model soil water flow. The aim of the session focus is on the principles, capabilities, and applications of both infiltration techniques and models at different scales, including, but not limited to: - field infiltration measurements for a wide variety of infiltration devices, from the most simple to the most sophisticated and complete, combined to complementary information provided by other methods (i.e., TDR probes, GPR, ERT, etc.), - new or revisited numerical and analytical models to account for multiple-porosity, hydrophobicity, organic matter, or swelling on infiltration, clogging, biofilm development; and many other factors that are not taken into account in classic infiltration models, - estimation of soil hydraulic parameters, among which the saturated-unsaturated hydraulic conductivity and sorptivity which are fundamental in soil science. We will explore diverse topics of infiltration and interactions encompassing soil processes. The session is not limited by methodology or approach and we welcome studies including laboratory or numerical simulation of infiltration, in-situ studies of water and solutes infiltration. We welcome contributions from simulated and real data investigations in the laboratory or field, successful and failed case studies as well as the presentation of new and promising infiltration approaches.

Share:
Co-organized as HS8.3.16
Convener: Rafael Angulo-Jaramillo | Co-conveners: Vincenzo Bagarello, Massimo Iovino, Jay Jabro, Laurent Lassabatere
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room -2.20
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X1
SSS6.1

Soil structure, function and ecosystem services are discussed within each soil discipline: biology, chemistry and physics and it is recognised that each one of these soil disciplines have great importance in determining the overall soil health and characteristics. Moreover, there is an interrelationship between soil biota and the chemical and physical properties of the soil. For example, soil chemical composition can influence the survival of organisms in the soil and in return, soil organisms may change soil pH, aggregate stability and rate of organic matter decomposition. Healthy, bio-diverse, fertile soil that is rich in nutrients and elements required for food security and proper human nutrition can lead to personal physical fitness as well as social wellbeing for both the individual and broader society. Despite sessions and discussions within each soil discipline, there is very little talk between disciplines and one of the main reasons is the difficulties of the members of one discipline to understand the jargon used by another.
The aim of this session is to bring experts and ECSs from the different soil disciplines to present on soil structure, function and ecosystem services where the only rule is that jargon is not allowed! Our main objective is to facilitate discussion and feed soil information between the biology, chemistry and physics disciplines.
We have dedicated our session to the work of Professor Lily Pereg who was the initiator of this session and President of Soil System Sciences Division at EGU until she died tragically and unexpectedly earlier this year.

Share:
Co-organized as BG2.29/HS8.3.17
Convener: Taru Sandén | Co-conveners: Brigitta Szabó, Karen Vancampenhout, Eric C. Brevik, Bahar S. Razavi, Lily Pereg (deceased)(deceased)
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room -2.47
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X1

HS9 – Erosion, sedimentation & river processes (covering all temporal and spatial scales)

HS9.1 – Erosion, sedimentation & river processes: measurement and monitoring approaches

HS9.1.1

Hydromorphological processes in aquatic environments such as rivers, estuaries as well as lakes and reservoirs, include entrainment, transport, deposition and sorting processes which are key features for various research disciplines, e.g. geomorphology and paleoclimatology or hydraulics and river engineering. An accurate evaluation of entrainment, transport and deposition transport rates as well as limited supply processes like e.g. scouring or grain sorting, effecting channel morphology and bed composition, is fundamental for an adequate development of conceptual sediment budget models and for the calibration and validation of numerical tools. With improved algorithms as well as an increasing computational power, it became feasible to simulate the interaction of water, sediments and air (multiphase flows) with high resolution in space and time. In addition, with an increasing quantity and quality of validation and verification data, both from laboratory experiments and field studies, numerical models become more accurate and it is possible to gain new insight in complex physical processes, e.g. dune development, river bed armoring or density driven transport.

The main goal of this session is to bring together the community of scientists, scholars and engineers, investigating, teaching and applying novel measurement techniques, monitoring concepts and numerical models, which are crucial to determine sedimentary and hydro-morphological processes in rivers, lakes and reservoirs, estuaries as well as in coastal and maritime environments. Within the focus of this session are the evaluation, quantification and modelling of bed load and suspended load, flocculation, settling, and re-suspension/erosion of such processes relevant to morphological channel changes as bed form development, horizontal channel migration, bed armouring and colmation.

Public information:
Dear colleague,
on behalf of the organizers of the session HS9.1.1/GM8.7
“Measurements, monitoring and modelling of hydro-morphological processes in open-water environments" I would like to invite you to our post-session social gathering. I reserved a table at the "Sieben Sterne Bräu" in Siebensterngasse 19 (https://goo.gl/maps/vgUZmsXZKSE2). You are more than welcome to join in order to continue scientific and non scientific discussions. The table is reserved from 19.00 on the 10.4.2019.

Share:
Co-organized as GM8.7
Convener: Nils Rüther | Co-conveners: Gabriele Harb, Kordula Schwarzwälder, Stefan Achleitner, Mário J Franca, Stefan Haun, Bernhard Vowinckel
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room C
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall A
HS9.1.2

Obtaining quantitative information on the spatial pattern of soil redistribution during storms and on the spatial sources supplying sediment to rivers is required to improve our understanding of the processes controlling these transfers and to design effective control measures. It is also crucial to quantify the transfer or the residence times of material transiting rivers along the sediment cascade, and to reconstruct the potential changes in sources that may have occurred at various temporal scales. During the last few decades, several sediment tracing or fingerprinting techniques have contributed to provide this information, in association with other methods (including soil erosion modelling and sediment budgeting). However, their widespread application is limited by several challenges that the community should address as priorities.
We invite specific contributions to this session that address any aspects of the following:
• Developments of innovative field measurement and sediment sampling techniques;
• Soil and sediment tracing techniques for quantifying soil erosion and redistribution;
• Sediment source tracing or fingerprinting studies, using conventional (e.g. elemental/isotopic geochemistry, fallout radionuclides, organic matter) or alternative (e.g. colour, infrared, particle morphometry) approaches;
• Investigations of the current limitations associated with sediment tracing studies (e.g. tracer conservativeness, uncertainty analysis, particle size and organic matter corrections);
• Applications of radioisotope tracers to quantify sediment transit times over a broad range of timescales (from the flood to the century);
• The association of conventional techniques with remote sensing and emerging technologies (e.g. LiDAR);
• Integrated approaches to developing catchment sediment budgets: linking different measurement techniques and/or models to understand sediment delivery processes.

Share:
Co-organized as GM3.14
Convener: Olivier Evrard | Co-conveners: Will Blake, Gema Guzmán, Philip Owens
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room 2.31
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall A
HS9.1.3

The transfer of sediments and associated contaminants play an important role in catchment ecosystems as they directly influence water quality, habitat conditions and biogeochemical cycles. Contaminants may include heavy metals, pesticides, nutrients, radionuclides, and various organic, as well as organometallic compounds. The environmental risk posed by sediment-bound contaminants is largely determined by the sources and rate at which sediments are delivered to surface water bodies, the residence time in catchments, lakes and river systems as well as biogeochemical transformation processes. However, the dynamics of sediment and contaminant redistribution is highly variable in space and time due to the complex non-linear processes involved. This session thus focuses on sources, transport pathways, storage and re-mobilization, and travel times of sediments and contaminants across temporal and spatial scales as well as their impact on catchment and freshwater ecosystems.

This session particularly addresses the following issues:
• Delivery rates of sediments and contaminants from various sources (i.e. agriculture, urban areas, mining, industry or natural areas);
• Transport, retention and remobilization of sediments and contaminants in catchments and river reaches;
• Modelling of sediment and contaminant transport on various temporal and spatial scales;
• Biogeochemical controls on contaminant transport and transformation;
• Studies on sedimentary processes and morphodynamics, particularly sediment budgets;
• Linkages between catchment systems and lakes, including reservoirs;
• Analysis of sediment archives to appraise landscape scale variations in sediment and contaminant yield over medium to long time-scales;
• Impacts of sediments and contaminants on floodplain, riparian, hyporheic and other in-stream ecosystems;
• Response of sediment and contaminant dynamics in catchments, lakes and rivers to changing boundary conditions and human actions.

The following invited speakers have been confirmed: Ian Droppo (Environment and Climate Change Canada) and Rob Runkel (U.S. Geological Survey)

Share:
Convener: Marcel van der Perk | Co-conveners: Patrick Byrne, Philip Owens
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room 2.95
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall A
HS9.1.4

Transport of sediments due to the action of geophysical flows occurs in fluvial, estuarine, aeolian and other natural or man-made environments on Earth and has been shown to play important formative roles in planets and satellites such as Mars, Titan, and Venus. Understanding the motion and the causes of motion of sediments is still one of the most fundamental problems in hydrological and geophysical sciences. Such processes can vary across a wide range of scales leading to sediment transport and scour which can directly impact both the form (geomorphology) and, on Earth, the function (ecology and biology) of natural surface water systems and the built infrastructure surrounding them. In particular, the feedback between flow and sediment transport is a key process in surface dynamics, finding a range of important applications, from hydraulic engineering and natural hazards protection to landscape evolution and river ecology.

We welcome specific topics of interest that include (but are not restricted to):
-particle-scale mechanics of particle entrainment and disentrainment
-upscaling and averaging techniques for stochastic processes related to granular processes
-interaction among grain sizes in poorly sorted mixtures, including particle segregation
-momentum/energy transfer between turbulent flows and particless
-derivation and solution of conservation equations
-reach scale sediment transport and geomorphic processes
-shallow water hydro-sediment-morphodynamic processes
-fluvial processes in response to reservoir operation schemes

Share:
Co-organized as GM3.15
Convener: Manousos Valyrakis | Co-conveners: Rui Miguel Ferreira, Mário J Franca, Zhixian Cao, Eric Lajeunesse
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room 2.31
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall A
SSS12.2 | PICO

A well-designed experiment is a crucial methodology in Soil Science, Geomorphology and Hydrology.
Depending on the specific research topic, a great variety of tempo-spatial scales is addressed.
From raindrop impact and single particle detachment to the shaping of landscapes: experiments are designed and conducted to illustrate problems, clarify research questions, develop and test hypotheses, generate data and deepen process understanding.
Every step involved in design, construction, conduction, processing and interpretation of experiments and experimental data might be a challenge on itself, and discussions within the community can be a substantial and fruitful component for both, researchers and teachers.
This PICO session offers a forum for experimentalists, teachers, students and enthusiasts.
We invite you to present your work, your questions, your results and your method, to meet, to discuss, to exchange ideas and to consider old and new approaches.
Join the experimentalists!

Share:
Co-organized as GM1.11/HS9.1.5
Convener: Thomas Iserloh | Co-conveners: Miriam Marzen, Wolfgang Fister, Jorge Isidoro, Ian Pattison
PICOs
| Thu, 11 Apr, 10:45–12:30
 
PICO spot 3
GI3.2

Airborne observations are one major link to get an overall picture of processes within the Earth environment during measurement campaigns. This includes application to derive atmospheric parameters, surface properties of vegetation, soil and minerals and dissolved or suspended matter in inland water and the ocean. Ground based systems and satellites are other key information sources to complement the airborne data sets. All these systems have their pros and cons, but a comprehensive view of the observed system is generally best obtained by means of a combination of all three. Aircraft operations strongly depend on weather conditions either to obtain the atmospheric phenomenon of interest or the required surface-viewing conditions and hence require sophisticated flight planning. They can cover large areas in the horizontal and vertical space with adaptable temporal sampling. Future satellite instruments can be tested and airborne platforms and systems are widely used in the development process. The validation of operational satellite systems and applications is a topic that has come increasingly into focus with the European Copernicus program in recent years. The large number of instruments available on aircraft enables a broad and flexible range of applications. The range includes sensors for meteorological parameters, trace gases and cloud/aerosol particles and more complex systems like high spectral resolution lidar, hyperspectral imaging at wavelengths from the visible to thermal infra-red and synthetic aperture radar. The development of smaller state-of-the-art instruments, the combination of more and more complex sets of instruments simultaneously on one platform, with improved accuracy and high data acquisition speed together with high accuracy navigation and inertial measurements enables more complex campaign strategies even on smaller aircraft or unmanned aerial vehicles (UAV). This will further increase the capabilities of the existing fleet of airborne research.

This session will bring together aircraft operators and the research community to present
• an overview of the current status of airborne related research
• recent airborne field campaigns and their outcomes
• multi-aircraft campaigns
• satellite calibration/validation campaigns
• sophisticated airborne instrument setups and observations
• advanced airborne instrument developments
• UAV applications
• future plans for airborne research

Share:
Co-organized as AS5.4/BG1.11/HS9.1.8/OS4.26
Convener: Thomas Ruhtz | Co-conveners: Philip Brown, Paola Formenti
Orals
| Mon, 08 Apr, 14:00–18:00
 
Room 0.96
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X1
GM2.2

Topographic data are fundamental to landscape characterization across the geosciences, for monitoring change and supporting process modelling. Over the last decade, the dominance of laser-based instruments for high resolution data collection has been challenged by advances in digital photogrammetry and computer vision, particularly in ‘structure from motion’ (SfM) algorithms, which offer a new paradigm to geoscientists.

High resolution topographic (HiRT) data are now obtained over spatial scales from millimetres to kilometres, and over durations of single events to lasting time series (e.g. from sub-second to decadal-duration time-lapse), allowing evaluation of dependencies between event magnitudes and frequencies. Such 4D-reconstruction capabilities enable new insight in diverse fields such as soil erosion, micro-topography reconstruction, volcanology, glaciology, landslide monitoring, and coastal and fluvial geomorphology. Furthermore, broad data integration from multiple sensors offers increasingly exciting opportunities.

This session will evaluate the advances in techniques to model topography and to study patterns of topographic change at multiple temporal and spatial scales. We invite contributions covering all aspects of HiRT reconstruction in the geosciences, and particularly those which transfer traditional expertise or demonstrate a significant advance enabled by novel datasets. We encourage contributions describing workflows that optimize data acquisition and post-processing to guarantee acceptable accuracies and to automate data application (e.g. geomorphic feature detection and tracking), and field-based experimental studies using novel multi-instrument and multi-scale methodologies. A major goal is to provide a cross-disciplinary exchange of experiences with modern technologies and data processing tools, to highlight their potentials, limitations and challenges in different environments.

Solicited speaker: Kuo-Jen Chang (National Taipei University of Technology) - UAS LiDAR data processing, quality assessment and geosciences prospects

Share:
Co-organized as CR2.11/G6.4/GI4.10/GMPV7.2/HS9.1.9/NH6.15/SSS12.12/TS11.7
Convener: Anette Eltner | Co-conveners: Mike James, Andreas Kaiser, Mark Smith, Jack Williams
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room G2
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X2

HS9.2 – Erosion, sedimentation & river processes: modelling and management approaches

SSS10.9

Mediterranean and other semi-arid regions are prone to cyclic droughts and flood events due to their high climate variability. Agricultural and forest practices have evolved to adapt to these conditions to increase productivity and the economic viability of these activities. Soil and water conservation (SWC) measures have been implemented in these regions to preserve natural resources while maintaining and/or increasing agriculture productivity. Currently a large variety of traditional SWC and relatively modern recent SWC approaches co-exist. However, it still been difficult to provide a robust appraisal of their effectiveness, or a detailed understanding to facilitate its adoption in situations different from those in which they have been developed, mostly through a combination of technical skills and trials and errors in commercial conditions. Finally, the use of SWC measures takes a new dimension with the prospect of climate change and the need to improve the provision of key ecosystems services.

In this frame, this session will try to promote discussion and networking among researches interested in this issue from different background, focusing on recent and past development of SWC, especially related to:
i) The effectiveness SWC measures applied in Mediterranean and other fragile environments in term of productivity, provision of ecosystem services and socio-economic impact (including both on- and off-site effects);
ii) Scientific advances in the understanding of the impact of SWC in the dynamics of hydrological and sediment fluxes, and in the spatial distribution of water and sediment sources and pathways to the improvement of best management practice (BMPs) aimed to minimize on-site and offsite erosion impacts.
iii) Advances in technologies to monitor and evaluate the efficiency of SWC and BMP by different stakeholders.
This session encompasses activities related to the implementation of Sustainable Development Goal (SDG) target 15.3 on Land Degradation Neutrality.

Share:
Co-organized as HS2.9.14/NH3.30
Convener: Jose Alfonso Gomez | Co-conveners: Rossano Ciampalini, Armand Crabit, Joao Pedro Nunes, Amandine Pastor
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X1
GM8.2

Fluvial morphodynamics are characterized by the coupling between sediment supply, storage, and transport, as well as between flow resistance and bed morphology. However, the relationships between these characteristics vary across fluvial landscapes. Specifically in steep channels, the threshold for motion has been shown to change significantly in space and time, and possibly with slope, and observed sediment transport rates are lower than predicted based on classic equations developed for lowland channels. Macro-roughness elements including large-wood structures complicate estimates of flow resistance and boundary shear stress, and hillslope-channel coupling adds to system disorder. The poor performance of traditional sediment transport approaches consequently limits the utility of channel evolution models to predict the morphology of steep mountain rivers – the lower boundary control of mountainous terrain evolution.
This session welcomes field, experimental, theoretical, and modelling efforts aimed at improving (1) our understanding of the morphodynamics of mountain river channels, as well as (2) predictive models for sediment transport in mountainous channels. In addition, we welcome studies spanning a range of spatial scales, from the grain to landscape scale.

Share:
Co-organized as HS9.2.3
Convener: Matteo Saletti | Co-conveners: Claire Masteller, Alexander Beer, Shawn M. Chartrand, Kimberly Huppert
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room G2
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2
GM3.1

Mountain environments host highly dynamical and widespread erosion, sedimentation, and weathering processes. These processes cover a wide range of temporal and spatial scales, from glacial & periglacial erosion, mechanical & chemical weathering, rock fall, debris flows, landslides, to river aggradation & incision. These processes react to a wide spectrum of external and internal forcings, including permafrost retreat, strong precipitation events, climate change, earthquakes or sudden internal failure. Measuring the dynamical interplay of erosion, sedimentation as well as quantifying their rates and fluxes is an important part of source to sink research but it is highly challenging and often limited by difficult terrain. Furthermore, these dynamical processes can threaten important mountain infrastructures and need to be understood and quantified for a better societal and engineering preparation to the natural hazards they pose.

We welcome contributions investigating:
- sediment mobilization and deposition
- links between erosion, weathering, and the carbon cycle
- concepts of dynamics and connectivity of sediments and solutes
- quantification of erosion, sedimentation, and weathering fluxes in space and time
- sediment travel times and transport processes
- interaction of stabilizing and destabilizing processes on the slopes
We invite presentations that focus on conceptual, methodological, or modelling approaches or a combination of those in mountain environments and particularly encourage early career scientists to apply for this session.

Share:
Co-organized as CR4.8/HS9.2.4/NH3.19/SSS2.20
Convener: Luca C Malatesta | Co-conveners: Jan Henrik Blöthe, Aaron Bufe, Kristen Cook, Sabine Kraushaar
Orals
| Wed, 10 Apr, 08:30–12:30, 14:00–15:45
 
Room D3
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall X2
SSP3.9 | PICO

Particle-laden density flows (e.g. pyroclastic flows, snow avalanches, rivers, turbidity currents) transport huge amounts of sediments across our planet and form some of the largest sediment accumulations on Earth. Interaction of density flows with erodible beds can create a wide range of bedforms and deposits whose morphology relates to the parent flow conditions (e.g. antidunes, chutes-and-pools, cyclic steps which are suggested to result from supercritical flows). However, we know little about the triad of flow dynamics, flow interaction with erodible beds and bedforms, and the resulting sedimentary products. How can we read resting sedimentary deposits and invert the parent dynamic flow conditions from them?
This session aims to bring together field researchers, experimentalists and numerical modellers with an expertise in sedimentology, fluid mechanics and related disciplines to further explore density and supercritical flow dynamics, bedform dynamics and the sedimentary structures they produce. The session welcomes studies across differing spatial and temporal scales, from large-scale organisation patterns down to the grain-scale, as well as the palaeo-dynamic and morphodynamic aspects of control and feedback between flow, sediment transport, bedform evolution and deposits.

Share:
Co-organized as GM3.10/HS9.2.5
Convener: Thaiënne van Dijk | Co-conveners: Sophie Hage, Jim Best, Maria Azpiroz-Zabala, Jörg Lang, Pauline Cornard, Guilhem Amin Douillet
PICOs
| Wed, 10 Apr, 14:00–15:45
 
PICO spot 1
GM8.1

Fluvial systems cover much of the Earth’s surface; they convey water, sediments, and essential nutrients from the uplands to the sea, intermittently transferring these materials from the river channel to the adjacent floodplain. The routing of sediment and water through the channel network initiates complex process-form interactions as the river bed and banks adjust to changes in flow conditions. Despite their ubiquity, little is known about the landform-driven morphodynamic interactions taking place within the channel that ultimately determine patterns of sedimentation and changes of channel form. Furthermore, an understanding of how these process-form interactions scale with the size of the fluvial system is also currently lacking. Recent technological advances now afford us the opportunity to study and to quantify these process-form interactions in detail across a range of spatial and temporal scales. This session aims to bring together interdisciplinary researchers working across field, experimental, and numerical modelling approaches who are advancing methods and providing new insights into: (i) sediment transport and morphodynamic functioning of fluvial systems, (ii) evaluating morphological change at variable spatial and temporal scales, such as at event vs. seasonal scales, and (iii) investigating the sedimentology of these river systems. We particularly welcome applications which investigate the morphodynamic response of fluvial systems in all types and sizes and we specifically would like to encourage submissions from early career researchers and students.

Invited speakers:
- Lina Polvi Sjöberg (Umeå University): "Streams frozen in time? Particle- to catchment- scale dynamics of high-latitude post-glacial streams."
- Anette Eltner (TU Dresden): "Unmanned aerial and water vehicle data for hydro-morphological river
monitoring"

Share:
Co-organized as HS9.2.8/NH1.15/SSP3.5
Convener: Eliisa Lotsari | Co-conveners: Joshua Ahmed, Christopher Hackney, László Bertalan
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30
 
Room G2
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2
SSS2.10 | PICO

The quantification and understanding of hydrological, erosive, and biogeochemical processes in catchments are essential to the sustainable management of water and soil resources. Assessment of the environmental impact of economic activities in catchments should be based on the acquisition of experimental data to implement and/or to evaluate conservation practices at different scales. Simulation models are important tools to address environmental problems in a cost-effective way. This technology has to be be coalesced with coherent scientific assumptions and experimental data to minimize the degree of uncertainty involved in representing existing conditions and to provide for instrumental information about alternative sustainable scenarios.

In this session, the authors are encouraged to present new environmental challenges related with the use of models or innovative approaches to quantify hydrological and soil erosion approaches. In addition to classical modeling procedures such as evaluation and recognition of model structures, sensitivity analysis, calibration, validation and degree of uncertainty quantification; the authors are encouraged to present new conceptualizations and experiments to address current environmental problems facing society as well as all kinds of tools and techniques aimed at the conservation of water, soil and nutrients.

Share:
Co-organized as HS9.2.9
Convener: Encarnación Taguas | Co-conveners: Ronald Bingner, Gerald A Corzo P, George Karatzas, Henrique Momm
PICOs
| Tue, 09 Apr, 10:45–12:30
 
PICO spot 3
GM3.3

In the past two decades, connectivity has emerged as a relevant conceptual framework for understanding the transfer of water and sediment through landscapes. In geomorphology, the concept has had particular success in the fields of fluvial geomorphology and soil erosion to better explain rates and patterns of hydro-geomorphic geomorphic change in catchment systems. Although much progress has been made in the understanding of the physical processes that control the flows of matter through the landscape, applying this understanding across a range of scales has long hampered progress.
This session invites contributions from all areas of geomorphology (incl. soil science and hydrology) illustrating or identifying the role of connectivity for geomorphology on a local, regional or global scale. Specific themes we would like to promote are:
- advancement of the theory of connectivity, including sound and unambiguous definitions of
connectivity and related parameters,
- methodology development for measuring connectivity in field and laboratory settings,
having a special focus on experiments for conceptualizing the different processes involved,
- the development and application of suitable models and indices of connectivity,
- determining how the concept can be used to enable sustainable land and water management
The session is organized by the IAG-working group “Connectivity in geomorphology” aiming to develop an international network of connectivity scientists, to share expertise and develop a consensus on the definition and scientific agenda regarding the emerging field of connectivity in geomorphology.

Share:
Co-organized as HS9.2.10/NH3.23/SSS3.10
Convener: Ronald Pöppl | Co-conveners: Anthony Parsons, Manuel López-Vicente, Ben Jarihani, Pasquale Borrelli, Roy Sidle, Jacky Croke, Ellen Wohl
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room 0.31
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X2
GM5.1

Biota affect hydrology, sediment transport, weathering and soil formation over variable temporal and spatial scales and thereby influence, hillslope, fluvial, coastal, and aeolian landscape form and dynamics. In turn, geomorphological and hydrological processes have large impacts on ecological processes by shaping topography and affecting water availability, which determines biological diversity and succession. Despite some advances, the conceptualisation and quantification of the processes, rates and feedbacks between geomorphology, hydrology and ecology are still limited.

Understanding these feedbacks between biological, hydrological and geomorphological processes is becoming increasingly important as new ‘building with nature’ projects emerge and also increasingly find their way into management (i.e. restoration projects). Physical, chemical and biological processes are in a constant state of flux, vary across both temporal and spatial scales and are regulated or enhanced by anthropogenic activities. Understanding of the biogeomorphological and ecohydrological effects of anthropogenic activities/ approaches and their wider socio-economic implications, remains largely rudimentary particularly in systems that are sensitive to human-induced or natural environmental change (e.g. high-mountain and polar environments, deserts, hillslopes, rivers and wetlands, salt marshes and deltas). As a result, there is a need to develop understanding around i) the magnitude and temporal persistence of anthropogenic stressors and their effects, ii) ecosystem resilience to anthropogenic stressors (including critical transitions in ecosystem state), and iii) new sustainable approaches to catchment management, such as utilization of ecosystem engineers for habitat improvements.

This session seeks contributions that are investigating biogeomorphologic interactions across all spatial and temporal scales, including experimental, field and computational/numerical modelling studies. We especially encourage interdisciplinary studies on river, and delta biogeomorphology, animal influences on geomorphic processes, chronologies of biogeomorphological change, and hillslope processes. Emphasis will be given to novel research on biogeomorphological feedbacks, on the quantification of feedbacks and associated rates, the linkage between terrestrial and aquatic environments, and the investigation of the resilience of coupled eco-hydro-geomorphic systems to human impact and climate change.

Public information:
We are happy to have two keynote speakers this year, one for fluvial biogeomorphology with Borbála Hortobágyi presenting on riparian plant response and effect traits on alluvial bars and one for coastal biogeomorphology with Olivier Gourgue presenting a new bio-geomorphic model approach accounting for subgrid-scale heterogeneity of biogenic structures.

Share:
Co-organized as BG3.12/HS9.2.12
Convener: Annegret Larsen | Co-conveners: Nico Bätz, Jana Eichel, Wietse van de Lageweg, Andrew Pledger, Christian Schwarz, Thorsten Balke
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room 0.31
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X2
GM2.5 | PICO

A key goal within geomorphic research is understanding the links between topographic form, erosion rates, and sediment production, transport and deposition. Numerical modelling, by allowing the creation of controlled analogues of natural systems, provides exciting opportunities to explore landscape evolution and generate testable predictions. Furthermore, the advancement of Earth surface monitoring capabilities in recent decades, such as the increasing availability of high-resolution topographic data and new techniques for constraining rates of erosion and deposition, allows the direct testing of numerical models at larger spatial and temporal scales than previously possible. Combining these different techniques provides exciting opportunities for furthering our understanding of Earth surface processes.

In this session, we invite contributions that use numerical modelling to investigate landscape evolution in a broad sense, and over a range of spatial and temporal scales. We welcome studies using models to constrain one or more of: erosion rates and processes, sediment production, transport and deposition, and sediment residence times. We also particularly wish to highlight studies that combine numerical modelling with direct Earth surface process monitoring techniques, such as topographic, field, stratigraphic, or geochronological data. There is no geographical restriction: studies may be focused on mountain environments or sedimentary basins, or they may establish links between the two; studies beyond planet Earth are welcome too.

Share:
Co-organized as GD8.6/HS9.2.13/SSP3.19
Convener: Fiona Clubb | Co-conveners: Mikaël Attal, Sebastien Castelltort, Tom Coulthard, Marco Van De Wiel
PICOs
| Tue, 09 Apr, 08:30–10:15
 
PICO spot 1

HS10 – Ecohydrology, wetlands and estuaries: aquatic and terrestrial processes and interlinkages

HS10.1

Held annually since 2005, this session is
focusing on general research of lakes, as well as the inland seas. The
event is intended as interdisciplinary between hydrology, limnology and
oceanography. Its scope encompasses physical, chemical, and biological
aspects of lakes and inland seas, as well as their responses to global
change, and offers a forum for both observational and modeling studies.

Share:
Convener: Georgiy Kirillin | Co-conveners: Tom Shatwell, Peter Zavialov
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room 2.95
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall A
HS10.2

This session provides a scientific platform for exchange of findings from research that addresses the entire continuum of river and sea. We invite studies across geographical borders, along the freshwater-marine water continuum, and interdisciplinary studies that integrate physical, chemical, biological, geological observations/experiments, and modelling, and those that span the traditional silos of natural and social sciences.
River-Sea-Systems comprise river catchments, estuaries/deltas, lagoons and the coastal seas. They are dynamic products of interacting environmental and socio-economic processes. River-Sea-Systems provide natural capital and related ecosystem services that are fundamental to societal wellbeing. These systems, however, face compounding pressures from natural forces such as climate change and natural hazards, and from anthropogenic forces like urbanisation, shipping, energy generation, industrial development, water abstraction and damming, operating at local, national and global scales. The resulting pressures contribute to societal challenges such as eutrophication, hypoxia, pollution, change in hydrodynamics and morphodynamics (including disturbed sediment balances), loss of biodiversity, habitat depletion, sea level rise, and ultimately loss of ecosystem services. This impacts not only on the ‘planet’ but also on ‘people’ and ‘profit’. These pressures are likely to increase in the future with implications throughout the river-sea continuum with uncertain consequences for the resilience of the socio-ecological system.
We need to fully understand how River-Sea-Systems function. How are River-Sea-Systems changing due to human pressures? What is the impact of processes in the catchment on marine systems function, and vice versa? How can we discern between human-induced changes or those driven by natural processes from climate-induced variability? What will the tipping points of socio-ecologic system states be and what will they look like? How can we better characterise river-sea systems from the latest generation Earth observation to citizen science based observatories. How can we predict short and long term changes in River-Sea-Systems to manage them sustainably? What is the limit to which it is possible to predict the natural and human-influenced evolution of River-Sea-Systems?
Which policy responses would be desirable from a scientific perspective and how will the gaps between the existing European environmental policies be bridged (e.g. Water Framework Directive 2000, Marine Strategy Framework Directive 2008 and EU biodiversity policies)? How will links be made to the UN 2030 Agenda’s Sustainable Development Goals 6 (Clean Water & Sanitation) and 14 (Life below Water)?
The increasing demand to jointly enable intensive human use and environmental protection in river-sea systems requires holistic and integrative research approaches with the ultimate goal of enhanced system understanding. It is becoming widely recognised that there is a need to study River-Sea-Systems as an entire continuum, to provide scientifically underpinned information to enable better-informed and holistically engaged environmental protection of River-Sea systems, to maintain their ecosystem functioning and thus their capacity to provide ecosystem services.

Share:
Co-organized as BG6.9/GM11.9/OS2.10
Convener: Jana Friedrich | Co-conveners: Debora Bellafiore, Andrea D'Alpaos, Panagiotis Michalopoulos, David Todd
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room 2.44
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall A
HS10.3

Ecohydrology as a field of research is expanding rapidly and in the process is displacing boundaries of consolidated disciplines. The mobility of the research frontier is both exciting and challenging, especially in terms of defining what is presently encompassed by ecohydrology. This session aims to draw examples from the wide field of ecohydrology in order to portray the current diversity and common features of research frontiers in ecohydrological studies. This year we are especially interested in presentations that explicitly couple ecological and hydrological processes at the catchment scale, explore how vegetation modifies catchment water and chemical cycling and how these processes combine to impact in-channel organisms. Presentations focusing on challenging problems such as the arrangement of ecosystem structure and responses of organisms to hydrological drivers are also encouraged

Share:
Convener: Keith Smettem | Co-conveners: Christoph Hinz, Julian Klaus, Giulia Vico
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room 2.25
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall A
HS10.4

Evapotranspiration (ET) is a key process in the hydrological cycle. A sound understanding and quantification of ET is an integral part of understanding and predicting the water balance changes due to land use and climate change. Estimating ET is prone to large uncertainties, and advances in measurements of transpiration as well as evaporation are sorely needed, both for system understanding and for validation of remotely sensed products and improving models. The latter requires upscaling from point measurements to spatial estimates which remains a crucial challenge in (eco-)hydrological modelling.

This session will mainly focus on the measurement of ET with in-situ devices like lysimeters, sap flow sensors, eddy covariance, scintillometers, Bowen ratio method and other approaches. Additionally, we want to address the spatio-temporal scale gap between the various in-situ approaches themselves as well as between in-situ data, remote sensing products and catchment-scale modelled ET. We thus welcome contributions that (1) assess and compare the quality of known and new in-situ ET measurements, (2) analyse ET trends in time series and ET spatial patterns and their controls, (3) include cross-scale comparisons and scaling approaches and (4) incorporate in-situ measurements into modeling approaches.

For other ET sessions, with a focus on catchment hydrology, especially in extreme and sensitive environments, see HS2.1.1; with a focus on arid and semi-arid environments, see HS6.5.

Share:
Convener: Sibylle K. Hassler | Co-conveners: Jaroslaw Chormanski, Harrie-Jan Hendricks Franssen, Ann van Griensven
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room 2.15
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall A
HS10.6

During the passage of precipitation through the soil-plant-atmosphere interface, water and solutes are redistributed by the plant canopy, subsurface flow and transport processes. Many of these dynamic interactions between vegetation and soil are not yet well understood. This session brings together the vibrant community addressing a better understanding of ecohydrological processes taking place between the canopy and the root zone. Innovative methods investigating throughfall, stemflow, hydraulic redistribution, and root water uptake in various environments shed light on how water and solutes are routed in the thin layer covering the terrestrial ecosystems. The session further covers open questions and new opportunities within the ecohydrological community regarding methodological developments such as the analysis of stable isotope, soil moisture, throughfall or solute dynamics.

Invited speakers:
Daniele Penna (University of Florence, Italy)
Darryl Carlyle-Moses (Thompson Rivers University, Canada)

Share:
Co-organized as BG2.70/SSS4.16
Convener: Natalie Orlowski | Co-conveners: Josie Geris, Anke Hildebrandt, Matthias Sprenger, Jan Friesen, Miriam Coenders-Gerrits
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room 2.25
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall A
HS10.7

Peatlands develop in specific hydrological settings and react sensitively to changes in climatic and hydrological boundary conditions. The hydrology of peatlands is fundamental to their function and development. Soil hydrological properties can change drastically after human interventions such as drainage, causing challenges for both model parameterisation and re-wetting measures. Pristine peatlands offer and regulate a number of ecosystem services such as biodiversity, carbon storage and nutrient retention. Hydrology is a key control for a number of these services but studies on peatland hydrology are surprisingly scarce. Furthermore, the effects of peatlands (both pristine and disturbed) on flood retention and on regional climate are much debated, but there seem to be more myths than data. As hydrological and biotic processes in peatlands are strongly coupled, estimating the eco-hydrological response of peatlands under climate change and linking it to vegetation development and greenhouse gas emissions is a demanding task for modellers.
This session aims to bring together peatland scientists to focus on improved understanding of hydrological processes operating in all types of peatlands. Peatlands being considered may be pristine or disturbed and degraded and may also include rehabilitation and re-wetting interventions. Hydrological data may have been collected for other reasons (e.g. carbon flux calculations) but the session welcomes re-examination of such hydrological data in its own right or as supporting data for other studies. Results from research focussing on all aspects of peatland hydrology are welcome in this session. Our scale of interest ranges from the plot to the regional scale. Field, laboratory or modelling studies on hydrological, hydrochemical or geophysical topics are welcome. Studies examining hydrological ecosystem service provision such as nutrient retention or flood protection would be welcome.

Share:
Convener: Michel Bechtold | Co-conveners: Ullrich Dettmann, Joseph Holden, Björn Klöve, Marie Larocque
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room 2.15
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall A
HS10.8

Groundwater-surface water interfaces (e.g., hyporheic and benthic zones and riparian corridors) are integral components of the aquifer-river or aquifer-lake continuum. Interactions between groundwater and surface water lead to strong bi-directional influences between surface waters, aquifers and interconnecting hyporheic zones. A rapidly expanding number of research projects are now investigating the implications of hyporheic exchange on the transport and transformation of nutrients and contaminants within river networks, and on controls to heat, oxygen, and organic matter budgets available to microorganisms and macroinvertebrates in streambed sediments. However, there is still a need to better understand the links between physical, biogeochemical, and ecological process dynamics in groundwater-surface water interfaces and their implications for fluvial ecology or limnology, respectively. Furthermore, it is important to consider the response of hyporheic exchange fluxes to environmental and climatic controls at different spatial and temporal scales (e.g. river channel, alluvial aquifer, regional groundwater flow). We consider up- and downscaling and the development of a general conceptual framework and improved process understanding for groundwater-surface water interfaces as among the most urgent challenges of hyporheic zone research. Consequently, we particularly welcome contributions that aim to close these knowledge gaps and solicit both experimental and modelling studies with a focus on:

- The development and application of novel experimental methods to investigate physical, biogeochemical and ecological conditions at the groundwater-surface water interface in rivers, lakes, riparian corridors, and wetlands;

- Investigations of the role of hyporheic processes for the retention and natural attenuation of nutrients and pollutants, particularly with respect to impacts on surface water and groundwater quality;

- Hydrological, biogeochemical and ecological modelling approaches (e.g. transient storage models, coupled groundwater-surface water models etc.);

- Investigations of the implications of groundwater-surface water interactions for management and risk assessment frameworks with regard to the European Water Framework Directive.

Share:
Co-organized as BG6.5
Convener: Jen Drummond | Co-conveners: Fulvio Boano, Jan Fleckenstein, Stefan Krause, Jörg Lewandowski
Orals
| Mon, 08 Apr, 14:00–18:00
 
Room 2.15
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall A
ITS5.5/HS10.11/BG6.6/GM5.5

In recent years there has been a growing emergence of interdisciplinary research areas concerned with investigating the dynamic and multifaceted interactions between biotic and abiotic components of aquatic ecosystems. Such is the acknowledged importance of these interactions, that quantifying and understanding the two-way feedbacks of interacting abiotic and biotic components is recognised as a key contemporary research challenge. However, the different terminology used by various disciplines highlights the separation rather than the overlap between disciplines. Further, in many instances the creation of new sub-disciplines (or research areas) is not developing the study field, but arguably is leading to the ‘reinvention of the wheel’ in parallel disciplines. Changing the traditional perspectives by bridging the gaps between disciplines is therefore key to bring considerable advances in aquatic research.
This session focuses on bringing together scientists from different backgrounds dealing with the effects of environmental (both biotic and abiotic) stressors on the aquatic biosphere, from individual organisms through to whole ecosystems with the aim of simulating truly interdisciplinary research. Several temporal scales ranging from a single event (e.g. response to hydropeaking, predatory attacks) to long term evolution (e.g. adaptation to climate change, ecosystem modification) may be considered. We expect strong contributions from researchers transcending a variety of disciplines such as geomorphology, engineering, ecology and environmental sciences. Emphasis is given to studies dealing with stressors driven by climate change or anthropogenic activities. In this context we particularly welcome contributions on consolidated or novel measurement techniques and modelling tools to assess the effects of environmental stressors (e.g. flow modifications, habitat alterations) on biota, such as vegetation, macroinvertebrates and fish, that cross disciplinary boundaries.

The session will include an invited keynote by Prof. Markus Holzner from ETH Zürich.

Share:
Co-organized as HS10.11/BG6.6/GM5.5
Convener: Davide Vettori | Co-conveners: Kate Mathers, Riccardo Fornaroli
Orals
| Wed, 10 Apr, 14:00–15:45
 
Room N1
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall A
BG6.1

The last two decades have brought a major technological advancement in collection of water quality and biogeochemical data in rivers, lakes and engineered systems using automated in situ wet-chemistry analysers, optical sensors and lab-on-a-chip instruments. Furthermore, our ability to characterise different fractions of natural organic matter has increased thanks to a range of analytical methods e.g. fluorescence and absorbance spectroscopy, mass spectrometry and chromatography combined with new data mining tools (Self-organising maps, PARAFAC analysis). Matching the water quality measurement interval with the timescales of hydrological responses (from minutes to hours) led to discovery of new hydrochemical and biogeochemical patterns in streams along with improved understanding of the underlying processes e.g. concentration-discharge hysteresis and diurnal cycling. We are now at the frontier of further advancing this understanding for a wide range of solutes and particulates in streams, rivers and lakes using rapidly developing technology of wet-chemistry analysers, optical sensors and lab-on-the-chip instruments. We need to understand better how organic matter links with other biogeochemical cycles (e.g. phosphorus, nitrogen, sulphur and iron) and processes in aquatic systems. In particular there is a growing need to monitor the advances in application of novel organic matter characterisation tools, understanding the origins, pathways, transformations and environmental fate of organic matter in aquatic environments and identification of robust numerical and statistical tools for data processing and modelling. This is an exciting opportunity to gain new knowledge of hydrochemical and ecological functioning of freshwater and engineered systems.

Previously in this session:
EGU 2018:
https://meetingorganizer.copernicus.org/EGU2018/session/26401

EGU 2017:
http://meetingorganizer.copernicus.org/EGU2017/session/24958

EGU 2016:
http://meetingorganizer.copernicus.org/EGU2016/session/20013

EGU 2015:
http://meetingorganizer.copernicus.org/EGU2015/session/17101
Keynote lecture: Diane McKnight

EGU 2014:
http://meetingorganizer.copernicus.org/EGU2014/session/15261
Keynote lecture: Darren Reynolds

Share:
Co-organized as HS10.12
Convener: Magdalena Bieroza | Co-conveners: Diane McKnight, Chris Evans, Bethany Fox, Andrea Butturini, Per-Erik Mellander, Michael Rode
Orals
| Mon, 08 Apr, 10:45–12:30, 14:00–18:00
 
Room 2.31
Posters
| Attendance Mon, 08 Apr, 08:30–10:15
 
Hall A
ITS6.4/BG1.29/EOS7.3/AS4.52/CL2.27/HS10.13/SSS13.30 Media

Cities all over the world are facing rising population densities. This leads to increasing fractions of built-up and sealed areas, consequencing in a more and more altered and partly disrupted water balance - both in terms of water quantities and qualities. On top, climate change is altering precipitation regimes.

This session focuses on according urban ecohydrological problems and approaches to solve them spanning from technical to nature-based solutions in different time and spatial scales from the building to the whole city.

Share:
Co-organized as BG1.29/EOS7.3/AS4.52/CL2.27/HS10.13/SSS13.30
Convener: Thomas Nehls | Co-conveners: Simone Fatichi, Günter Langergraber, Gabriele Manoli, Athanasios Paschalis
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30
 
Room N1
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall A
BG1.8 | PICO

Ongoing climate change and a shorter return period of climate and hydrological extremes has been observed to affect the distribution and vitality of ecosystems. In many regions, available water is a crucial point of survival. Risk can be enhanced by the exposure and/or by the vulnerability of the affected ecosystem.
The session focuses on the complex assessment of all determining factors through a joint utilization of a broad spectrum of databases and methods (e.g. field and laboratory measurements, remote sensing, modelling and monitoring techniques) that can provide a suitable basis for developing long-term strategies for adaptation.
The session should provide a multidisciplinary platform for sharing experiences and discussing results of local and catchment scale case studies from a wider range of relevant fields such as
• observed impacts and damage chains in natural ecosystems induced by climate and hydrological extremes;
• correlation between the underlying environmental factors (e.g. climate, water holding capacity, soil characteristics) and the distribution/vitality of ecosystems;
• integrated application or comparison of databases and methods for the identification and complex assessment of ecosystem responses to abiotic stress factors;
• expected tendencies of abiotic risk factors affecting and limiting the survival of the vulnerable species.
Contributions are encouraged from international experiences, ongoing research activities as well as national, regional and local initiatives.

Share:
Co-organized as CL4.40/HS10.14/NH1.36/SSS13.3
Convener: Borbála Gálos | Co-conveners: Zoltán Gribovszki, Adrienn Horváth, Dejan Stojanovic, Jan Szolgay
PICOs
| Thu, 11 Apr, 14:00–15:45
 
PICO spot 4
BG2.43

Globally, 10–20% of peatlands have been drained for agriculture or forestry, and they emit close to 5% of global anthropogenic CO2 emissions. There are countries in Europe that have more than 60% of their agricultural emissions originating from cultivated organic soils, and the fate of South-East Asian peatlands is of global concern. Drainage causes losses of specialized species and further ecosystem services such as nutrient retention. However, most peatland-rich countries address peatlands poorly in national emission reporting and climate change mitigation strategies.
Innovative mitigation measures that sustain economically viable biomass production while reducing negative environmental impacts including greenhouse gas emissions, fire risk and supporting ecosystem services of organic soils are currently vigorously studied. Management measures include, but are not limited to, productive use of wet peatlands (“paludiculture”), improved water management in conventional agriculture and innovative approaches in conservation-focused rewetting projects. Production systems where peatland water table is 40 cm below the surface or higher, can generate food (e.g. fish, berries, mushrooms), feed (e.g. fodder for livestock), fiber (for construction, furniture) and fuel, and raw materials for chemical industry. How to implement these innovations in practice and integrate them into national GHG inventories remains a challenge.
We invite studies addressing peat-preserving management practices on organic soils as well as their implementation into GHG inventories. Work on all spatial scales from the laboratory to the national level addressing biogeochemical as well as biological aspects and both experimental and modelling studies are welcome. Especially research on development of traditional systems with details on commodities with viable value chains and income generation would be of interest. Furthermore, we invite contributions that address policy coherence and identify policy instruments for initiating and implementing new management practices on organic soils.
This session is organized as a joined effort of Global Research Alliance “Peatland Management” working group, Global Peatlands Initiative, Greifswald Mire Center, Thünen Institute and RePeat (REstoration and prognosis of PEAT formation in fens - linking diversity in plant functional traits to soil biological and biogeochemical processes 2016-2019; BiodiVErSA) and PeatWise (Wise use of drained peatlands in a bio-based economy: development of improved assessment practices and sustainable techniques for mitigation of greenhouse gases 2017-2020; FACCE ERA-GAS) – projects.

Share:
Co-organized as HS10.16/SSS13.6
Convener: Hanna Silvennoinen | Co-conveners: Björn Klöve, Wiktor Kotowski, Franziska Tanneberger, Bärbel Tiemeyer
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room L2
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall A

HS11 – Interdisciplinary sessions related to Hydrological Sciences

SSS5.3

Dissolved and particulate organic carbon (DOM, POM) are key components of the global C cycle and important as potential sources of CO2, and for the long-term preservation of carbon stabilized in subsoils and sediments. DOM and POM are key sources of energy for microbial metabolism within terrestrial ecosystems, the aquatic continuum, and ultimately the ocean. Despite recent evidence showing this lateral transport of carbon is linked to anthropogenic perturbations, efforts to integrate DOM and POM fluxes across the terrestrial-aquatic continuum are just emerging. A comprehensive understanding of the dynamics of DOM and POM in terrestrial and aquatic ecosystems remains challenging due to complex interactions of biogeochemical and hydrological processes at different scales, i.e. from the molecular to the landscape scale.
This session aims to improve our understanding of organic matter processing at the interface of terrestrial and aquatic ecosystems. We solicit contributions dealing with amounts, composition, reactivity and fate of DOM and POM and its constituents (i.e. C, N, P, S) in soils, lakes, rivers and the coastal ocean as well as the impact of land use change and climatic change on these processes. For example, it is important to recognize the key role of peatlands as sources of organic matter for many streams and rivers as well as soil erosion induced lateral fluxes of sediment and carbon at the catchment scale when assessing C dynamics across the terrestrial-aquatic continuum. Therefore, we aim to bring together scientists from various backgrounds, but all devoted to the study of dissolved and/or particulate organic matter using a broad spectrum of methodological approaches (e.g. molecular, spectroscopic, isotopic, 14C, other tracers, and modeling).

Share:
Co-organized as BG2.42/HS11.1
Convener: Karsten Kalbitz | Co-conveners: Núria Catalán García, Dolly Kothawala, Filip Oulehle
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30
 
Room -2.20
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X1
SSS12.6

Ecosystems, their abiotic and biotic compartments as well as their internal processes and interactions can be interpreted as the result of numerous evolutionary steps during system development. Understanding ecosystem development can be regarded, therefore, as crucial for understanding ecosystem functioning. This session will highlight research in this field within two parts.

The first part of this session is dedicated to experimental approaches to disentangle these complex processes and interactions of the Critical Zone. Well-known flagship sites in this sense are, e.g., Biosphere2 in the USA or Hydrohill in China. In addition, post-mining landscapes worldwide offer multiple opportunities for establishing artificial experimental sites for various purposes. Many experimental sites are based on hydrological catchments as integrative landscape units. Other large-scale experiments focus on selected parts of ecosystems which were modified or transplanted. This part of the session tries to create a global overview on large-scale landscape experiments on ecohydrological, pedological, biogeochemical or ecological processes within the Critical Zone.

The second part is related to the co-evolution of spatial patterns of vegetation, soils and landforms. These patterns are recognized as sources of valuable information that can be used to infer the state and function of ecosystems. Complex interactions and feedbacks between climate, soils and biotic factors are involved in the development of landform-soil-vegetation patterns, and play an important role on the stability of landscapes. In addition, large shifts in the organization of vegetation and soils are associated with land degradation, frequently involving large changes in the functioning of landscapes. This part of the session will focus on ecogeomorphological and ecohydrological aspects of landscapes, conservation of soil resources, and the restoration of ecosystem functions.

Invited talks will be given by Dr. Abad Chabbi (Director of Research at the French National Institute for Agricultural Research, INRA) on “Challenges, insights and perspectives associated with combining observation and experimentation research infrastructure“. Part two of the session is proud to announce the invited talk of Prof. Praveen Kumar (Lovell Professor of Civil and Environmental Engineering, University of Illinois, USA, Director of the US NSF Critical Zone Observatory for Intensively Managed Landscapes) on "Co-evolution of landscape and carbon profile through depth: understanding the interplay between transport and biochemical dynamics".

Share:
Co-organized as BG1.60/GI4.14/GM5.11/HS11.4
Convener: Werner Gerwin | Co-conveners: Mariano Moreno de las Heras, Laura Meredith, Jin Lin, Patricia Saco, Jantiene Baartman, Jose Rodriguez
Orals
| Fri, 12 Apr, 10:45–12:30, 14:00–15:45, 16:15–18:00
 
Room G1
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X1
GI4.1

Ground Penetrating Radar (GPR) is a safe, advanced, non-destructive and non-invasive imaging technique that can be effectively used for inspecting the subsurface as well as natural and man-made structures. During GPR surveys, a source is used to send high-frequency electromagnetic waves into the ground or structure under test; at the boundaries where the electromagnetic properties of media change, the electromagnetic waves may undergo transmission, reflection, refraction and diffraction; the radar sensors measure the amplitudes and travel times of signals returning to the surface.

This session aims at bringing together scientists, engineers, industrial delegates and end-users working in all GPR areas, ranging from fundamental electromagnetics to the numerous fields of applications. With this session, we wish to provide a supportive framework for (1) the delivery of critical updates on the ongoing research activities, (2) fruitful discussions and development of new ideas, (3) community-building through the identification of skill sets and collaboration opportunities, (4) vital exposure of early-career scientists to the GPR research community.

We have identified a series of topics of interest for this session, listed below.

1. Ground Penetrating Radar instrumentation
- Innovative GPR equipment
- Design, realization and optimization of GPR antennas
- Equipment testing and calibration procedures

2. Ground Penetrating Radar methodology
- Survey planning and data acquisition strategies
- Methods and tools for data analysis and interpretation
- Data processing algorithms, electromagnetic modelling, imaging and inversion techniques
- Studying the relationship between GPR sensed quantities and physical properties of inspected subsurface/structures useful for application needs
- Advanced data visualization methods to clearly and efficiently communicate the significance of GPR data

3. Ground Penetrating Radar applications and case studies
- Earth sciences
- Civil engineering
- Environmental engineering
- Archaeology and cultural heritage
- Management of water resources
- Humanitarian mine clearance
- Vital signs detection of trapped people in natural and man-made disasters
- Planetary exploration

4. Contributions on the combined use of Ground Penetrating Radar and other geoscience instrumentation, in all applications fields

5. Communication and education initiatives and methods

Additional information
This session is organized by Members of TU1208 GPR Association (www.gpradar.eu/tu1208); the association is a follow-up initiative of COST (European Cooperation in Science and Technology) Action TU1208 “Civil engineering applications of Ground Penetrating Radar”.

Share:
Co-organized as EMRP2.18/HS11.5/NH6.12/PS5.4/SSS12.16/TS11.10
Convener: Aleksandar Ristic | Co-conveners: Alessandro Fedeli, Lara Pajewski, Mercedes Solla, Milan Vrtunski
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room 0.96
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X1
AS2.1

The session is addressed to experimentalists and modellers working on land surface fluxes from local to regional scales. The programme is open to a wide range of new studies in micrometeorology. The topics include the development of new devices, measurement techniques and experimental design methods, as well as novel findings on surface layer theory and parametrization at the local scale. The theoretical parts encompass soil-vegetation-atmosphere transport, internal boundary-layer theories and flux footprint analyses, etc.. Of special interest are comparisons of experimental data, parametrizations and models. This includes energy and trace gas fluxes (inert and reactive) as well as water, carbon dioxide and other GHG fluxes. Specific focus is given to outstanding problems in land surface boundary layer descriptions such as complex terrain, energy balance closure, stable stratification and night time fluxes, as well as to the dynamic interactions with atmosphere, plants (in canopy and above canopy) and soils including the scale problems in atmosphere and soil exchange processes.

Share:
Co-organized as BG1.18/HS11.6/SSS13.1, co-sponsored by iLEAPS
Convener: Christoph Thomas | Co-conveners: Marc Aubinet, Andreas Ibrom
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room 0.11
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X5
SSS10.2 Media

A growing population is exerting an unprecedented pressure on water and energy resources, maximizing food production and reducing the impact on ecosystem services. Sociotechnical and socioecological variables are not just terms of our current scientific and technologic dictionary but key variables to increase agricultural productivity and fulfil food and fiber supplies in a dissimilar world experiencing climate, land use, market and social changes. With more than 45 % of the world’s agricultural production, irrigation has integrated scientific advancements in soil-plant-water relationships, engineering technologies of variable rate and sub-drip irrigation and innovation that have impacted farmers across the world. Furthermore, in the past decade, we have experienced the massification of proximal and remote sensing, modeling and field data, as well as the “explosion” of robotics, artificial intelligence and information technologies, genetics and high throughput phenotyping --all built upon previous experiences are creating the conditions necessary to innovate in irrigation and contribute to tackle local-to-global challenges.
The proposed session sets the scene for a sustainable irrigation in a changing world. This scenario is based on the integration of applied and basic research, which enables irrigation’s science, engineering and design revolutionize “again” food production with a clearer purpose of preserving water, energy and ecosystem services:
On the one hand, water demands for irrigation have steadily increased since the last decades of the twentieth century, and has created conflicts among water users over a finite water resource jeopardizing food and energy security. Additionally, projected climate change foresees warmer temperatures and shifting precipitation patterns which all together will modify stationary assumptions used to manage water supply, increasing water demands, shifting cropping regimes and triggering volatile markets and socioeconomic responses across the world. Consequently, soil and water productivity could be drastically reduced and thus, food, energy, and ecosystem services too.
On the other hand, technologic developments and innovation on monitoring and predicting future food, water, energy and ecosystems states highlight the role irrigation may play in creating a resilient agriculture to a volatile and complex environment. The following questions need to be addressed: (1) How water and natural resources will be managed for the sustainability of irrigated agriculture? (2) How well irrigated agriculture will adapt to water scarcity scenarios? (3) How information technologies and innovation are contributing to integrate complex systems (i.e. FEWES), maximize food production, optimize water and energy consumption and preserve the ecosystem services? A key element in answering such questions has been and will be the improvement of water, energy and fertilizer use efficiency. The increase of water, energy and fertilizer use efficiency, the accurate estimation in evapotranspiration, and the maintenance of the agroecosystem productivity and ecosystem services will be key topics in the present session. Likewise, the use of other water resources such as treated wastewater, both from industrial and domestic origin, is becoming a source for irrigation in semi-arid and arid regions where the future of irrigated agriculture is threatened by existing or expected water shortages of fresh water and rising concerns of potential water quality hazards to the environment and/or humans.
Within the above framework, this session offers an opportunity to present studies or professional works regarding irrigated agriculture with disciplinary and multidisciplinary approaches including (but not exclusively) the following key topics:
• Efficiency and productivity of water irrigation and fertigation
• Scale-dependent and driven resilience in irrigated working landscapes
• Resilience in coupled natural and human systems where ground and surface water and land are limiting resources for irrigation
• Traditional, novel, and transitional technologies for irrigation management and improvement
• Pros and cons of marginal water use in irrigated agriculture
• Better agronomic and irrigation management practices for soil biodiversity and natural ecosystems improvements and recovery.
• Information technologies and complex system integration as alternatives to tackle current irrigation problems
• Data science, robotics, artificial intelligence and high throughput phenotyping, proximal and remote sensing, and modeling in irrigated agriculture
• Agro-hydrological models and decision support systems to improve decisions in irrigation management and in safe surface water-groundwater interactions.

Share:
Co-organized as HS11.7
Convener: Leonor Rodriguez-Sinobas | Co-conveners: Daniele Masseroni, María Fátima Moreno Pérez, Giuseppe Provenzano, Alejandro Pérez-Pastor
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room -2.20
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X1
GI4.6

Soil moisture is a crucial variable in many scientific areas, including hydrology, environmental studies, agriculture, climate research and other fields of geoscience. Electromagnetic devices enable fast, non-destructive and easy-to-automate soil water content determination. We invite presentations concerning in situ measurements and monitoring of soil moisture by the use of electromagnetic sensors, including TDR, FDR, GPR, capacitance, impedance inductance and resistance devices.
The subject of the session will include:
 progress in measurement methods and devices,
 calibration and verification studies,
 practical applications of soil moisture measurements in agriculture, environmental studies, hydrology, civil engineering, etc.,
 electromagnetic determination of physical properties of materials in the context of soil moisture measurements,
 standardization of soil moisture measuring methods and equipment,
 computational methods of electromagnetic wave propagation in dispersive and lossy dielectrics including theory and applications of electromagnetic mixing rules and formulas,
 integrated techniques using RF and/or microwave dielectric measurements with other methods such as impedance spectroscopy, THz spectroscopy, Raman spectroscopy, infrared spectroscopy, NMR, etc.

Share:
Co-organized as HS11.8/SSS12.8
Convener: Wojciech Skierucha | Co-conveners: Arkadiusz Lewandowski, Pierre Sabouroux
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X1
ITS6.2/NH9.20/HS11.13

2007 was a crucial year when the threshold of 50% of the population living in urban areas has been achieved and Ten years later, many hazards and often combination of hazards heat the urban environment everywhere in the world. This increase rate corresponds to a new city of 1 million people every week during the next 40 years. This exponential curve is enough to imagine that cities become more vulnerable: issues we will have to face dealing with risk management become more complex. Moreover, this quick urbanization comes with climate change uncertainties. Climate change, coupled with people and asset concentration in cities, is the worst combination to set up a sustainable natural hazard management plan. As an example, floods are considered the major natural hazard in the EU in terms of risk to people and assets. Currently, more than 40 bn € per year are spent on flood mitigation and recovery in the EU. More than 75 % of the damage caused by floods is occurring in urban areas. Climate change and concentration of population and assets in urban areas are main trends likely to affect these numbers in the near future. Global warming is expected to lead to more severe storm and rainfall events as well as to increasing river discharges and sea level rise. This means that flood risk is likely to increase significantly. At least, urban systems contain assets of high value and complex and interdependent infrastructure networks (i.e. power supplies, communications, water, transport etc.). The infrastructure networks are critical for the continuity of economic activities as well as for the people’s basic living needs. Their availability is also required for fast and effective recovery after disasters (floods, hurricanes, earthquakes, landslides...). The severity of damage therefore largely depends on the degree that both high value assets and critical urban infrastructure are affected, either directly or indirectly.
In this context, we obtain an urban society:
• more and more menaced by a lot of hazards
• more and more vulnerable due to increasing issues and complex urban system relations;
• less and less resilient.

This session aims at discussing how researchers, practitioners and professionals are integrating the resilient concept to set up new risk management approaches and to design more resilient and flexible cities to face all types of natural hazards. Indeed, a lot of projects in the EU are now trying to use the concept of resilience to mitigate different types of risks in urban areas. This session represents a great opportunity to exchange on resilient cities and to build up a resilience framework. We are attending presentations combining different disciplines, bringing conceptual elements on resilience but also tangible applications. All methods, frameworks, tools (GIS) designed to reduce risks in cities and integrating the resilience concept are welcome in this session.

From the Urban Resilience Studies part, we are expecting communications questioning the traditional risk management approaches, based on case studies and leading to new approaches based on the concept of resilience.
From the Risk Mapping, communications have to demonstrate how risks are characterized, assessed and mapped at several scales allowing to develop operational spatial decision support systems.

Share:
Co-organized as NH9.20/HS11.13
Convener: Bruno Barroca | Co-conveners: Damien Serre, Charlotte Heinzlef, Mattia Leone, Xun Sun, Elisabeth Krueger, Vincent Becue
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room N1
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X3
ERE2.6

With an increasing demand for low-carbon energy solutions, industrial development of geothermal resources is accelerating. Current advancements target conventional hydrothermal systems, as well as the more unconventional systems (e.g., Enhanced Geothermal Systems, super-hot, pressurized and co-produced, super-critical systems). Geothermal energy can be extracted from various, often complex geological settings, both on- and offshore, such as shallow wells in magmatic systems and deep wells focusing on sedimentary basins.

Optimum efficiency requires advanced understanding of the properties of the entire geothermal system, including thermo-/petro-physical conditions, fluid composition; structural and hydrological features; and engineering challenges (e.g., those produced by hydraulic stimulation / induced seismicity or related to multiphase fluids and scaling processes). This needs to be combined with knowledge of heat sources and recharge areas, and an integral understanding on how the different elements connect within one system. In geothermal exploration and production the integration of analogue field studies with real-life production data, from industrial as well as research sites, and the combination with numerical models (both as joint and constrained inversion), are a hot topic worldwide.

With this session we aim to gather field, laboratory and numerical experts who focus their research on geothermal sites, to stimulate discussion in this multi-disciplinary environment. We seek for contributions from all disciplines, ranging from field data (e.g., production and well data) to laboratory experiments and numerical models

Share:
Co-organized as GMPV6.8/HS11.15
Convener: Anne Pluymakers | Co-conveners: Richard Bakker, Yves Géraud, Philippe Jousset
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room 0.94
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X1
AS4.9

Clouds play an important role in the polar climate due to their interaction with atmospheric radiation and their role in the hydrological cycle linking poleward water vapour transport with precipitation, thereby affecting the mass balance of the polar ice sheets. Cloud-radiative feedbacks have also an important influence on sea ice. Cloud and precipitation properties depend strongly on the atmospheric dynamics and moisture sources and transport, as well as on aerosol particles, which can act as cloud condensation and ice nuclei.

This session aims at bringing together researchers using observational (in-situ, aircraft, ground-based, and satellite-based remote sensing) and/or modeling approaches (at various scales) to improve our understanding of polar tropospheric clouds, precipitation, and related mechanisms and impacts. Contributions are invited on various relevant processes including (but not limited to):
- Drivers of cloud/precipitation microphysics at high latitudes,
- Sources of cloud nuclei both at local and long range,
- Linkages of polar clouds/precipitation to the moisture sources and transport,
- Relationship of the poleward moisture transport to processes in the tropics and extra-tropics, including extreme transport events (e.g., atmospheric rivers, moisture intrusions),
- Relationship of moisture/cloud/precipitation processes to the atmospheric dynamics, ranging from synoptic and meso-scale processes to teleconnections and climate indices,
- Role of the surface-atmosphere interaction in terms of mass, energy, and cloud nuclei particles (evaporation, precipitation, albedo changes, cloud nuclei sources, etc)
- Effects that the clouds/precipitation in the Polar Regions have on the polar and global climate system, surface mass and energy balance, sea ice and ecosystems.

Papers including new methodologies specific to polar regions are encouraged, such as (i) improving polar cloud/precipitation parameterizations in atmospheric models, moisture transport events detection and attribution methods specifically in the high latitudes, and (ii) advancing observations of polar clouds and precipitation. We would like to emphasize collaborative observational and modeling activities, such as the Year of Polar Prediction (YOPP), Polar-CORDEX, the (AC)³ project on Arctic Amplification, SOCRATES and other campaigns over the Southern Ocean/Antarctica, and encourage related contributions.

The session is endorsed by the SCAR Antarctic Clouds and Aerosols Action Group.

Young scientist/student presentations are especially encouraged and we will reserve several oral units for such papers in this session.

Share:
Co-organized as CR3.06/HS11.16
Convener: Manfred Wendisch | Co-conveners: Susanne Crewell, Irina V. Gorodetskaya, Tom Lachlan-Cope, Nicole van Lipzig
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room 0.31
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X5
GI3.6 Media

'Cosmic rays’ collectively describe particles that bombard the Earth from space. They carry information about space and, once near the Earth, interact with the magnetosphere, atmosphere, hydrosphere and lithosphere. Secondary cosmic rays created within the atmosphere can provide information about our planet that is vital to science and society. Secondary neutron radiation plays an extraordinary role, as it not only carries information about solar activity, but also produces short and long living tracer isotopes, influences genetic information of living organisms, and is extraordinarily sensitive to hydrogen and therefore also to water. Given the vast spectrum of interactions of cosmic rays with matter in different parts of the Earth, cosmic-ray research ranges from studies of the solar system to the history of the Earth, and from health and security issues to hydrology and climate change.

Although research on cosmic-ray particles is connected to a variety of disciplines and applications, they all share similar questions and problems regarding the physics of detection, modeling, and environmental factors that influence the intensity. Questions that all disciplines have in common are, for example, “How does the cosmic-ray intensity and energy spectra change with time and location on Earth?”, “How to correct the signal for magnetospheric or atmospheric fluctuations?”, “What is the influence of local structures, water bodies, and surface conditions?”, “Which computer model for cosmic-ray propagation is correct?”, or “What can we learn from other types of cosmic-ray particles?”.

The session brings together scientists from all fields of research that are related to monitoring and modeling of cosmogenic radiation. It will allow sharing of expertise amongst international researchers as well as showcase recent advancements in their field. The session aims to stimulate discussions about how individual disciplines can share their knowledge and benefit from each other.

We solicit contributions related but not limited to:
- Health, security, and radiation protection: cosmic-ray dosimetry on Earth and its dependence on environmental and atmospheric factors
- Planetary space science: satellite and ground-based neutron and gamma-ray sensors to detect water and soil chemistry
- Neutron monitor research: detection of high-energy cosmic rays variations and its dependence on local and atmospheric factors
- Hydrology and climate change: low-energy neutron sensing to measure water in reservoirs at and near the land surface, such as soils, snow pack and vegetation
- Cosmogenic nuclides: as tracers of atmospheric circulation and mixing; as a tool in archaeology or glaciology for dating of ice and measuring ablation rates; and as a tool for surface exposure dating and measuring rates of surficial geological processes
- Detector design: technological advancements for the detection of cosmic rays
- Cosmic-ray modeling: advances in modeling of the cosmic-ray propagation through the magnetosphere and atmosphere, and their response to the Earth’s surface
- Impact modeling: How can cosmic-ray monitoring support environmental models, weather and climate forecasting, irrigation management, and the assessment of natural hazards

Share:
Co-organized as AS4.55/EMRP2.41/HS11.18/NH11.14/PS4.6/ST4.8
Convener: Martin Schrön | Co-conveners: Konstantin Herbst, Markus Köhli, W. Rühm, Marek Zreda
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room -2.47
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X1
CL1.18 | PICO

As the number of palaeoclimate data from glacial, marine, and continental archives is growing continuously, large-scale compilation and cross-comparison of these data is the imperative next phase in paleoclimate research. Large data sets require meticulous database management and new analysis methodologies to unlock their potential for revealing supra-regional and global trends in palaeoclimate conditions. The compilation of large scale datasets from proxy archives faces challenges related to record quality and data stewardship. This requires record screening and formulation of principles for quality check, as well as transparent communication.

This session aims to bring together contributions from paleoclimatic studies benefiting from the existence of such large data sets, e.g., providing a novel perspective on a proxy and the represented climate variables from the local to the global scale. We want to bridge the gap between data generation and modelling studies. In particular, comparing such large proxy-based datasets with climate modelling data is crucial for improving our understanding of palaeoclimate archives (e.g., bias effects and internal processes), to identify signal and noise components and their temporal dynamics, and to gain insight into the quality of model data comparisons.

We encourage submissions on data compilations, cross-comparison and modelling studies utilizing data repositories and databases (e.g., SISAL, PAGES2k, ACER, EPD), including, but not limited to:
-Comparative studies using one or several archives (e.g., including tests of temporal and spatial synchronicity of past regional to global climate changes)
-Proxy system models (and their tuning)
-Model data comparisons (including isotope enabled models or local calibration studies)
-Integrative multi-proxy/multi archive approaches at multiple study sites
-Large scale age model comparisons and record quality assessment studies, including methods aimed at cross validation between different records and variable spatial and temporal scales.

Share:
Co-organized as AS4.28/BG1.63/HS11.19/NP4.10/SSP2.10
Convener: Franziska Lechleitner | Co-conveners: Yuval Burstyn, Laia Comas-Bru, Sophie Warken, Kira Rehfeld
PICOs
| Fri, 12 Apr, 14:00–15:45
 
PICO spot 5a
ITS3.3/NH9.18/EOS4.4/HS11.20 | PICO Media

Natural hazards and the associated risk are in some cases a major hindrance to economic and social growth in economically developing countries. This is particularly evident for urban areas, since rapid and uncontrolled urbanization in hazard-prone regions may result in a significant increase in risk due to insufficient spatial planning, which sometimes does not correctly consider (if at all) the impact of natural hazards, and to inadequate building practices. This session will profile the challenges faced in the developing world when doing assessments of natural hazard and risk and designing mitigation strategies. Examples of these challenges include (i) a frequent lack of data, along with difficulties in collecting it, (ii) rapid and often unplanned urban development, with building practices often neglecting the potential hazards, (iii) less regulated nature-human interactions, (iv) limited resources and capacity to undertake the most appropriate prevention and mitigation actions and to actually respond to disastrous and extreme events, (v) climate change, and (vi) difficulties in communication between science, policy and decision makers, and the general public.
Submissions to this PICO session covering all relevant topics are welcome, including but not limited to: database and archive construction; modeling, monitoring and tools for natural hazard and risk assessment; conceptual understanding of multi-hazards and nature-technology interactions; response and mitigation strategies; and communications, policy and decision-making. We particularly welcome abstracts focusing on urban areas, as well as the participation of stakeholders to share their innovative theoretical and practical ideas and success stories of how risk can be understood and addressed across economically developing countries.

Share:
Co-organized as NH9.18/EOS4.4/HS11.20
Convener: Faith Taylor | Co-conveners: Olivier Dewitte, Joel Gill, Andreas Günther, Bruce D. Malamud
PICOs
| Fri, 12 Apr, 14:00–15:45
 
PICO spot 4
ITS4.2/CL4.21/HS11.21/OS2.11 Media

Climate change in the Mediterranean region poses critical environmental issues and can affect many sectors of human activities. Contrasting climate trends, levels of exposure and vulnerability are present across this region with associated potential conflicts. Climate research is expected to contribute an increasingly precise information on the future climate and impacts of climate change in this region. A large set of instrumental records and climate proxies allows in many areas of the Mediterranean region to bridge present trends and past climate over a wide range of timescales. This session encourages contributions adopting a multidisciplinary approach and it aims to promote a dialogue between climatologists and researchers interested on the impacts of climate on human and natural systems. It aims at including contributions describing new scientific findings on the climate of the Mediterranean region, its dynamics, variability, change, and studies of climate related impacts on societies and ecosystems. The session considers different time scales (from paleoclimate to future model projections), different components (atmosphere, ocean, land and its hydrology) and factors (chemical, biological, anthropic) as well as highlights of sub-regional hotspots and climate processes.

Share:
Co-organized as CL4.21/HS11.21/OS2.11
Convener: Piero Lionello | Co-conveners: Andrea Toreti, Heidi Webber
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room L7
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X5
CL4.30

Mountains cover approximately one quarter of the total land surface on the planet, and a significant fraction of the world’s population lives in their vicinity. Orography critically affects weather and climate processes at all scales and, in connection with factors such as land-cover heterogeneity, is responsible for high spatial variability in mountain weather and climate.

Due to this high complexity, monitoring and modeling the atmosphere and the other components of the climate system in mountain regions is challenging both at short (meteorological) and long (climatological) time-scales. This session is devoted to the better understanding of weather and climate processes in mountain and high-elevation areas around the globe, as well as their modification induced by global environmental change.

We welcome contributions describing the influence of mountains on the atmosphere on meteorological time-scales, including terrain-induced airflow, orographic precipitation, land-atmosphere exchange over mountains, forecasting and predictability of mountain weather. Furthermore we invite studies that investigate climate processes and climate change in mountain areas and its impacts on dependent systems, based on monitoring and modeling activities. Particularly welcome are contributions that merge various sources of information and reach across disciplinary borders (atmospheric, hydrological, cryospheric, ecological and social sciences).

A planned outcome of this session is a summary document providing a mountains perspective and input for the IPCC Sixth Assessment Report, more specifically for Working Group I report on the Physical Sciences Basis and the cross-chapter paper on 'Mountains', which is flagged for the Working Group II report. This summary document is organized and supported by the Mountain Research Initiative (MRI).

Share:
Co-organized as AS4.47/CR1.13/HS11.22
Convener: Sven Kotlarski | Co-conveners: Andreas Gobiet, Elisa Palazzi, Wolfgang Schöner, Stefano Serafin, Ivana Stiperski
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room 0.14
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X5
CL2.17.2 | PICO

The regional climate change assessment reports for the Baltic (BACC I and II) and North Sea regions (NOSCCA) have recently estimated the extent and impact of climate change on the environments of the North and Baltic Sea regions. A major outcome of these reports is the finding that climate change is one of multiple drivers, which have a continuing impact on terrestrial, aquatic and socio-economic (resp. human) environments. These drivers interact with regional climate change in ways, which are not completely understood.
This session invites contributions, which focus on the connections and interrelations between climate change and other drivers of environmental change, be it natural or human-induced, in different regional seas and coastal regions. Observation and modelling studies are welcome, which describe processes and interrelations with climate change in the atmosphere, in marine and freshwater ecosystems and biogeochemistry, coastal and terrestrial ecosystems as well as human systems. In particular, studies on socio-economic factors like aerosols, land cover, fisheries, agriculture and forestry, urban areas, coastal management, offshore energy, air quality and recreation, and their relation to climate change, are welcome.
The aim of this session is to provide an overview over the current state of knowledge of this complicated interplay of different factors, in different coastal regions all over the world.

Share:
Co-organized as BG3.24/HS11.23/NH5.17/OS2.21
Convener: Marcus Reckermann | Co-conveners: Ute Daewel, Helena Filipsson, Markus Meier, Markus Quante
PICOs
| Fri, 12 Apr, 16:15–18:00
 
PICO spot 5a
AS4.1

The atmospheric water cycle is a key component of the climate system,
and links across many scientific disciplines. Processes and dynamics at
different scales interact throughout the atmospheric life cycle of
water vapour from evaporation to precipitation. This session sets the
focus on processes, dynamics and characteristics at the evaporation
sources, during moisture transport, and at the precipitation sinks as
observed from in-situ and remote sensing, recorded by (paleo)climate
archives, and as simulated for past, present and future climates.

We invite studies

* focusing on extensive transient features of the atmospheric water
cycle, such as Atmospheric Rivers, Cold-Air Outbreaks, warm conveyor
belts, tropical moisture exports, precipitation extremes, and the
monsoon systems.

* investigating the large-scale drivers of the water cycle features’
variability and change by looking at observations, reanalyses or
global/regional climate simulations, in order to improve their
predictability

* involving and connecting results from field campaigns (YOPP, MOZAIC,
NAWDEX), reanalysis data, indicators of past hydroclimate from climate
proxies such as ice cores and stalagmites, and model predictions of the
future evolution of the atmospheric water cycle,

* applying methods such as stable isotopes as physical tracers in the
water cycle, tagged water tracers, and Lagrangian moisture source
diagnostics to identify source-sink relationships and to evaluate model
simulations of the water cycle,

* describing the global and regional state of the atmospheric cycle
with characteristics such as the recycling ratio, life time of water
vapour, and moisture transport distance

We particularly encourage contributions to link across neighbouring
disciplines, such as atmospheric science, climate, paleoclimate,
cryosphere, and hydrology.

Share:
Co-organized as CL2.19/CR3.07/HS11.24
Convener: Harald Sodemann | Co-conveners: Marie-Estelle Demory, Irina V. Gorodetskaya, David Lavers, Alexandre M. Ramos
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room 0.11
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X5
ITS3.5/PS1.6/BG1.47/CL3.11/ERE1.3/HS11.25 | PICO

The Sustainable Development Goals (SDGs) (or Global Goals for Sustainable Development) are a collection of 17 global goals set by the United Nations Development Programme.The formal name for the SDGs is: "Transforming our World: the 2030 Agenda for Sustainable Development." That has been shortened to "2030 Agenda." The goals are broad and interdependent, yet each has a separate list of targets to achieve. Achieving all 169 targets would signal accomplishing all 17 goals. The SDGs cover social and economic development issues including poverty, hunger, health, education, global warming, gender equality, water, sanitation, energy, urbanization, environment and social justice.
For this interdisciplinary session, we invite contributions discussing How Earth, Planetary and Space Scientists can address UN Sustainable Development Goals . We shall discuss the relevance of fields of research disciplines covered by EGU, and how they can inform and support society government bodies, and stakeholders for the SDGs.
The session will include invited and contributed oral papers, as well as interactive posters, and panel discussions.

Share:
Co-organized as PS1.6/BG1.47/CL3.11/ERE1.3/HS11.25
Convener: Bernard Foing | Co-convener: Germaine Van der Sanden
PICOs
| Thu, 11 Apr, 16:15–18:00
 
PICO spot 4
GI4.4 Media

Progressively stricter requirements in geophysical prospecting, in urban and inter-urban monitoring make it important to look continuously for innovative solutions to new and old complex problems. In particular, investigation and monitoring of pollution, hydrological resources, energy efficiency, cultural heritage, cities and transportation infrastructures nowadays require technological and methodological innovations of geophysical and sensing techniques in order to properly understand the limits of the current state of art and to identify where possible the most convenient strategies to overcome limitations of current approaches. This goal can be achieved either with more advanced solutions in a general sense or with dedicated solutions, particularly suitable for the specific problem at hand.
Integrated prospecting, refined data processing, new models, hardware innovations, new ICT information and telecommunications systems can and should cooperate with each other in this sense. It is important that the scientific community finds a moment for considering the connection between adjacent aspects of the same problem, e.g. to achieve improved geophysical data, safe and reliable environmental and structural monitoring, improved processing as much as possible.
The session “ Innovative instrumentations, techniques, geophysical methods and models for near surface geophysics, cities and transportation infrastructures aims to propose one such moment, where multidisciplinary and interdisciplinary competences can interact with each other, possibly finding possible new ways to cooperate and to exchange experiences reciprocally to reach sustainable solutions.

Share:
Co-organized as BG1.13/EMRP2.30/HS11.27/NH11.3/SSS12.10
Convener: Raffaele Persico | Co-conveners: Mario Marchetti, Salvatore Piro, F.C. Ponzo
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room M1
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X1
AS4.20 Media

The interaction of processes between the land surface, the planetary boundary layer (PBL), and the free troposphere are crucial for the understanding of weather and climate including extremes such as heavy precipitation and droughts. This requires an advanced understanding and modeling of the exchange of momentum, water, energy, and carbon at interfaces. In this session, we present and discuss current research activities contributing to this understanding, including L-A interaction and feedback to the diurnal cycle of the PBL, clouds, and precipitation as well as surface fluxes such as evapotranspiration and entrainment. We accept observational and modeling approaches to address these challenges. With respect to the observations, emphasis is put on the application of new sensor synergies, e.g., using active remote sensing for studying land surface exchange processes and entrainment at the PBL top, which have been addressed in field campaigns. With respect to theoretical understanding and modeling, we are focusing on new insights by feedback diagrams and grey zone experiments down to the large eddy simulation scale.

Share:
Co-organized as BG1.16/CL4.29/HS11.28
Convener: Volker Wulfmeyer | Co-conveners: Wim Thiery, Matthias Mauder, Linda Schlemmer, Chiel van Heerwaarden, Diego G. Miralles, Adriaan J. (Ryan) Teuling, Sonia I. Seneviratne
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room 0.11
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X5
GM5.4 Media

Arid to sub-humid regions contribute ca. 40 % to the global land surface and are home of more than 40 % of the world’s population. During prehistoric times many important cultures had developed in these regions. Due to the high sensitivity of dryland areas even to small-scale environmental changes and anthropogenic activities, ongoing geomorphological processes but also the Late Quaternary palaeoenvironmental evolution as recorded in sediment archives are becoming increasingly relevant for geomorphological, palaeoenvironmental and geoarchaeological research. Dryland research is also boosted by methodological advances, and especially by emerging linkages with other climatic and geomorphic systems that allow using dryland areas as indicator-regions of global environmental change.
This session aims to pool contributions from the broad field of earth sciences that deal with geomorphological processes and different types of sediment archives in dryland areas (dunes, loess, slope deposits, fluvial sediments, alluvial fans, lake and playa sediments, desert pavements, soils, paleosols etc.) at different spatial and temporal scales. Besides case studies from individual regions and archives, methodical and conceptual contributions, e.g. dealing with the special role of eolian, fluvial, gravitational and biological processes in dryland environments, their preservation over time in the sedimentary records, and emerging opportunities and limitations to resolve past and current dynamics, are especially welcome in this session.

Share:
Co-organized as CL1.35/HS11.29/SSS13.10
Convener: Hans von Suchodoletz | Co-conveners: Mark Bateman, Joel Roskin, Abi Stone, Lupeng Yu
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room 0.31
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X2
CL4.35.2

Water and energy are essential to human society, and their supplies are vulnerable to climate change. For example, climate change will have impacts on the quantity and quality water resources, which may affect water availability for cooling at power plants, and on the yield of clean energy such as hydropower, wind power and solar energies. Considering increasing intensity and frequency of climate extremes in a warming world, understanding and quantifying the interdependence and challenges among climate, water and the energy system is critical. Considerable research is being conducted on some aspects of the climate-water-energy nexus, but this nexus is regionally diverse and has many unexplored facets. We aim to bring together researches focusing on the climate-water-energy nexus to both share current research and identify knowledge gaps.
To assess the integrative impacts of climate and climate change on water and energy systems and advance our understanding of the climate-water-energy nexus, we welcome contributions that focus on water and energy issues under a warming climate, including, but not limited to:
• climate modelling and future climate simulation with a focus on water availability
• Regional analyses of precipitation and water availability
• impacts of climate change on water resources
• impacts of climate change on clean energy yield, operation and management
• impacts of climate extremes on traditional energy production and delivery

Share:
Co-organized as ERE8.6/HS11.30
Convener: Chan Xiao | Co-conveners: Alan Di Vittorio, Hongmei Xu, Weihua Yuan
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room 0.14
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X5
ITS6.1/NP8.5/AS4.50/CL2.26/HS11.31/NH9.23

As discussed by EGU2017 DB2 and EGU 2018 TM16, there had been an impressive series of international agreements and development of large networks of cites that call for qualitative improvements of urban systems and their interactions with their environment. The main goal of this ITS is to mobilise geoscientists, highlight their present contributions and encourage holistic approaches beyond the traditional silos of urban meteorology/hydrology/climatology/ecology/resilience, as well as some other terms.

Public information:
See also Town Hall TM 19 "Cities and Interdisciplinary Geosciences"
to be held on Thursday 11 April in room 1.85 from 19:00 to 20:00.
https://meetingorganizer.copernicus.org/EGU2019/session/33913

Share:
Co-organized as NP8.5/AS4.50/CL2.26/HS11.31/NH9.23
Convener: Daniel Schertzer | Co-conveners: Klaus Fraedrich, Stefano Tinti
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room N1
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X4
ITS3.1/SSS1.4/EOS3.2/BG1.21/ESSI3.8/HS11.32/NH9.22 Media

Citizen science (the involvement of the public in scientific processes) is gaining momentum in one discipline after another, thereby more and more data on biodiversity, earthquakes, weather, climate, health issues among others are being collected at different scales that can extend the frontiers of knowledge. Successful citizen observatories can potentially be scaled up in order to contribute to larger environmental and policy strategies and actions (such as the European Earth Observation monitoring systems) and to be integrated in GEOSS and Copernicus. Making credible contributions to science can empower citizens to actively participate in environmental decision making, can raise awareness about environmental issues and can help bridge the science-society gap. Often, citizen science is seen in the context of Open Science, which is a broad movement embracing Open Data, Open Access, Open Educational Resources, Open Source, Open Methodology, and Open Peer Review to transparently publish and share scientific research - thus leveraging Citizen Science and Reproducible Research.

Both, open science in general and citizen science in particular, pose great challenges for researchers, and to support the goals of the various openness initiatives, this session looks at what is possible nowadays and what is ready for application in geosciences. Success stories, failures, best practices and solutions will be presented, in addition to various related networks. We aim to show how researchers, citizens, funding agencies, governments and other stakeholders can benefit from citizen science and open science, acknowledging the drawbacks and highlighting the opportunities available for geoscientists.

In this session, we are looking for successful approaches of working with citizen science and open science to bridge the gap between a multitude of stakeholders in research, policy, economy, practice and society at large by finding emerging environmental issues and empowering citizens. This session shall be an open space to exchange experiences and to present either successful examples or failed efforts. Learning from others and understanding what to adopt and what to change help the participants in their own undertakings and new initiatives, so that they become future success stories.

We want to ask and find answers to the following questions:
Which approaches can be used in Earth, Planetary and Space Sciences?
What are the biggest challenges and how to overcome them?
What kind of citizen scientist involvement and open science strategies exist?
How to ensure transparency in project results and analyses?
How to evaluate successful bridging of the science-society-gap?

Share:
Co-organized as SSS1.4/EOS3.2/BG1.21/ESSI3.8/HS11.32/NH9.22
Convener: Taru Sandén | Co-conveners: Daniel Dörler, Steffen Fritz, Florian Heigl, Amanda Whitehurst, Martin Hammitzsch
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room N1
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X1
NP1.1

Taking inspiration from the Mathematics of Planet Earth 2013 initiative, this session aims at bringing together contributions from the growing interface between the geophysical, the mathematical, and the theoretical physical communities. Specific topics include: PDEs, numerical methods, extreme events, statistical mechanics, large deviation theory, response theory, model reduction techniques, coarse graining, stochastic processes, parametrizations, data assimilation, and thermodynamics. We invite talks and poster both related to specific applications as well as more speculative and theoretical investigations. We particularly encourage early career researchers to present their interdisciplinary work in this session.

Share:
Co-organized as AS5.19/CL5.23/HS11.33/NH11.10
Convener: Valerio Lucarini | Co-conveners: Freddy Bouchet, Dan Crisan, Michael Ghil, Darryl Holm
Orals
| Wed, 10 Apr, 14:00–18:00
 
Room E2
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X4
CL1.22

In recent decades, quantitative methods have become increasingly important in the field of palaeoenvironmental, palaeoclimatic and palaeohydrological reconstruction, due to the need for comparison between different records and to provide boundary conditions for computational modelling. Continental environmental archives (e.g. speleothems, lakes, land snails, rivers, or peatlands) are often highly temporally resolved (subdecadal to seasonal) and may provide more direct information about atmospheric and hydrological processes than marine archives. The wide variety of archive types available on land also allows for intercomparison and ground-truthing of results from different techniques and different proxies, and multi-proxy reconstructions from the same archive can disentangle local and supra-regional environmental conditions. This approach is particularly useful for the reconstruction of hydrological dynamics, which are challenging to reconstruct due to their high spatial variability, signal buffering, nonlinearities and uncertainties in the response of available paleoclimate archives and proxies. For example, climate-independent factors such as land cover change can affect the local to regional water availability recorded in proxies.

This session aims to highlight recent advances in the use of innovative and quantitative proxies to reconstruct past environmental change on land. We present studies of various continental archives, including but not limited to carbonates (caves, paleosols, snails), sediments (lakes, rivers, alluvial fans), and biological proxies (tree rings, fossil assemblages, plant biomarkers). We particularly include studies involving the calibration of physical and chemical proxies that incorporate modern transfer functions, forward modeling and/or geochemical modeling to predict proxy signals, and quantitative estimates of past temperature and palaeohydrological dynamics. We also include reconstructions of temperature and hydrologic variability over large spatial scales and paleoclimate data assimilation. This session will provide a forum for discussing recent innovations and future directions in the development of terrestrial palaeoenvironmental proxies on seasonal to multi-millennial timescales.

This session aims to highlight recent advances in the use of innovative and quantitative proxies to reconstruct past environmental change on land. We welcome studies of any continental archive, including but not limited to carbonates (caves, paleosols, snails), sediments (lakes, rivers, alluvial fans), ice, and biological proxies (tree rings, fossil assemblages, plant biomarkers). We particularly encourage studies involving the calibration of physical and chemical proxies that incorporate modern transfer functions, forward modeling and/or geochemical modeling to predict proxy signals, and quantitative estimates of past temperature and precipitation amounts. We also welcome reconstructions of temperature and hydrologic variability over large spatial scales, including paleoclimate data assimilation studies. This session will provide a forum for discussing recent innovations and future directions in the development of terrestrial palaeoenvironmental proxies on seasonal to multi-millennial timescales.

Share:
Co-organized as AS4.3/BG5.3/CR5.8/GM8.5/HS11.35
Convener: Bethany Fox | Co-conveners: Sebastian F.M. Breitenbach, Elisabeth Dietze, Ola Kwiecien, Jessica Oster
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room F2
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X5
NH6.1 Media

Remote sensing and Earth Observations (EO) are used increasingly in the different phases of the risk management and in development cooperation, due to the challenges posed by contemporary issues such as climate change, population pressure and increasingly complex social interactions. EO-based applications have a number of advantages over traditional fieldwork expeditions including safety, the provision a synoptic view of the region of interest, the availability of data extending back several years and, in many cases, cost savings. Fortunately, the advent of new, more powerful sensors and more finely tuned detection algorithms provide the opportunity to image, assess and quantify natural hazards, their consequences, and vulnerable regions, more comprehensively than ever before.
For these reasons, the civil protections, the development agencies and space agencies have now inserted permanently into their programs applications of EO data to risk management. In particular, the Committee on Earth Observation Satellites (CEOS) has a permanent working group on Disasters that supports and promotes the use of EO data for Disaster Risk management (DRM). During the preparedness and prevention phase EO revealed, especially in data scarce environments, fundamental for hazard, vulnerability and risk mapping. EO data intervenes both in the emergency forecast and early emergency response, thanks to the potential of rapid mapping. EO data is also increasingly being used for mapping useful information for planning interventions in the recovery phase, giving to managers and emergency officials a wealth of time-continuous information for assessment and analysis of natural hazards, from small to large regions around the globe. In this framework, CEOS has been working from several years on disasters management related to natural hazards (e.g., volcanic, seismic, landslide and flooding ones), including pilots, demonstrators, recovery observatory concepts, Geohazard Supersites and Natural Laboratory (GSNL) initiatives and multi-hazard management projects.

The session is dedicated to multidisciplinary contributions especially focused on the demonstration of the benefit of the use of EO for the risk management, with an operational user-oriented perspective.
The research presented might focus on:
- Addressed value of EO data in risk/hazard forecasting models (observation of possible precursory events and evaluation of potential predictive capabilities)
- Innovative applications of EO data for rapid mapping.
- Innovative applications of EO data for hazard, vulnerability and risk mapping.
- Innovative applications of EO data for the post-disaster recovery phase.
- Innovative applications in support to disaster risk reduction strategies (eg. landscape planning).
- Development of tools and platforms for assessment and validation of hazard/risk models

The use of different types of remote sensing (e.g. thermal, visual, radar, laser, and/or the fusion of these) might be considered, with an evaluation of their respective pros and cons. Evaluation of current sensors, data capabilities and algorithms will be welcomed, as will suggestions for future sensor considerations, algorithm developments and opportunities for emergency management agency buy-in.
Early stage researchers are strongly encouraged to present their research. Moreover, contributions from international cooperation, such as CEOS and GEO initiatives, are welcome.

Share:
Co-organized as GI3.20/HS11.38
Convener: Paolo Tarolli | Co-conveners: Nicola Casagli, Kuo-Jen Chang, Peter Webley, Antonio Montuori, Simona Zoffoli, Michelle Parks
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30, 14:00–15:45
 
Room M2
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X3
NH9.2 | PICO

Climate change, globalization, urbanization, and increased interconnectedness between
physical, human, and technological systems pose major challenges to disaster risk reduction
(DRR). Subsequently, economic losses caused by natural hazards are increasing in many regions of the world, which call for novel scientific approaches and new types of data collection to integrate the study of the natural processes triggering hazards, with the study of socioeconomic, political and technical factors that shape exposure and vulnerability.

This session aims to gather contributions on research, empirical studies, and observations that are useful for understanding and unravel the nexus between physical, human, and technological systems in DRR. We have identified a few examples of empirical puzzles where knowledge that is more fundamental is needed, thus contributions on the following topics are particularly welcome (but not limited to):

- Failure is a potential source of lesson-drawing, but history also offers success stories where disasters were avoided that deserve more rigorous assessment – What can we learn from comparative studies?

- Why do some societies that experience frequent natural hazards increase their resilience, while others become more vulnerable?

- Why do lowering hazard levels sometimes paradoxically lead to increased risks in some places?

- Why – despite major progress in understanding drivers of risk and developing enhanced methodologies and tools for assessing it – do we still see an increase in impacts associated with natural hazards?

Share:
Co-organized as GI1.10/GMPV6.6/HS11.40
Convener: Johanna Mård | Co-conveners: Korbinian Breinl, Steffi Burchardt, Giuliano Di Baldassarre, Michael Hagenlocher
PICOs
| Thu, 11 Apr, 08:30–10:15
 
PICO spot 1
NH3.16

Large slope instabilities have been frequently recognised in areas with different lithological (sedimentary, igneous, metamorphic rocks) and geological domains (cordillera, volcanic, etc.). Slow to very fast moving, complex mass movements have been recognized and sometimes described as strongly interrelated. Many types of slope instabilities can be grouped within this broad class, each presenting different types of hazard and risk. Some major aspects of these slope instabilities are still understudied and debated, namely:
- their regional distribution and relevance;
- triggering and controlling factors, including possible climatic changes;
- hydrological boundary conditions and evolution or control of internal hydrogeological conditions;
- mechanical controls in terms of physical mechanical properties of failure surfaces and shear zones
- dating of initial movements and reactivation episodes;
- style and state of past and present activity;
- passive and/or active control by structural-tectonic elements of the bedrock geology;
- possible styles of evolution and consequent modeling approaches;
- assessment of related hazard;
- influence of external anthropogenic factors and effects on structures and infrastructures (e.g. tunnels, dams, bridges);
- role on the general erosional and sediment yield regime at the local or mountain belt scale;
- best technologies and approaches for implementing a correct monitoring and warning system and for the interpretation of monitoring data in terms of landslide activity and behavior.

Study of these instabilities requires a multidisciplinary approach involving geology, geomorphology, geomechanics, hydro-geochemistry, and geophysics. These phenomena have been recognized on Earth as well as on other planetary bodies (e.g. Mars, Moon).
Trenching and drilling can be used for material characterization, recognition of episodes of activity, and sampling in slow slope movements. At the same time many different approaches can be used for monitoring and establishing of warning thresholds and systems for such phenomena.
Geophysical survey methods can be used to assess both the geometrical and geomechanical characteristics of the unstable mass. Different dating techniques can be applied to determine the age and stages of movement. Many modeling approaches can be applied to evaluate instability and failure (e.g. displacement and velocity thresholds), triggering mechanisms (e.g. rainfall, seismicity, volcanic eruption, deglaciation), failure propagation, rapid mass movements (rock avalanches, debris avalanches and flows), and related secondary failures (rock fall and debris flows).
Studies of hydraulic and hydrologic boundary conditions and hydrochemistry are involved, both at the moment of initial failure and, later, during reactivation. The impacts of such instabilities on structures and human activities can be substantial and of a variety of forms (e.g. deformation or failure of structures and infrastructure, burial of developed areas, etc.).
Furthermore, the local and regional sediment yield could be influenced by the landsliding activity and different landslides (e.g. type, size) can play different roles.

Share:
Co-organized as GM7.7/HS11.42, co-sponsored by JpGU
Convener: Giovanni Crosta | Co-conveners: Federico Agliardi, Masahiro Chigira, Irene Manzella
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room L1
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X3
NH9.15

Despite increasing losses and negative impacts caused by natural hazards worldwide, research and resources are targeted mainly at the study and management of the natural processes themselves, rather than on their interaction with the natural and built environment as well as the affected communities. The understanding of this interaction and its qualitative or quantitative assessment is the key to vulnerability reduction and increasing of resilience to natural hazards.
In this session, we welcome studies unveiling the dynamic root causes of vulnerability and aiming at the analysis and reduction of all its dimensions (physical, economic, social, environmental, cultural and institutional). Moreover, contributions focusing on the resilience of affected communities and the built environment to natural hazards in all phases of the disaster cycle and particularly the reconstruction phase (“build back better”) are of special interest. Additionally, we invite submissions concentrating on knowledge management, innovative data collection techniques, mobile applications and citizen science related to the vulnerability and resilience of the elements at risk.

Share:
Co-organized as HS11.43
Convener: Maria Papathoma-Koehle | Co-conveners: Sven Fuchs, Margreth Keiler
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X3
NH9.11 ECS

In recent years an increasing number of research projects focused on natural hazards (NH) and climate change impacts, providing a variety of information to end user or to scientists working on related topics.

The session aims at promoting new and innovative studies, experiences and models to improve risk management and communication about natural hazards to different end users.

End users such as decision and policy makers or the general public, need information to be easy and quickly interpretable, properly contextualized, and therefore specifically tailored to their needs. On the other hand, scientists coming from different disciplines related to natural hazards and climate change (e.g., economists, sociologists), need more complete dataset to be integrated in their analysis. By facilitating data access and evaluation, as well as promoting open access to create a level playing field for non-funded scientists, data can be more readily used for scientific discovery and societal benefits. However, the new scientific advancements are not only represented by big/comprehensive dataset, geo-information and earth-observation architectures and services or new IT communication technologies (location-based tools, games, virtual and augmented reality technologies, and so on), but also by methods in order to communicate risk uncertainty as well as associated spatio-temporal dynamic and involve stakeholders in risk management processes.

However, data and approaches are often fragmented across literature and among geospatial/natural hazard communities, with an evident lack of coherence. Furthermore, there is not a unique approach of communicating information to the different audiences. Rather, several interdisciplinary techniques and efforts can be applied in order to simplify access, evaluation, and exploration to data.

This session encourages critical reflection on natural risk mitigation and communication practices and provides an opportunity for geoscience communicators to share best methods and tools in this field. Contributions – especially from Early Career Scientists – are solicited that address these issues, and which have a clear objective and research methodology. Case studies, and other experiences are also welcome as long as they are rigorously presented and evaluated.

New and innovative abstract contributions are particularly welcomed and their authors will be invited to submit the full paper on a special issue on an related-topics Journal.

In cooperation with NhET (Natural hazard Early career scientists Team).

Share:
Co-organized as ESSI1.8/GI1.11/GMPV6.3/HS11.44/SM3.7/SSS13.19
Convener: Raffaele Albano | Co-conveners: Valeria Cigala, Jonathan Rizzi
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room L1
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X3
NH6.2

The availability of high spatial resolution Synthetic Aperture Radar (SAR) data, the advances in SAR processing techniques (e.g. interferometric, polarimetric, and tomographic processing), and the fusion of SAR with optical imagery as well as geophysical modelling allow ever increasing use of Imaging Geodesy using SAR/InSAR as a geodetic method of choice for earth system monitoring and investigating geohazard, geodynamic and engineering processes. In particular, the exploitation of data from new generation SAR missions such as Sentinel-1 that provide near real-time measurements of deformation and changes in land cover/use has improved significantly our capabilities to understand natural and anthropogenic hazards and then helped us mitigate their impacts. The development of high-resolution X-band SAR sensors aboard missions such as Italian COSMO-SkyMed (CSK) and German TerraSAR-X (TSX) has also opened new opportunities over the last decade for very high-resolution radar imaging from space with centimetre geometric accuracy for detailed analysis of a variety of processes in the areas of the biosphere, geosphere, cryosphere and hydrosphere. All scientists exploiting radar data from spaceborne, airborne and/or ground-based SAR sensors are cordially invited to contribute to this session. The main objective of the session is to present and discuss the progress, state-of-the-art and future perspectives in scientific exploitation of SAR data, mitigating atmospheric effects and error sources, cloud computing, machine learning and big data analysis, and interpretation methods of results obtained from SAR data for various types of disasters and engineering applications such as earthquakes, volcanoes, landslides and erosion, infrastructure instability and anthropogenic activities in urban areas. Contributions addressing scientific applications of SAR/InSAR data in biosphere, cryosphere, and hydrosphere are also welcome.

Share:
Co-organized as AS5.13/CR2.15/G2.7/GD10.3/HS11.45/NP4.11/SM1.14
Convener: Mahdi Motagh | Co-conveners: Ziyadin Cakir, Franz J Meyer, Zhenhong Li
Orals
| Mon, 08 Apr, 08:30–12:30, 14:00–15:45
 
Room M2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X3
NH9.1 Media

The purpose of this session is to: (1) showcase the current state-of-the-art in global and continental scale natural hazard risk science, assessment, and application; (2) foster broader exchange of knowledge, datasets, methods, models, and good practice between scientists and practitioners working on different natural hazards and across disciplines globally; and (3) collaboratively identify future research avenues.
Reducing natural hazard risk is high on the global political agenda. For example, it is at the heart of the Sendai Framework for Disaster Risk Reduction (and its predecessor the Hyogo Framework for Action) and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts. In response, the last 5 years has seen an explosion in the number of scientific datasets, methods, and models for assessing risk at the global and continental scale. More and more, these datasets, methods and models are being applied together with stakeholders in the decision decision-making process.
We invite contributions related to all aspects of natural hazard risk assessment at the continental to global scale, including contributions focusing on single hazards, multiple hazards, or a combination or cascade of hazards. We also encourage contributions examining the use of scientific methods in practice, and the appropriate use of continental to global risk assessment data in efforts to reduce risks. Furthermore, we encourage contributions focusing on globally applicable methods, such as novel methods for using globally available datasets and models to force more local models or inform more local risk assessment.

Share:
Co-organized as GMPV6.2/HS11.47/SSS13.18
Convener: Hessel Winsemius | Co-conveners: Hannah Cloke, James Daniell, Melanie J. Duncan
Orals
| Tue, 09 Apr, 10:45–12:30, 14:00–18:00
 
Room L6
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X3
GM11.7

Coastal wetland ecosystems, such as salt marshes, mangroves, seagrasses and tidal flats, are under increasing pressure and threat from natural and anthropogenic processes such as land claim, altered sediment regimes, increased storm magnitude and frequency, and relative sea level rise. Consequently, these ecosystems are declining globally, with evidence of degradation and isolation across the full variety of coastal wetland habitats. These environments provide numerous ecosystem services, including flood risk mediation, biodiversity provision and climate change mitigation through carbon storage. There is, therefore, a need to understand current processes and interactions in these environments, and how these may change in the future due to both natural and anthropogenic influences. This is particularly the case in ‘managed’ and restored wetlands, where tidal and/or riverine regimes are re-introduced and coastal wetlands allowed to migrate inland in response to sea level rise for the provision of the desired ecosystem services to be preserved and/or restored.
This session will bring together studies of coastal wetland ecosystems within open coast, estuarine, lagoon and delta environments, to enhance the understanding of the services provided, interactions between hydrodynamic conditions, sediment and ecology, and best future management practices. Studies of all processes occurring within coastal wetlands are invited. This includes, but is not exclusive to, sediment dynamics, hydrology, hydrodynamics, morphological characterisation, geotechnical analysis, ecological change and evolution, impact of climate change, sea level rise, anthropogenic and management implications. Multidisciplinary approaches and studies of wetland restoration and habitat loss compensation schemes are particularly encouraged, along with global to regional assessments of wetland migratory potential; studies on wetland migration dynamics and the characteristics and functions of restored wetlands; and governance and policy contexts for wetland migration. This session aims to enhance our understanding of wetland management, processes, interactions and the wetlands’ ability to migrate inland, allowing for improvement of our ability to quantify the responses of coastal wetlands and their ecosystem services to future sea level rise and anthropogenic activity.

Share:
Co-organized as BG6.12/HS11.48/OS2.19
Convener: Jonathan Dale | Co-conveners: Helen Brooks, James Pollard, Ruth Reef, Mark Schuerch
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room G2
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X2
OS4.2
Tides. 

Tides form a unique process in the Earth system because of their predictability, and because of their impact on many Earth system processes. This session is open to any aspect of tidal research, including the accuracy of present-day coastal, regional and global tide models, tidal dissipation, and the role of tides in geophysics, internal tides and their role in mixing the ocean and the impact on the global ocean circulation, secular and long-term changes in tides, insights on tidal variability from global geodetic observing techniques, and new techniques for measuring tides and analysing the data. We also welcome new findings on Earth and atmospheric tides, the role of tides in Earth’s ability to host and evolve life, tides in lakes, and planetary tides. The session is also intended to mark the 100th anniversary of the founding of the Liverpool Tidal Institute (LTI). The LTI for many years was the world centre for knowledge of the tides, with Joseph Proudman taking the lead in dynamical theories, and Arthur Doodson in the analysis of tidal information from around the world, and on tidal prediction. We therefore also welcome presentations on the history of tidal research.

Share:
Co-organized as AS1.23/G3.8/HS11.51
Convener: Mattias Green | Co-conveners: Richard Ray, Michael Schindelegger, Sophie-Berenice Wilmes, Philip Woodworth
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room 1.85
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X4
SSS8.2

Pre-anthropogenic evolution of biosphere based on mechanisms of struggle for life created dynamic stability of the Earth ecosystems comprised of species with maximum matching to all the biogeochemical niches. Intellect specific of only one species changed biosphere to support civilizations but at the same time interfered natural processes and transformed the state of the organized natural biogeochemical cycles. As a result, soil as the main basis of nutrients and biomass production is subjected to physical and chemical degradation and needs reclamation. To survive and develop as a species, Man should escape short-term decisions and use his knowledge and scientifically based approaches to find the ways for stable existence in changeable noosphere.
The main idea of the present session is to discuss the problem of optimization of eco-geochemical state of anthropized soil to improve the quality of agricultural and forestry production and, finally, human health in conditions of inevitable man-made contamination.
We invite specialists in soil science and all stakeholders to:
1) present their ideas and experience in assessment of the ecological and health risk due to soil contamination in their regions, countries and localities;
2) discuss how we should evaluate soil contamination in conditions of: a) natural nutrients deficiency; b) soil over-fertilization; soil pollution;
3) clear up what levels of elements concentration may be treated as pollution and demonstrate theoretical approaches and modern technologies that may be considered optimum in reclamation of technogenically transformed soils to improve their ecological quality and to contribute to human health.

Share:
Co-organized as BG2.36/HS11.52
Convener: Elena Korobova | Co-conveners: Maria Manuela Abreu, Jaume Bech, Erika Santos
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room -2.20
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X1
BG1.1

This session is open to all contributions in biogeochemistry and ecology where stable isotope techniques are used as analytical tools, with a focus on stable isotopes of light elements (C, H, O, N, S, ...). We welcome studies from both terrestrial and aquatic (including marine) environments as well as methodological and experimental, theoretical and modeling studies that introduce new approaches or techniques (including natural abundance work, labeling studies, multi-isotope approaches, clumped and metal isotopes).

Share:
Co-organized as GMPV7.12/HS11.54/OS3.8/SSS12.15, co-sponsored by EAG
Convener: Michael E. Böttcher | Co-conveners: Kirstin Dähnke, Gerd Gleixner, Nikolaus Gussone
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30
 
Room L2
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall A
GM1.4

Seismic techniques are becoming widely used to detect and quantitatively characterise a wide variety of natural processes occurring at the Earth’s surface. These processes include mass movements such as landslides, rock falls, debris flows and lahars; glacial phenomena such as icequakes, glacier calving/serac falls, glacier melt and supra- to sub-glacial hydrology; snow avalanches; water storage and water dynamics phenomena such as water table changes, river flow turbulence and fluvial sediment transport. Where other methods often provide limited spatial and temporal coverage, seismic observations allow recovering sequences of events with high temporal resolution and over large areas. These observational capabilities allow establishing connections with meteorological drivers, and give unprecedented insights on the underlying physics of the various Earth’s surface processes as well as on their interactions (chains of events). These capabilities are also of first interest for real time hazards monitoring and early warning purposes. In particular, seismic monitoring techniques can provide relevant information on the dynamics of flows and unstable slopes, and thus allow for the identification of precursory patterns of hazardous events and timely warning.

This session aims at bringing together scientists who use seismic methods to study Earth surface dynamics. We invite contributions from the field of geomorphology, cryospheric sciences, seismology, natural hazards, volcanology, soil system sciences and hydrology. Theoretical, field based and experimental approaches are highly welcome.

Share:
Co-organized as CR2.9/GI4.12/GMPV7.1/HS11.55/NH4.6/SM1.4/SSS12.13
Convener: Florent Gimbert | Co-conveners: Wei-An Chao, Velio Coviello (deceased)(deceased), Andrea Manconi, Anne Schöpa
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room G2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2
GM1.6 | PICO

#FlumeFriday is a twitter hashtag established by the HYDRALAB+ project, to share insights and expertise from all types of physical modelling experiments and to build an active online community to support hydraulic experimentalists. #FlumeFriday provides an opportunity to improve the communication of scientific results to the public and to broaden societal involvement in laboratory activities. Since its inception in March 2016, participants and followers of the hashtag have grown extensively with worldwide participation, and many different types of experiment represented in posts.

This online community provides an opportunity to bring together the scientists involved in experimental work who come from many different disciplines including, but not limited to, geologists, geographers, biologists, engineers, geochemists and sedimentologists. These experts bring complementary field, laboratory, numerical and modelling skills to understand the processes controlling environmental flow dynamics using both established and novel instrumentation and techniques.

In this session, we welcome submissions from all our past, present and future #FlumeFriday contributors to share more details about their innovative and novel approaches to experimental modelling, including any interesting and unusual results.

We would also encourage contributions focused on methodologies, instrumentation and techniques, both established and innovative, to share knowledge on how to overcome difficulties and improve results. A particular emphasis is put on recent advances or new challenges associated with the idea of using low-cost and easy-to-find materials as hydro/morphodynamic or bio/geochemical markers or surrogates. The sharing of new strategies and initiatives to support an open science approach in experimental hydraulics is also welcome.

Share:
Co-organized as BG1.15/GI2.8/HS11.58/SSP3.18
Convener: Hannah Williams | Co-conveners: Carla Faraci, Rachel Hale, Stuart McLelland, Rosaria Ester Musumeci
PICOs
| Fri, 12 Apr, 10:45–12:30
 
PICO spot 1
NH1.5

Flooding is the foremost natural hazard around the world, affecting human life and property (directly and indirectly). In the current era, many hydraulic and hydrologic modelling techniques are available for flood risk assessment and management as well as flood risk prevention and preparedness. They provide a platform for the scientific community to explore the causes of floods and to build up efficient methods for flood mitigation.

This session invites in-depth research work carried out through flood modelling including hydrological modelling, flood hydrodynamic modelling, flood inundation mapping, flood hazard mapping, risk assessment, flood policy, and flood mitigation strategy. It also welcomes studies dealing with various uncertainties associated with different stages of modelling and the exploration of modern techniques for model calibration and validation.

In addition, real-time flood inundation mapping is an important aspect for the evacuation of people from low-lying areas and reduction of the death toll. Real-time data gained through UAV-based flood inundation mapping and associated uncertainty in real-time aerial surveying are welcome in this special issue.

Invited Speaker:
PD Dr. Heidi Kreibich (Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences)
Head of the Working Group Flood risk and climate adaptation

Share:
Co-organized as HS11.59
Convener: Cristina Prieto | Co-conveners: Dawei Han, Dhruvesh Patel
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room M2
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall X3
NH1.4

Karst environments are characterized by distinctive landforms and unique hydrologic behaviors. Karst systems are commonly extremely complex, heterogeneous, and very difficult to manage because their formation and evolution are controlled by a wide range of geological, hydrological, geochemical and biological processes. Further, karst systems are extremely vulnerable due to the direct connection between the surface and subsurface compartments through conduit networks.
The great variability and unique connectivity may result in serious engineering problems: on one hand, karst groundwater resources are readily contaminated by pollution because of the rapidity of conduit flow; on the other hand, the presence of karst conduits that weakens the strength of the rock mass may lead to serious natural and human-induced hazards. The plan and development of engineering projects in karst environments thus require: 1) an enhanced understanding of natural processes that govern the initiation and evolution of karst systems through both field and modelling approaches, and 2) specific interdisciplinary approaches aiming at at better assessing the associated uncertainties and minimizing the detrimental effects of hazardous processes and environmental problems.
This session calls for abstracts on research related to geomorphology, hydrogeology, engineering geology, and/or hazard mitigation in karst environments in the context of climate change and increased human disturbance. It also aims to discuss various characterization and modelling methods applied in each specific research domain, with their consequences on the understanding of the whole process of karst genesis and functioning.

Share:
Co-organized as GM7.14/HS11.60/NP9.1
Convener: Hervé Jourde | Co-conveners: Pauline Collon, Naomi Mazzilli, Mario Parise, Xiaoguang Wang
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room L1
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X3
ITS5.2/OS4.13/EOS10.2/BG3.18/GM6.6/HS11.63 Media

Plastic contamination has been reported in all realms of the environment from the tropics to the polar oceans. The consequences of this contamination may be severe for ecosystems and could adversely affect ecosystem services such as fisheries and even human health. Our poor knowledge of plastics sources, their composition, sizes, pathways, hot spots of accumulation and ultimate fate prevents an assessment of environmental risks and the development of appropriate mitigation strategies. In order to understand current distributions of plastics and the way they evolve in space and time, much better observations and common consistent measuring methods are required but simultaneously, observations must be combined with computational models from their sources on land to rivers, estuaries, oceans and sea ice. This requires improved standardized accurate observations and the development of advanced modelling capabilities to quantify and predict contamination levels.

The session aims to set up a forum for multi-disciplinary discussions to create a global picture of plastic contamination in the environment and to suggest approaches for future research, monitoring and mitigation of plastic pollutions impacts. The session will provide a framework to advise legislators and industry on the best ways to reduce the risks of serious damage from this contaminant.

This session will draw together data on plastic contamination across all sizes of plastics, from nano- and micro-plastics to large plastic fragments, and across all environments and locations. It will combine observations with state-of-the-art computational modelling to promote the fast advance of research and improve our understanding of how plastic pollution affects environments worldwide. We invite contributions on new methods and field observations, laboratory experiments, novel modelling approaches, related scientific initiatives and projects. New ideas for citizen-science involvement and for mitigation strategies to reduce plastic contamination of the environment are especially welcome.

Invited speaker: Prof. Dr. Erik van Sebille

Share:
Co-organized as OS4.13/EOS10.2/BG3.18/GM6.6/HS11.63
Convener: Jörg-Olaf Wolff | Co-conveners: Richard Lampitt, Simon Dixon, Jessica Hickie, Alice Horton, Ilka Peeken, Anna Rubio, Stefanie Rynders
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room N1
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X4
BG2.4

The Amazon forest is the world’s largest intact forest landscape. Due to its large biodiversity, carbon storage capacity, and role in the hydrological cycle, it is an extraordinary interdisciplinary natural laboratory of global significance. In the Amazon rain forest biome, it is possible to study atmospheric composition and processes, biogeochemical cycling and energy fluxes at the geo-, bio-, atmosphere interface under near-pristine conditions for a part of the year, and under anthropogenic disturbance of varying intensity the rest of the year. Understanding its current functioning at process up to biome level is elemental for predicting its response upon changing climate and land use, and the impact this will have on global scale.

This session aims at bringing together scientists who investigate the functioning of the Amazon and comparable intact forest landscapes across spatial and temporal scales by means of remote and in-situ observational, modeling, and theoretical studies. Particularly welcome are also presentations of novel, interdisciplinary approaches and techniques that bear the potential of paving the way for a paradigm shift.

Share:
Co-organized as AS3.35/HS11.64/SSS10.12
Convener: Jošt Valentin Lavrič | Co-conveners: Alessandro Araujo, Carlos Alberto Quesada, Matthias Sörgel
Orals
| Fri, 12 Apr, 10:45–12:30
 
Room 2.31
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall A
ITS5.4/GI2.7/AS4.43/BG1.39/ERE5.6/GMPV6.4/HS11.65/NH8.7/OS4.33/SSS8.7

The session gathers geoscientific aspects such as dynamics, reactions, and environmental/health consequences of radioactive materials that are massively released accidentally (e.g., Fukushima and Chernobyl nuclear power plant accidents, wide fires, etc.) and by other human activities (e.g., nuclear tests).

The radioactive materials are known as polluting materials that are hazardous for human society, but are also ideal markers in understanding dynamics and chemical/biological/electrical reactions chains in the environment. Thus, the radioactive contamination problem is multi-disciplinary. In fact this topic involves regional and global transport and local reactions of radioactive materials through atmosphere, soil and water system, ocean, and organic and ecosystem, and its relation with human and non-human biota. The topic also involves hazard prediction and nowcast technology.

By combining >30 year (halftime of Cesium 137) monitoring data after the Chernobyl Accident in 1986, >5 year dense measurement data by the most advanced instrumentation after the Fukushima Accident in 2011, and other events, we can improve our knowledgebase on the environmental behavior of radioactive materials and its environmental/biological impact. This should lead to improved monitoring systems in the future including emergency response systems, acute sampling/measurement methodology, and remediation schemes for any future nuclear accidents.

The following specific topics have traditionally been discussed:
(a) Atmospheric Science (emissions, transport, deposition, pollution);
(b) Hydrology (transport in surface and ground water system, soil-water interactions);
(c) Oceanology (transport, bio-system interaction);
(d) Soil System (transport, chemical interaction, transfer to organic system);
(e) Forestry;
(f) Natural Hazards (warning systems, health risk assessments, geophysical variability);
(g) Measurement Techniques (instrumentation, multipoint data measurements);
(h) Ecosystems (migration/decay of radionuclides).

The session consists of updated observations, new theoretical developments including simulations, and improved methods or tools which could improve observation and prediction capabilities during eventual future nuclear emergencies. New evaluations of existing tools, past nuclear contamination events and other data sets also welcome.

Public information:
The release of radioactive materials by human activity (such as nuclear accidents) are both severe hazard problem as well as ideal markers in understanding geoscience at all level of the Earth because it cycles through atmosphere, soil, plant, water system, ocean, and lives. Therefore, we must gather knowledge from all geoscience field for comprehensive understanding.

Share:
Co-organized as GI2.7/AS4.43/BG1.39/ERE5.6/GMPV6.4/HS11.65/NH8.7/OS4.33/SSS8.7
Convener: Masatoshi Yamauchi | Co-conveners: Nikolaos Evangeliou, Yasunori Igarashi, Liudmila Kolmykova, Daisuke Tsumune
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room N1
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X1
CL3.12.2

One of the big challenges in Earth system science consists in providing reliable climate predictions on sub-seasonal, seasonal, decadal and longer timescales. The resulting data have the potential to be translated into climate information leading to a better assessment of multi-scale global and regional climate-related risks.
The latest developments and progress in climate forecasting on subseasonal-to-decadal timescales will be discussed and evaluated in this session. This will include presentations and discussions of predictions for a time horizon of up to ten years from dynamical ensemble and statistical/empirical forecast systems, as well as the aspects required for their application: forecast quality assessment, multi-model combination, bias adjustment, downscaling, etc.
Following the new WCPR strategic plan for 2019-2029, prediction enhancements are solicited from contributions embracing climate forecasting from an Earth system science perspective. This includes the study of coupled processes, impacts of coupling and feedbacks, and analysis/verification of the coupled atmosphere-ocean, atmosphere-land, atmosphere-hydrology, atmosphere-chemistry & aerosols, atmosphere-ice, ocean-hydrology, ocean-ice, ocean-chemistry and climate-biosphere (including human component). Contributions are also sought on initialization methods that optimally use observations from different Earth system components, on assessing and mitigating the impacts of model errors on skill, and on ensemble methods.
We also encourage contributions on the use of climate predictions for climate impact assessment, demonstrations of end-user value for climate risk applications and climate-change adaptation and the development of early warning systems.

A special focus will be put on the use of operational climate predictions (C3S, NMME, S2S), results from the CMIP5-CMIP6 decadal prediction experiments, and climate-prediction research and application projects (e.g. EUCP, APPLICATE, PREFACE, MIKLIP, MEDSCOPE, SECLI-FIRM, S2S4E).

Solicited talk:
Multi-year prediction of ENSO
By Jing-Jia Luo from the Institute for Climate and Application Research (ICAR), Nanjing University of Science Information and Technology, China

Share:
Co-organized as BG1.43/HS11.66/NH1.30/NP5.9/OS1.30
Convener: Andrea Alessandri | Co-conveners: Louis-Philippe Caron, Yoshimitsu Chikamoto, June-Yi Lee, Stéphane Vannitsem
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room F2
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X5
SSS2.5

Structures and techniques aiming at controlling sediment transport-related or erosion-related issues are numerous and sometimes very old. Hillslope management and bioengineering, reforestation, and torrent control works using transverse structures, as check dams and more recently open check dams, are common all over the world to curtail soil erosion and torrential hazards. These actions may be launched for the control of sediment supply (i) to the stream fans and valley rivers for flood protection, (ii) to dam reservoirs for water storage, and basically, (iii) for the mere mountain soil conservation and agriculture protection. The profound objectives of each action are diverse and vary depending on the geomorphic context and local state of the sediment cascade, where the implementation takes place. The lack of sufficient understanding of soil erosion processes, sediment (dis)connectivity activation and torrential hazards propagation continues to make soil erosion prevention and torrent control complex topics with insufficient implementation criteria and long-term effect assessment methods. Consequently, some projects still experience disappointing results due to many different reasons, such as poor construction quality, inadequate location or lack of adequate design criteria. In addition, these actions induce secondary effects (e.g., block of the downstream transfer of water and sediments), which should be better controlled or possibly prevented. This EGU session aims at gathering the whole community interested in human actions on control works and soil conservation techniques at the waterhed scale. Any contributions to the understanding of soil erosion control and sediment transport management based on detailed field experiences, high-quality laboratory works, validated numerical models and effectiveness assessment methods are welcome. Using the knowledge gaps identified above as a starting point, the proposed EGU session wishes, for the third year, to join and share scientific and technical opinions from all around the world, related to the legacy effects of soil erosion control and (open) check-dam design criteria, highlighting the role of the complex interactions between ecological elements, geomorphic processes and engineering activities.

Share:
Co-organized as GM7.12/HS11.67
Convener: Demetrio Antonio Zema | Co-conveners: Manuel Esteban Lucas-Borja, Guillaume Piton, Yang Yu
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room -2.32
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X1
SSS10.10

Wildfire is a global phenomenon responsible in each summer for tremendous environmental, social and economic losses. In the last two years, many lives were lost during the fires occurred in Portugal, Greece and California. The conjunction of land abandonment, long drought periods, flammable monocultures, lack of forest management and urban development planning, resulted in an unprecedented destruction. This phenomenon have become a persistent threat worldwide, and this risk may increase in the future due to the combination of future fire-prone climate, together with the recent trends of afforestation, land abandonment and fire suppression.
A reflection focused in these variables is essential to understand the recurrence of these extreme fires, and the consequent fatalities that occurred in Portugal, California and Greece. These high-severity mega-fires have also an important impact on the environment as a result of the reduction of vegetation cover and high volatilization of nutrients. Despite the fact that several ecosystems such as the Mediterranean have a high resilience to fires, the high wildfire recurrence is reducing their capacity for recuperation, contributing importantly to land degradation.
The aim of this session is to join researchers that study fire effects on the ecosystems, from prevention to suppression, wildfire modelling, climate change impacts on fire and post-wildfire impacts, either by means of laboratory, field experiments, or numerical modelling. It is time for scientists to join their strengths to give accurate answers to prevent and mitigate the effects of wildfires.

Share:
Co-organized as GM7.11/HS11.68/NH7.6
Convener: Diana Vieira | Co-conveners: Paulo Pereira, Kajar Köster, Jantiene Baartman, Miriam Muñoz-Rojas
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X1
BG1.66

Karst areas with carbonate bedrock comprise approximately 20 % of ice-free land on earth and provide water resources for about 25% of the Earth’s population, as well as under-pinning substantial food production. The critical zone extends from the base of the groundwater system to the top of the vegetation canopy, and comprises a complex system of coupled chemical, biological, physical and geological processes, which together support life at the Earth’s surface. Human impacts including intensive land use, contamination, and consequences of climate change have brought severe changes to the functioning of the critical zone. Owing to the inherent vulnerability of many karst ecosystems to disturbance, these are often particularly severe in karst areas. This has resulted in many emerging challenges for soil science, hydrology and related disciplines to understand how land-management practices impact biogeochemical cycles, and consequently the ability of the karst critical zone to provide future ecosystem services. The special characteristics of the critical zone in karst areas include heterogeneity of aquifer properties, thin soil profiles with a direct soil-rock contact, and unique weathering processes. This results in challenges to biogeochemical cycles studies in karst systems, requiring novel techniques and different approaches to non-karst areas.

Critical zone science is necessarily interdisciplinary. This session strongly encourages work drawing on a range of disciplines that will further our understanding of biogeochemical cycling in the karst critical zone. This will provide the knowledge base on which future management of karst areas is based, in order to secure their ability to provide ecosystem services. Work from all relevant disciplines is encouraged, including soil science, water quality, geology, karst hydrology, ecology, agronomy, and ecosystem services in karstic systems, which may draw from both long-term monitoring and high resolution study of occasional or extreme events. Work may include modelling, experimentation, reviews or a combination of the three.

Share:
Co-organized as HS11.70/SSS6.6
Convener: Fu-Jun Yue | Co-conveners: Sarah Buckerfield, Yongjun Jiang, Siliang Li, Susan Waldron
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room 2.44
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall A
ITS2.7/HS11.71/BG1.37/ERE6.8/GMPV3.6

Geofluids (i.e. fluids located in the subsurface) are increasingly becoming of interest due to their significant role as natural resources. These fluids span a vast range of geological environments including groundwater drinking resources, shale gas and oil, deep/shallow geothermal resources and hydrothermal mineral resources. Despite being valuable resources, geofluids are both vulnerable to contamination or may themselves represent a potential source of contamination through externally-driven mechanisms, as in the case of shale gas extraction, CO2 leaking or land use for agriculture purposes. Ont he other hand geofluids themselves can be a source of natural contamination as in the geogenic contamination of groundwater resources containing elevated levels of trace elements including arsenic (As), chromium (Cr), iron (Fe), and uranium (U), amongst others. Strategic management of geofluids and protection of geological resources related to them is indispensable for the future sustainable development of these societal and economically important resources. The characterization of geofluids and their behaviour in natural or artificial (human-driven) circumstances requires a deep understanding of complex physical, geochemical and microbiological processes. They are influenced directly by geological setting, structural evolution, and fluid flow systems.

The aim of this session is to foster scientific discussion between those with interest in a range of geofluid systems to better understand the role which these fluids have as socio-environmental and economic resources. The session emphasises the importance of lithological & mineralogical characterizationof various systems including in aquifers for a range of geogenic contaminants in groundwater, specifically addressing the source pathways and mobilisation mechanisms. The session also welcomes work including fluid flow, hydrology, geochemistry, environmental tracers, microbial investigations and both numerical and statistical modelling in support of fluid and resource management.

The session is supported by the RGFC-IAH (‘Regional Groundwater Flow Commission’ of International Association of Hydrogeologists) and the EU H2020 ENeRAG (‘Excellency Network Building for Comprehensive Research and Assessment of Geofluids’) project.

Share:
Co-organized as HS11.71/BG1.37/ERE6.8/GMPV3.6, co-sponsored by IAH-RGFC
Convener: Daniele Pedretti | Co-conveners: Alex Russell, Ádám Tóth, Frank McDermott, Marie-Amélie Petre
Orals
| Mon, 08 Apr, 10:45–12:30
 
Room L7
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall A

HS12 – Short Courses in Hydrological Sciences

SC3.5 ECS

Contaminant hydrology over the last century has used physically-based solute transport models that solve equations of advection and diffusion to estimate the fate and transport of contaminants. In the last decade, time variant transit time models have been proposed as a stochastic alternative to solve solute transport in a more time efficient manner. Transit time models follow a top-down approach that require fewer model parameters than classic advection-diffusion approaches. The caveat being that it requires high resolution (temporally) data for concentration of solutes in the hydrologic system.

With the advent of advanced laser-based picarro devices, measuring stable isotopes of hydrogen and oxygen in water have become more feasible. These stable isotopes of water can also be used to infer the transit time model parameters and provide mean catchment transit time information (i.e. on average how long a water molecule spends in the catchment after first entering into the soil). This becomes highly relevant in agricultural catchments where the applied fertilisers and pesticides can find their way to the groundwater pool in a short span of time that may later be consumed for domestic purposes.

This session will bring together a panel of experts on both the top-down (transit time modeling) and the bottom-up (physically-based models) approaches to modeling solutes in streams. After a short introduction by the experts, the session will follow an open discussion where participants can engage with the panel. The discussion will conclude with a summary from the panelists.

This will be the sixth edition of Meet the Expert session. This session is organised in cooperation with the Young Hydrologic Society (http://younghs.com/) and the EGU Geomorphology Section (GM).

Public information:
Invited Speakers: Paolo Benettin (EPFL), Simone Fatichi (ETH Zurich), Christine Stumpp (BOKU, Austria)

Share:
Co-organized as HS12.1
Convener: Harsh Beria | Co-conveners: Sina Khatami, Caitlyn Hall, Stefanie Lutz
Fri, 12 Apr, 16:15–18:00
 
Room -2.85
SC1.18 ECS

Writing a scientific paper is an essential part of research, and is a skill that needs practice. In this short course several invited scientists will advice early-career scientists on how to write a scientific paper and how to increase the chance of publishing their research.
This session is organized in cooperation with the Young Hydrologic Society (http://younghs.com/).

This year's expert panel:
Prof. Dr. Thorsten Wagener (University of Bristol)
Prof. Dr. Christine Stumpp (BOKU, University of Natural Resources and Life Sciences, Vienna)
Prof. Dr. Jan Fleckenstein (UFZ Leipzig and University of Bayreuth)

Share:
Co-organized as HS12.2
Convener: Andrea Popp | Co-conveners: Wouter Berghuijs, Sina Khatami, Catherine Wilcox
Wed, 10 Apr, 10:45–12:30
 
Room -2.16
SC1.23 ECS

Analysis of uncertainty has been one of the overarching themes of hydrology research. With ever increasing need for quantification and communication of uncertainty, uncertainty analysis is a fundamental part of any modelling study in hydrology, e.g. flood forecasting. This short course aims to provide a state-of-the-science overview of different approaches to analysis and modelling of uncertainty. The primary focus will be given to methods in the hydro-meteorological domain.

We kindly invite early career hydrologic researchers (MSc students, PhD candidates, post-doctoral researchers) to attend this short course designed to address fundamentals of most widely adopted approaches for uncertainty analysis.

This will be the fifth year that the Hydroinformatics for Hydrology short course is run. The previous themes of the course were data-driven and hybrid techniques, data assimilation, geostatistical modelling and extreme value modelling.

Please note that a pre-registration is not necessary. The course will be open to a limited number of participants selected on a first come-first served basis.

We are delighted to announce Dr. Francesca Pianosi from University of Bristol as the lecturer of this short course.

For any additional information, please contact the conveners. In cooperation with the Young Hydrologic Society (http://younghs.com/).

Share:
Co-organized as HS12.3
Convener: Nilay Dogulu | Co-conveners: Harsh Beria, Giovanna De Filippis, Maurizio Mazzoleni, Hannes Müller-Thomy
Wed, 10 Apr, 08:30–10:15
 
Room -2.85
SC1.33 ECS

So, you've been given a time series, e.g, of hourly precipitation. That's great, but how can you generate as many as you like with exactly the same statistical properties? In this short course you'll find out.

You'll be introduced to a unified method of stochastic modelling and downscaling that makes feasible the generation of time series that preserve any desired marginal probability distribution and correlation structure including features like intermittency. The workshop includes a rapid introduction in the stochastic properties of hydroclimatic processes like precipitation, flooding, wind, temperature, etc., and highlights features like stationarity, cyclostationarity, marginal distributions, correlations structures and intermittency. We'll develop and apply on-the-spot and step-by-step: (a) the iconic AR(1) model, (b) higher order AR models as a method to approach arbitrary correlations structures; (c) the parent-Gaussian framework to simulate time series with any marginal distribution and correlation; and (d) intermittent time series modelling (like precipitation) at any time scale.

Early Career Scientists (ECS) are specifically welcome, and of course, this short course is organized in cooperation with the Young Hydrologic Society (YHS; younghs.com)!

Share:
Co-organized as HS12.4/NH10.4
Convener: Simon Michael Papalexiou | Co-conveners: Yannis Markonis, Amir AghaKouchak, Nilay Dogulu
Thu, 11 Apr, 16:15–18:00
 
Room -2.85
SC1.44 ECS

R is open-source, versatile and scales for analyses from just a few observations to big data and high-performance computing. Its growing, enthusiastic user-base (including hydrologists) is responsible for a continuous stream of ever more efficient and useful packages and workflows.

In this short course we wish to introduce and showcase to our peers a selection of recent developments, approaches and best practices that can be applied to data analyses in hydrology. The majority of these are readily transferred to other disciplines, hence interested participants in all fields of geoscience are welcome to join!

The course is delivered by guest lecturers with experience in flood risk modelling, streamflow and drought analyses, as well as ecohydrology. It is tailored for absolute newcomers, as well as advanced useRs, and provides a platform for open discussion. In its third installment, the course also continues to build up R resources for hydrologists that remain accessible in the future: https://github.com/hydrosoc.

This session is organised in cooperation with the Young Hydrologic Society (YHS; https://younghs.com/)

Public information:
R is open-source, versatile and scales for analyses from just a few observations to big data and high-performance computing. Its growing, enthusiastic user-base (including hydrologists) is responsible for a continuous stream of ever more efficient and useful packages and workflows.

In this short course we wish to introduce and showcase to our peers a selection of recent developments, approaches and best practices that can be applied to data analyses in hydrology. The majority of these are readily transferred to other disciplines, hence interested participants in all fields of geoscience are welcome to join!

The course is delivered by guest lecturers with experience in flood risk modelling, streamflow and drought analyses, as well as ecohydrology. Topics include:

- getting, cleaning and visualizing hydrological data
- automating data downloading and reporting
- Parallel and HPC computing for hydrologists
- developing custom apps for data exploration, analyses and visualization
- modelling of the hydrological cycle in snow dominated catchments
- open discussion and QA time

In its third installment, the course also continues to build up R resources for hydrologists that remain accessible in the future: https://github.com/hydrosoc.

This session is organised in cooperation with the Young Hydrologic Society (YHS; https://younghs.com/)

Share:
Co-organized as HS12.5
Convener: Alexander Hurley | Co-conveners: Lucy Barker, Louise Slater, Guillaume Thirel, Claudia Vitolo
Programme
| Mon, 08 Apr, 16:15–18:00
 
Room -2.16
SC1.39

Tracer techniques and solute transport models are frequently used to quantify the temporary detainment of solutes in hyporheic and surface storage zones. The physical process of "transient storage" has implications for a wide variety of constituents as the storage process affects residence time and the extent of biogeochemical processing. This 2-hour workshop provides an overview of the hydrologic processes underlying the OTIS solute transport model (One-dimensional Transport with Inflow and Storage), and how these processes are represented in the stream transport equations. Emphasis will be placed on fundamental concepts such as experimental design, data evaluation, and parameter estimation using tracer techniques. Beginner to intermediate model users are encouraged to attend. Additional information on OTIS is available at http://water.usgs.gov/software/OTIS/. The workshop will be presented by Rob Runkel, a Research Hydrologist from the U.S. Geological Survey. Please contact Rob at runkel@usgs.gov if you plan to attend the workshop.

Important note: Due to time constraints, the step-by-step OTIS example that was previously described on the EGU website will not be presented.

Public information:
Quantifying Solute Transport in Streams: An Overview of the Hydrologic Processes Underlying the OTIS Solute Transport Model

Tracer techniques and solute transport models are frequently used to quantify the temporary detainment of solutes in hyporheic and surface storage zones. The physical process of "transient storage" has implications for a wide variety of constituents as the storage process affects residence time and the extent of biogeochemical processing. This 2-hour workshop provides an overview of the hydrologic processes underlying the OTIS solute transport model (One-dimensional Transport with Inflow and Storage), and how these processes are represented in the stream transport equations. Emphasis will be placed on fundamental concepts such as experimental design, data evaluation, and parameter estimation using tracer techniques. Beginner to intermediate model users are encouraged to attend. Additional information on OTIS is available at http://water.usgs.gov/software/OTIS/. The workshop will be presented by Rob Runkel, a Research Hydrologist from the U.S. Geological Survey. Please contact Rob at runkel@usgs.gov if you plan to attend the workshop.

Important note: Due to time constraints, the step-by-step OTIS example that was previously described on the EGU website will not be presented.

Share:
Co-organized as HS12.6/SSS13.40
Convener: Robert Runkel | Co-convener: Patrick Byrne
Wed, 10 Apr, 10:45–12:30
 
Room -2.85
SC1.41

Ecosystem Services (ESs) assessment is increasingly used as a decision guiding tool, with a high potentiality for many environmental impact assessment through its threefold valuation: i.e. social, biophysical and economic. ESs assessment is a way to obtain a more holistic view on a framework to bring human life to a more enhanced level of sustainability. Soil is at the heart of the assessment of ESs.
By answering the question of how the study of physical, chemical and biological processes in soil can contribute to ESs assessment, the purpose of the short-course is to review recent surveys through the eyes of the ESs user, taking stock of what we know, what we do not know, and what we need to know as soil scientist and hydrologist.
Speakers: Prof. Nunzio Romano, University of Naples, Italy, and Prof. David Ellison, Swedish University of Agriculture SLU & Ellison Consulting, Sweden.

Share:
Co-organized as HS12.8/SSS13.38
Convener: Rafael Angulo-Jaramillo | Co-convener: Paolo Nasta
Tue, 09 Apr, 10:45–12:30
 
Room -2.85
SC1.1

Data assimilation combines observational data with a numerical model. It is commonly used in numerical weather prediction, but is also applied in oceanography, hydrology and other areas of Earth system science. By integrating observations with models in a quantitative way, data assimilation allows to estimate model states with reduced uncertainty, e.g. to initialize model forecasts. Also, data assimilation can estimate parameters that control processes in the model or fluxes, which can be difficult or impossible to measure. As such, data assimilation can use observations to provide information about non-observable quantities if the model represents those. The combination of modelled and observed data requires error estimates for both sources of information. In ensemble data assimilation the error in the model state is estimated by an ensemble of model state realizations. This ensemble not only provides estimates of uncertainties, but also of cross-correlations between different model variables or parameters. The uncertainty estimate from the ensemble is then used by the assimilation method, and the most widely known is the ensemble Kalman filter.

To simplify the implementation and use of ensemble data assimilation, the Parallel Data Assimilation Framework - PDAF - has been developed. PDAF is a freely available open-source software (http://pdaf.awi.de) that provides ensemble-based data assimilation methods like the ensemble Kalman filter, but also allows to perform pure ensemble simulations. PDAF is designed such that it can be used from small toy problems running on notebook computers up to high-dimensional Earth system models running on supercomputers.

This course is both for the novices as well as for data-assimilation experts. It will be useful for novices who have a modelling application and observations and are interested in applying data assimilation, but haven't found a starting point yet. Data-assimilation experts who want to enhance the performance of their applications, or are keen to accelerate development of new data-assimilation methods and new applications will also benefit from the course.

The course will first provide an introduction to the ensemble data assimilation methodology. Then, it will explain the implementation concept of PDAF and finally provide a hands-on example of building a data assimilation system based on a numerical model. This practical introduction will prepare the participants to build a data assimilation system for their numerical models with PDAF and hence provide a quick start for applying ensemble data assimilation to their individual problems.

Participants are invited to bring their own notebook computer to run the hands-on examples themselves. For this, a Fortran compiler and the BLAS and LAPACK libraries are required. Matlab or Python would also be handy for plotting. Given the overall limited capacity of the Wifi network during the conference, it is recommended that you download PDAF from http://pdaf.awi.de before the short course if you like to do the hands-on example on your own notebook computer.

Public information:
Apart from the description above, we will provide in the Short Course a version of PDAF which only includes the relevant features for the hand-on examples and that does not require to register on the PDAF web site. If you like to run the hands-on example it would also be useful if you have OpenMPI installed (or any other MPI library), but there will also be an example that does not require MPI.

Share:
Co-organized as AS6.4/HS12.9/NP10.4/OS5.3
Convener: Lars Nerger | Co-conveners: Maria Broadbridge, Gernot Geppert, Peter Jan van Leeuwen
Programme
| Thu, 11 Apr, 14:00–15:45
 
Room -2.85
SC1.45

The analysis of grain-size distributions has a long tradition in sedimentology and related disciplines studying Earth surface processes. The decomposition of multimodal grain-size distributions into inherent subpopulations by grain-size end-member modelling analysis (EMMA) allows inferring the underlying sediment sources, transport, depositional and post-depositional processes.

This course aims to introduce the concept of EMMA and it fields of application. It will show and practice the major steps needed to decompose large data sets into robust grain size end-members using the EMMAgeo package in R.

Public information:
The course will be a mix of hands-on time and partly interactive information transfer. We prepared this course for enthusiasts that already have some experience with R (Do you know the difference between a matrix and a data frame? Have you installed and worked with packages?Have you already written and shared your own R scripts?).

Please make sure you have installed the latest version of R (3.5.3, March 2019) and RStudio (1.1.463).

In addition, please have installed the following packages (or simply install EMMAgeo and devtools) using install.packages("PAKCKAGENAME"):
- devtools
- EMMAgeo
- GPArotation
- limSolve
- caTools
- shiny
- matrixStats

You can find the short course materials and short course slides on

http://www.micha-dietze.de/pages/r_courses.html


Hope are fresh and prepared for a rush of information right at the beginning of the EGU 2019!


Lisa and Micha

Share:
Co-organized as CL6.07/GM12.5/HS12.10/SSP5.1/SSS13.36
Convener: Elisabeth Dietze | Co-convener: Michael Dietze
Mon, 08 Apr, 08:30–10:15
 
Room -2.31
SC1.36

LSDTopoTools (https://lsdtopotools.github.io) is an open source software package used to analyse landscapes, with applications in geomorphology, ecology, hydrology, soil science and planetary science. The primary aims of the software are to enable efficient, reproducible analysis of high resolution topographic data and to support the development and implementation of novel analysis techniques. During the course, attendees will gain hands on experience performing common analyses on provided topographic datasets, learn about more advanced techniques provided by the software and will have the opportunity to discuss their research with lead developers and users of LSDTopoTools.

This short course will cover:

- The principles of reproducible topographic analysis
- The calculation of simple topographic metrics
- The extraction and analysis of channel networks from high resolution topographic data
- Publication quality visualisation of analysis results

By the end of the course attendees will:

- Have a working version of LSDTopoTools on their personal laptop, ready to be used for their own research
- Understand the benefits of making topographic analysis more reproducible
- Be able to run topographic analyses on their own datasets
- Be able to visualise the results of these analyses without commercial software

Attendees must bring a laptop and are not required to have any programming experience, although familiarity with a command line shell would be beneficial.

Share:
Co-organized as GM12.2/HS12.11/NH10.7/SSS13.39, co-sponsored by SSI
Convener: Stuart Grieve | Co-conveners: Fiona Clubb, Boris Gailleton, Martin D. Hurst, Simon Mudd
Mon, 08 Apr, 16:15–18:00
 
Room -2.62
SC1.7

Nowadays, researchers have to tailor their models, data and results into systems which can be used by non-experts, such as policy makers, stakeholders, farmers and the many professionals in need of clear answers to land management questions.

One way ahead to bridge the gap between R&D and real-life applications is the development of decision support systems (DSS) on top of geospatial cyberinfrastructures (GCI) that can handle end-user requests in real time with all the complexity being transparent to the user.

The short course will cover some developments carried out within the EU H2020 LandSupport Project. The implementation of an indicator of land-take is showed, both presenting how to deal with the technical steps on a more general level and proposing hands-on sessions on the implementation of specific components of the whole land-take workflow.

First an introduction is presented, covering a general overview about the GCI and the requirements of pipelines.
A brief description of the main tasks follows:

• Big spatio-temporal raster data are managed by means of rasdaman. Here a workflow is presented showcasing how to import and query multi-band Sentinel-2 data based on the OGC Big Data Standards.
• Cloud masking and filtering. Copernicus Sentinel-2 data are processed to obtain bottom of the atmosphere, cloud free, reflectance data. A theoretical and a hands-on session in R will be presented.
• Classification. A spectral-temporal datacube of Sentinel-2 data are used to get a binary map of imperviousness (1: urban pixel, 0: non-urban pixel). At least one classification model will be presented with hands-on in R and/or MatLab.
• Land-take. An algorithm to calculate land-take using a low-level programming language is showed, with more advanced insights about the opportunity to face GPU calculations.

Altogether, we motivate how the LandSupport approach aims at providing decision support based on multi-source spatiotemporal data in a user-centric manner.
Ample time will be available for answering questions and discussion.

Share:
Co-organized as ESSI1.20/HS12.12/SSS13.41
Convener: Giuliano Langella | Co-conveners: Peter Baumann, Francesco Vuolo
Mon, 08 Apr, 14:00–15:45
 
Room -2.85
SC1.47 ECS

R is a free and open software that gained paramount relevance in data science, including fields of Earth sciences such as climatology, hydrology, geomorphology and remote sensing. R heavily relies on thousands of user-contributed collections of functions tailored to specific problems, called packages. Such packages are self-consistent, platform independent sets of documented functions, along with their documentations, examples and extensive tutorials/vignettes, which form the backbone of quantitative research across disciplines.

This short course focuses on consolidated R users that have already written their functions and wish to i) start appropriately organizing these in packages and ii) keep track of the evolution of the changes the package experiences. While there are already plenty of introductory courses to R we identified a considerable gap in the next evolutionary step: writing and maintaining packages.

The course covers:
- reasons for building packages,
- the general package structure and their essential elements,
- efficient ways to write and document functions,
- adding and documenting example data sets and examples,
- approaches to checking, building and sharing packages,
- versioning of packages using git and GitHub.

The course is open to everyone who is interested in R and whose experiences go beyond basic scripting. Participants should be able to answer the following questions right away: What is the difference between data type and data structure? How do matrices differ from lists? How are S4-objects indexed and how are lists indexed? What is the difference between lapply() and mapply()? What are the functions missing(), on.exit() and return() good for?

Share:
Co-organized as AS6.5/CL6.06/GM12.3/HS12.13/NH10.8
Convener: Michael Dietze | Co-convener: Sebastian Kreutzer
Thu, 11 Apr, 08:30–10:15
 
Room -2.62
SC1.42

IMPORTANT NOTICE: Please, send registration info (your name and e-mail address to Marina Karsanina: marina.karsanina@gmail.com), this is necessary to estimate the number of participants and redistribute training materials and software prior to the course!
Also note that you will need a laptop (preferably fully charged) for practical work.

Motivation: In numerous scientific areas dealing with flow and transport in porous media such as hydrology, soil and rock physics, petroleum engineering, X-ray microtomography (XCT) is the key tool to obtain information on rock/soil structure under study. If structural information is obtained, one can utilize so-called pore-scale modelling to simulate fluid flow directly in the pore space of the 3D porous media images. Even the simplest workflow to simulate single phase flow and compute permeability requires a number of steps, image processing including segmentation and solution of the Stokes equation in 3D geometry being the most critical or time consuming. Recent developments in the field of pore-scale modelling allow to perform decent simulations using a modern personal computer, but such tools are still not widespread in routine research work.

Aim: To provide an introduction and basic tools to perform all necessary steps from X-ray microtomography images to single-phase flow simulations.

Plan: 1) Introduction to 3D imaging, image processing and pore-scale modelling (20 min.); 2) Overview of available software/solutions and typical problems (10 min.); 3) Description of solutions developed by our group and available to the public (10 min.); 4) Hands-on image processing and segmentation (30 min.); 5) Hands-on single phase flow modelling (20 min.); 6) Interpretation and visualization of results (20 min.); 7) Interactive session with questions (5 min.).
For all hands-on sessions you will use free software developed by our research group (FaT iMP) and some other freely available packages. All necessary materials, including sample XCT images, will be distributed by organizers prior to the course.

What will you learn: 1) The basics of porous media imaging, 2) how to prepare and crop XCT images for pore-scale modelling, 3) how to segment images using current state-of-the-art local thresholding techniques, 4) how to simulate single phase flow and compute permeability of porous media samples from 3D images.
At the end of the course you will be able to simulate single-phase flow based on grey-scale XCT images of porous media.

Public information:
1) Introduction to 3D imaging, image processing and pore-scale modelling (20 min.); 2) Overview of available software/solutions and typical problems (10 min.); 3) Description of solutions developed by our group and available to the public (10 min.); 4) Hands-on image processing and segmentation (30 min.); 5) Hands-on single phase flow modelling (20 min.); 6) Interpretation and visualization of results (20 min.); 7) Interactive session with questions (5 min.).
For all hands-on sessions you will use free software developed by our research group (FaT iMP) and some other freely available packages. All necessary materials, including sample XCT images, will be distributed by organizers prior to the course.

IMPORTANT NOTICE: Please, send registration info (your name and e-mail address to Marina Karsanina: marina.karsanina@gmail.com), this is necessary to estimate the number of participants and redistribute training materials and software prior to the course!
Also note that you will need a laptop (preferably fully charged) for practical work.

Share:
Co-organized as EMRP1.7/HS12.14/SSS13.37
Convener: Marina Karsanina | Co-conveners: Kirill Gerke, Efim Lavrukhin
Programme
| Thu, 11 Apr, 08:30–10:15
 
Room -2.85

PGM – Programme group meetings (by invitation only)

PGM13
Sub-programme group meeting HS4 (by invitation only)
Convener: Femke Davids
Wed, 10 Apr, 16:15–18:00
 
Room 3.30
PGM14
Sub-programme group meeting HS8 (by invitation only)
Convener: Monica Riva | Co-convener: Stefano Ferraris
Tue, 09 Apr, 19:00–20:00
 
Room 3.29
PGM15
Sub-programme group meeting HS6 (by invitation only)
Convener: Chiara Corbari
Tue, 09 Apr, 10:00–11:00
 
Room 3.29
PGM16
Sub-programme group meeting HS10 (by invitation only)
Convener: Josie Geris
Wed, 10 Apr, 14:00–15:45
 
Room 3.17
PGM17
Sub-programme group meeting HS9 (by invitation only)
Convener: Stefan Haun
Programme
| Tue, 09 Apr, 16:15–17:15
 
Room 3.29
PGM18
Sub-programme group meeting HS2 (by invitation only)
Convener: Bettina Schaefli
Thu, 11 Apr, 10:45–12:30
 
Room 3.29
PGM19
Sub-programme group meeting HS7 (by invitation only)
Convener: Andreas Langousis
Wed, 10 Apr, 14:00–15:45
 
Room 3.29
PGM21
Sub-programme group meeting HS3 (by invitation only)
Convener: Maurizio Mazzoleni
Mon, 08 Apr, 16:15–18:00
 
Room 3.16

Union sessions of interest

US2

This year marks the 250th anniversary of the birth of Alexander von Humboldt (1769-1859), the intrepid explorer of the Andes and other regions in the world, and the most famous scientist of his time. Alexander von Humboldt is perhaps best known for his radical new vision of nature as a complex and interconnected global force, thereby becoming the founder of the field of biogeography and laying the ground for modern Earth-System Science approaches. It seems fitting to pay tribute to Alexander von Humboldt’s legacy by reviewing the state of the art in studies of the coupled lithosphere – atmosphere – hydrosphere – biosphere system with a focus on the Andean mountain belt. The Andes have become one of the main natural laboratories in the world to explore these questions and many recent studies have addressed its tectonic and geodynamic evolution, but also the two-way couplings between surface uplift, climatic evolution and biodiversity in the Andes and its foreland. This Union Session will bring together world-leading specialists on these questions with the aim to shed light on both suspected and unexpected couplings in the system.

Share:
Convener: Peter van der Beek | Co-conveners: Mike Burton, Giuliana Panieri, Lily Pereg (deceased)(deceased)
Orals
| Fri, 12 Apr, 08:30–12:15
 
Room E1
US3 Media|ECS

Over the whole Earth history, the climate has encountered tipping points, shifting from one regulated system to the other. This tilting motion affects both climate and the carbon cycle and has played a major role in the evolution of the Earth climate, at all timescales. Earth History has been ponctuated by large climate changes and carbon cycle reorganizations, from large climate variations occurring in deep times (snowball events, terrestrialisation, Mesozoic and early Cenozoic warm episodes, quaternary glacial cycles…) to past and on-going abrupt events. Many potential triggers of those climate and carbon cycle shifts have been proposed and tested through modeling studies, and against field data, such as those directly or indirectly linked with tectonics (plate motion, orogenesis, opening/closing of seaways, weathering…) and orbital forcing. Given that the Earth climate is currently experiencing an unprecedented transition under anthropogenic pressure, understanding the mechanisms behind the scene is crucial.

Our aim is to point out the most recent results concerning how a complex system as the climate of the Earth has undergone many tipping points and what is the specificity of the future climate changes. Therefore, within this session, we would like to encourage talks discussing advances in our record and modeling of the forces triggering and amplifying the changes of Earth climate and carbon cycle across spatial and temporal scales.

Share:
Convener: Gilles Ramstein | Co-conveners: Ayako Abe-Ouchi, Richard Betts, Robert DeConto
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room E1
US4 ECS

In today’s changing world we need to tap the potential of every talented mind to develop solutions for a sustainable future. The existence of under-representation of different groups (cultural, national and gender) remains a reality across the fields of science, technology, engineering, and mathematics (STEM fields) around the world, including the geosciences. This Union Symposium will focus on remaining obstacles that contribute to these imbalances, with the goal of identifying best practices and innovative ideas to overcome obstacles.

EGU is welcoming six high-level speakers from the funding agencies and research centres on both sides of the Atlantic related to geosciences to present efforts and discuss initiatives to tackle both implicit and explicit biases. Speakers are:

Jill Karsten, AGU Diversity and Inclusion Task Force (confirmed)
Erika Marín-Spiotta, University of Wisconsin - Madison (confirmed)
Daniel Conley, Lund University (confirmed)
Giulio di Toro, University of Padua (confirmed)
Liviu Matenco, Utrecht University (confirmed)
Barbara Romanowicz, European Research Council (confirmed)

Share:
Co-sponsored by AGU and JpGU
Convener: Claudia Jesus-Rydin | Co-conveners: Alberto Montanari, Robin Bell, Chiaki Oguchi, Lily Pereg (deceased)(deceased)
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room E1
US5

Atmospheric composition matters to climate, weather forecasting, human health, terrestrial and aquatic ecosystems, agricultural productivity, aeronautical operations, renewable energy production, and more. Hence research in atmospheric composition is becoming increasingly cross-cutting and linked to many disciplines including climate, biogeosciences, hydrology, natural hazards, computer and data sciences, socio-economic studies and many others. There is a growing need for atmospheric composition information and an improved understanding of the processes that drive changes in the composition and resulting impacts. While atmospheric composition research is advancing rapidly, there is a need to pay more attention to the translation of this research to support societal needs. Although translational research is a major focus of the health sciences and meteorology, it is in a relatively early stage in atmospheric composition. In this Union Symposium, we plan to highlight the need for, and to illustrate exciting advances in the translation of atmospheric composition research to support services. We will build upon work within the World Meteorological Organization and other communities related to the closer linkages of weather, atmospheric composition, and climate research and related services. We will also articulate the needs for advances in observing systems, models and a better understanding of fundamental processes. This session will also serve as a celebration of the 30 year anniversary of the WMO Global Atmosphere Watch programme and an opportunity for the broader community to envision partnerships needed to facilitate the effective translation of atmospheric composition research.

Share:
Convener: Oksana Tarasova | Co-conveners: Marcos Andrade, Claudia Volosciuk
Orals
| Tue, 09 Apr, 10:45–12:15, 14:00–15:30
 
Room E1
GDB1 Media

In October 2018, the IPCC published its special report on impacts of global warming of 1.5 deg C. Another recent, highly publicised study suggests that the planet could pass an irreversible threshold into a so called “Hothouse Earth” state for a temperature increase of as low as 2 degrees C above pre-industrial temperatures, while other studies and commentaries have emphasised the urgency on climate action, arguing that 2020 must be a turning point for global fossil fuel emissions, to increase the chance of maintaining a safe operating space for the humans on the planet. In 2018, the IPCC celebrated its 30th anniversary. The importance of taking action on human-induced climate change has been emphasised with governments around the world since the 1990s yet CO2 concentrations continue to rise and international initiatives have, to date, had limited and insufficient impact to avert some of the most serious consequences of climate change.
How close are we to one or more critical thresholds (cliff edge)? Is there time to avert passing one or more of these thresholds? What can the geoscience community do to reduce the risks? How important is bottom up versus top down action to ensuring the least worst outcome? These are some of the questions we will debate with world experts in their field and authors of the thought papers on these topics.

Public information:
In October 2018, the IPCC published its special report on impacts of global warming of 1.5 deg C. Another recent, highly publicised study suggests that the planet could pass an irreversible threshold into a so called “Hothouse Earth” state for a temperature increase of as low as 2 degrees C above pre-industrial temperatures.

In 2018, the IPCC celebrated its 30th anniversary. The importance of taking action on human-induced climate change has been emphasised with governments around the world since the 1990s yet CO2 concentrations continue to rise and international initiatives have, to date, had limited and insufficient impact to avert some of the most serious consequences of climate change that may pose an existential threat to modern civilisation.

How close are we to one or more critical thresholds? Is there time to avert passing one or more of them? What can the geoscience community do to reduce the risks? How important is bottom up versus top down action to ensuring the least worst outcome? These are some of the questions we will debate with world experts in their field and authors of the thought papers on these topics.

The Great Debate panellists are:
Prof. Myles Allen is Professor of Geosystem Science in the Environmental Change Institute, University of Oxford. His research focuses on how human and natural influences on climate contribute to observed climate change and risks of extreme weather and in quantifying their implications for long-range climate forecasts. He was a Coordinating Lead Author on the Intergovernmental Panel on Climate Change Special Report on 1.5 degrees, having served on the IPCC’s 3rd, 4th and 5th Assessments, including the Synthesis Report Core Writing Team in 2014.

Prof. Sabine Fuss, Mercator Research Institute on Global Commons and Climate Change (MCC), Berlin. Sabine is an economist, currently leading a working group at the MCC. She holds a professorship on Sustainable Resource Management and Global Change at Humboldt University of Berlin. Her research interests are in sustainable development, land use change and climate change mitigation. She has been an IPCC Lead Author for the Special Report on 1.5°C global warming, serves on the steering committee of the Global Carbon Project and is a guest scholar at the International Institute for Applied Systems Analysis.

Erica Hope leads the cross-sectoral ‘2050 Task Force’ and governance programme of the European Climate Foundation (ECF) in Brussels, which seeks to build knowledge, political strategies and coalitions to drive the transition to a zero emissions society by mid-century. Erica has previously worked for the energy efficiency and UK programmes of the ECF, and before that led the policy and advocacy activities of NGO network Climate Action Network Europe on energy efficiency. From 2005-2009 she was researcher to Green MEP Caroline Lucas, and has also worked at the Institute for Public Policy Research in London.

Prof. Linda Steg is professor of environmental psychology at the University of Groningen. She studies factors influencing sustainable behaviour, the effects and acceptability of strategies aimed at promoting sustainable behaviour, and public perceptions of technology and system changes. She is member of Member of the Royal Netherlands Academy of Sciences (KNAW), and lead author of the IPCC special report on 1.5°C and AR6. She works on various interdisciplinary and international research programmes, and collaborates with practitioners working in industry, governments and NGOs.

Share:
Convener: Jonathan Bamber | Co-conveners: Alberto Montanari, Didier Roche
Thu, 11 Apr, 10:45–12:30
 
Room E1
GDB2 ECS

The geosciences are currently used by policymakers in a wide variety of areas to help guide the decision-making process and ensure that the best possible outcome is achieved. While the importance of scientific advice and the use of evidence in the policymaking process is generally acknowledged by both policymakers and scientists, how scientific advice is integrated and who is responsible is still unclear.

EU Policymakers frequently highlight institutionalised processes for integrating scientific advice into policy such as European Commission's Group of Chief Scientific Advisors (SAM) and the EU Commission’s Register of Expert Groups. But how efficient and accessible are these mechanisms really?

Some emphasise the need for scientists to have their own policy networks in place so that they can share their research outcomes with policymakers who can then use it directly or pass it on to those responsible for relevant legislation. But from funding applications to teaching and even outreach activities – scientists are often already overloaded with additional tasks on top of their own research. Can they really be held responsible for keeping up with the latest policy news and maintaining a constantly changing network of policymakers as well?

This debate will feature a mixed panel of policymakers and geoscientists who have previously given scientific advice. Some key questions that the panel will debate include:
• How can the accessibility of current EU science-advisory mechanisms be improved?
• Are scientists doing enough to share their research?
• And who is responsible for ensuring that quality scientific evidence is used in policymaking?

Speakers will be encouraged to explain any science advisory mechanism that they highlight (e.g. SAM) to ensure that the debate is understood by all those in attendance.

While the panel and subsequent debate will have an EU focus, it is likely that many of the issues discussed will be applicable to countries around the world.

Public information:
David Mair: Head of Unit, Knowledge for Policy: Concepts & Methods, Joint Research Centre
Paul Watkinson: Chair of SBSTA (Subsidiary Body for Scientific and Technological Advice)
Kasey White: Director for Geoscience Policy, Geological Society of America
Günter Blöschl: Head of Institute of Hydraulic Engineering and Engineering Hydrology, Vienna University of Technology
Detlef van Vuuren: Professor in Integrated Assessment of Global Environmental Change at the Faculty of Geosciences, Utrecht University

Share:
Convener: Chloe Hill | Co-conveners: Sarah Connors, Hazel Gibson
Mon, 08 Apr, 10:45–12:30
 
Room E1
GDB3 ECS

The ever more challenging work environments and increasing pressures on Early Career Scientists e.g. publish or perish, securing grant proposals, developing transferable skills and many more – and all while having a lack of job security. This puts a big strain on Early Career Scientists and this can lead to neglected mental well-being which in turn increases the risk of developing anxiety, depression or other mental health issues. The graduate survey from 2017 (https://www.nature.com/nature/journal/v550/n7677/full/nj7677-549a.html) shows that 12% of respondents had sought help or advice for anxiety or depression during their PhD.

In this debate we want to discuss: Is there a problem? How ECS can take control of their mental wellbeing and prioritise this in the current research environment? And what support would ECS like to see from organisations like EGU or their employers?

Share:
Convener: Stephanie Zihms | Co-conveners: Raffaele Albano, Anita Di Chiara, Hazel Gibson, Mathew Stiller-Reeve
Thu, 11 Apr, 19:00–20:30
 
Room E1
GDB4 ECS

"What counts may not be countable and what is countable may not count". Assessments of scientists and their institutions tend to focus on easy-to-measure metrics related to research outputs such as publications, citations, and grants. However, society is increasingly dependent on Earth science research and data for immediate decisions and long-term planning. There is a growing need for scientists to communicate, engage, and work directly with the public and policy makers, and practice open scholarship, especially regarding data and software. Improving the reward and recognition structure to encourage broader participation of scientists in these activities must involve societies, institutions, and funders. EGU, AGU, and JPGU have all taken steps to improve this recognition, from developing new awards to starting journals around the topic of engaging the public to implementing FAIR data practices in the Earth, environmental, and space sciences, but far more is needed for a broad cultural change. How can we fairly value and credit harder-to-measure, these less tangible contributions, compared to the favoured metrics? And how can we shift the emphasis away from the "audit culture" towards measuring performance and excellence? This session will present a distinguished panel of stakeholders discussing how to implement and institutionalize these changes.

Public information:
Moderator:
Robin Bell - AGU President

Co-Moderator:
Helen M. Glaves - President of the EGU ESSI Division

Panelists:

Liz Allen – Director of Strategic Initiatives at F1000
Visiting Senior Research Fellow, Policy Institute, King's College London

Stephen Curry – Professor and Assistant Provost, Imperial College London
Chair, Declaration on Research Assessment (DORA)

Demetris Koutsoyiannis – Professor and former Dean, Faculty of Engineering, Technical University of
Athens, Past Editor in Chief of the Hydrological Sciences Journal of IAHS

Share:
Co-sponsored by AGU and JpGU
Convener: Alberto Montanari | Co-conveners: Jonathan Bamber, Robin Bell, Hiroshi Kitazato, Lily Pereg (deceased)(deceased)
Wed, 10 Apr, 10:45–12:30
 
Room E1
GDB5 Media

Public information:
Plan S, devised by a coalition of research funders with support from the European Commission and European Research Council, demands that by January 1, 2020 research supported by participating funders must be published in Open Access journals. Representatives from subscription-based and Open Access publishers, architects of Plan S, and researchers affected by it will debate questions surrounding the implementation of the plan and its consequences.

The panelists are David Sweeney, Heike Langenberg, Marc Schiltz and Brooks Hanson. They will present the case for and against mandatory OA followed by an open debate with questions and comments from the audience.

David Sweeney is Executive Chair of Research England, the biggest research funder in the UK. He has been invited to visit many countries to advise on research assessment and funding, particularly with respect to research impact. He is also co-chair of the Implementation Task Force for Plan S, the international initiative on full and immediate open access to research publications.

Heike Langenberg is the Chief Editor of Nature Geoscience. She started her editorial career in 1999 as an Associate, then Senior Editor at Nature handling manuscripts in the broad area of climate sciences. In 2007 she moved to Nature Geoscience to launch the journal in January 2008. A graduate in mathematics of the Philipps-Universität Marburg, Germany, she ventured into oceanography for her PhD at the University of Hamburg. Her postdoctoral research at various research institutes in Hamburg was focused on numerical simulations of the ocean and atmosphere at a regional scale.

Marc Schiltz is president of Science Europe, the European association of all major national public research funding and research performing organisations. In this role, he has contributed to setting the European agenda to foster Open Science and is one of the architects of Plan S. He is also leading the Luxembourg National Research Fund. He is a relentless advocate of science and research, serving on a number of external boards and committees, both at the national and international level. Having received a PhD in Crystallography from the University of Paris-Sud and an executive MBA from INSEAD, Marc has been active in research and higher education for more than 25 years and held research and faculty positions in several European countries.

Brooks Hanson is the Executive Vice President for Science for the American Geophysical Union (AGU), responsible for AGU’s publications, meetings, ethics and data programs, and Thriving Earth Exchange. He previously acted as Sr. Vice President for Publications at AGU, where he was responsible for AGU's portfolio of books and 21 journals and served as Deputy Editor for Physical Sciences at Science. Brooks received a Ph.D. in Geology from UCLA and held a post-doctoral appointment at the Department of Mineral Sciences at the Smithsonian Institution.

Share:
Convener: Katja Fennel | Co-convener: Jonathan Bamber
Tue, 09 Apr, 16:15–18:00
 
Room E1
SCS1 Media|ECS

Wed, 10 Apr, 12:45-14:00 / Room E1

Public information:
The dialogue between scientists, institutions, policymakers and the general public is widely recognised as an essential step towards a fair and sustainable society. Nowadays, more than ever in human history, international cooperation is an essential requirement for protecting the planet, advancing science and ensuring an equitable development of the global economy.
Despite its importance, the above dialogue can be a challenge for scientists, who often cannot find a productive connection with governments and politicians. Scientific associations are a key link between researchers and policy makers, as they have the potential to establish a durable and profitable connection with institutions.
The EGU elected the dialogue with society as one of its priority missions. At its General Assembly, the EGU is launching an innovative symposium format, Science and Society (SCS), to host scientific forums specifically dedicated to connecting with high-level institutions and engaging the public and policymakers.
The conversation with Ilaria Capua and Mario Monti will focus on science and politics with a global perspective, and the impact of populism on European integrity and therefore scientific research. The discussion will elaborate on optimal strategies to deliver topical and clear scientific messages to key institutions.
Ilaria Capua is a virologist best known for her research on influenza viruses and her efforts promoting open access to genetic information on emerging viruses. In 2006, Science reported on Capua’s effort towards open access science, stating that she had “renewed the debate about how to balance global health against scientists’ needs to publish and countries’ demands for secrecy". She has been a member of the Italian parliament from 2013 to 2016 and a fake news victim. She is currently a full professor at the University of Florida in Gainesville, Florida, US, and director of the UF One Health Center of Excellence.
Mario Monti served as a European Commissioner from 1995 to 2004, with responsibility for the internal market, services, customs, taxation and competition. He was Prime Minister of Italy from 2011 to 2013, leading a government of national unity to cope with the Italian debt crisis. Monti has also been Rector and is currently President of Bocconi University in Milan. His publications deal mainly with monetary and financial economics, public finance, European integration, competition policy. He is currently lifetime member of the Italian Senate.
During the conversation, Ilaria Capua and Mario Monti will present their vision with two 15-minute talks that will be followed by 20 minutes dedicated to questions from the audience and answers.

Share:
Co-organized as EOS/ESSI/G6.6/GD/HS1.2.12
Conveners: Alberto Montanari, Jonathan Bamber
Wed, 10 Apr, 12:45–14:00
 
Room E1
SCS2 Media|ECS

Plastic pollution is recognized as one of the most serious and urgent problems facing our planet. Rates of manufacture, use and ultimately disposal of plastics continue to soar, posing an enormous threat to the planet’s oceans and rivers and the flora and fauna they support. There is an urgent need for global action, backed by sound scientific understanding, to tackle this problem.

This Union Symposium will address the problems posed to our planet by plastic pollution, and examine options for dealing with the threat.

Share:
Co-organized as HS1.2.13/OS4.36
Convener: Jessica Hickie | Co-conveners: Bruce Newport, Christopher Hackney, David Todd, Tim van Emmerik
Orals
| Mon, 08 Apr, 14:00–17:45
 
Room E1
SCA1 ECS

The Games Night is a space to gather, socialise, and play some games. The catch is that all the games are based on Geoscience! Bring along your own games or try one of the others in the session and meet the people who created them. This will also be your chance to try games featured in the Games for Geoscience session.

Public information:
Confirmed games include -
Breath of the Wild, HEAT, Flash Flood! Vol. 2, Resilience, Druids & Defences, Wanted: Head of the Centre for Flood Forecasts (IMPREX serious game), Rivers Top Trumps.

Share:
Convener: Christopher Skinner | Co-conveners: Rolf Hut, Sam Illingworth, Elizabeth Lewis, Jazmin Scarlett
Programme
| Wed, 10 Apr, 18:00–20:00
 
Foyer D
SCA2 ECS

Join us to help put some of the world's most vulnerable places on the map. A mapathon is a mapping marathon, where we get together to contribute to OpenStreetMap - the world's free map.
No experience is necessary - just bring your laptop and we will provide the training. Learn more about crowdsourcing, open data and humanitarian response - we will also provide some tips for how to host a mapathon at your home institution.

Share:
Convener: Faith Taylor | Co-conveners: Hessel Winsemius, Joanne Wood, chen zhong
Thu, 11 Apr, 19:00–20:30
 
Room L4/5
SCA3

Plastic Oceans UK have been experts on plastic pollution for nearly a decade - solving the plastic crisis through their science, sustainability and education programmes. This all began with the award-winning documentary A Plastic Ocean, now available for streaming on Netflix.

Through changing attitudes, behaviours and practices on the use and value of plastics, we can stop plastic pollution reaching the ocean within a generation.

Come along to the screening of A Plastic Ocean to understand the impacts of plastic pollution around the world, what action we can take to stop plastics entering our natural world and pose your questions to the film's producer, Jo Ruxton, at the end of film.

http://plasticoceans.uk/

Public information:
Plastic Oceans UK have been experts on plastic pollution for nearly a decade - solving the plastic crisis through their science, sustainability and education programmes. This all began with the award-winning documentary A Plastic Ocean, now available for streaming on Netflix.

Through changing attitudes, behaviours and practices on the use and value of plastics, we can stop plastic pollution reaching the ocean within a generation.

Come along to the screening of A Plastic Ocean to understand the impacts of plastic pollution around the world, what action we can take to stop plastics entering our natural world and pose your questions to the film's producer, Jo Ruxton, at the end of film.

http://plasticoceans.uk/

Share:
Convener: Fiona Tovey | Co-convener: Jessica Hickie
Tue, 09 Apr, 19:00–21:00
 
Room E2